fhirflame / src /fhir_validator.py
leksval
initial commit
a963d65
"""
FHIR R4/R5 Dual-Version Validator for FhirFlame
Healthcare-grade FHIR validation with HIPAA compliance support
Enhanced with Pydantic models for clean data validation
Supports both FHIR R4 and R5 specifications
"""
import json
from typing import Dict, Any, List, Optional, Literal, Union
from pydantic import BaseModel, ValidationError, Field, field_validator
# Pydantic models for medical data validation
class ExtractedMedicalData(BaseModel):
"""Pydantic model for extracted medical data validation"""
patient: str = Field(description="Patient information extracted from text")
conditions: List[str] = Field(default_factory=list, description="Medical conditions found")
medications: List[str] = Field(default_factory=list, description="Medications found")
confidence_score: float = Field(ge=0.0, le=1.0, description="Confidence score for extraction")
@field_validator('confidence_score')
@classmethod
def validate_confidence(cls, v):
return min(max(v, 0.0), 1.0)
class ProcessingMetadata(BaseModel):
"""Pydantic model for processing metadata validation"""
processing_time_ms: float = Field(ge=0.0, description="Processing time in milliseconds")
model_version: str = Field(description="AI model version used")
confidence_score: float = Field(ge=0.0, le=1.0, description="Overall confidence score")
gpu_utilization: float = Field(ge=0.0, le=100.0, description="GPU utilization percentage")
memory_usage_mb: float = Field(ge=0.0, description="Memory usage in MB")
# Comprehensive FHIR models using Pydantic (R4/R5 compatible)
class FHIRCoding(BaseModel):
system: str = Field(description="Coding system URI")
code: str = Field(description="Code value")
display: str = Field(description="Display text")
version: Optional[str] = Field(None, description="Version of coding system (R5)")
class FHIRCodeableConcept(BaseModel):
coding: List[FHIRCoding] = Field(description="List of codings")
text: Optional[str] = Field(None, description="Plain text representation")
class FHIRReference(BaseModel):
reference: str = Field(description="Reference to another resource")
type: Optional[str] = Field(None, description="Type of resource (R5)")
identifier: Optional[Dict[str, Any]] = Field(None, description="Logical reference when no URL (R5)")
class FHIRHumanName(BaseModel):
family: Optional[str] = Field(None, description="Family name")
given: Optional[List[str]] = Field(None, description="Given names")
use: Optional[str] = Field(None, description="Use of name (usual, official, temp, etc.)")
period: Optional[Dict[str, str]] = Field(None, description="Time period when name was/is in use (R5)")
class FHIRIdentifier(BaseModel):
value: str = Field(description="Identifier value")
system: Optional[str] = Field(None, description="Identifier system")
use: Optional[str] = Field(None, description="Use of identifier")
type: Optional[FHIRCodeableConcept] = Field(None, description="Type of identifier (R5)")
class FHIRMeta(BaseModel):
"""FHIR Meta element for resource metadata (R4/R5)"""
versionId: Optional[str] = Field(None, description="Version ID")
lastUpdated: Optional[str] = Field(None, description="Last update time")
profile: Optional[List[str]] = Field(None, description="Profiles this resource claims to conform to")
source: Optional[str] = Field(None, description="Source of resource (R5)")
class FHIRAddress(BaseModel):
"""FHIR Address element (R4/R5)"""
use: Optional[str] = Field(None, description="Use of address")
line: Optional[List[str]] = Field(None, description="Street address lines")
city: Optional[str] = Field(None, description="City")
state: Optional[str] = Field(None, description="State/Province")
postalCode: Optional[str] = Field(None, description="Postal code")
country: Optional[str] = Field(None, description="Country")
period: Optional[Dict[str, str]] = Field(None, description="Time period when address was/is in use (R5)")
# Flexible FHIR resource models (R4/R5 compatible)
class FHIRResource(BaseModel):
resourceType: str = Field(description="FHIR resource type")
id: Optional[str] = Field(None, description="Resource ID")
meta: Optional[FHIRMeta] = Field(None, description="Resource metadata")
class FHIRPatientResource(FHIRResource):
resourceType: Literal["Patient"] = "Patient"
name: Optional[List[FHIRHumanName]] = Field(None, description="Patient names")
identifier: Optional[List[FHIRIdentifier]] = Field(None, description="Patient identifiers")
birthDate: Optional[str] = Field(None, description="Birth date")
gender: Optional[str] = Field(None, description="Gender")
address: Optional[List[FHIRAddress]] = Field(None, description="Patient addresses (R5)")
telecom: Optional[List[Dict[str, Any]]] = Field(None, description="Contact details")
class FHIRConditionResource(FHIRResource):
resourceType: Literal["Condition"] = "Condition"
subject: FHIRReference = Field(description="Patient reference")
code: FHIRCodeableConcept = Field(description="Condition code")
clinicalStatus: Optional[FHIRCodeableConcept] = Field(None, description="Clinical status")
verificationStatus: Optional[FHIRCodeableConcept] = Field(None, description="Verification status")
class FHIRObservationResource(FHIRResource):
resourceType: Literal["Observation"] = "Observation"
status: str = Field(description="Observation status")
code: FHIRCodeableConcept = Field(description="Observation code")
subject: FHIRReference = Field(description="Patient reference")
valueQuantity: Optional[Dict[str, Any]] = Field(None, description="Observation value")
component: Optional[List[Dict[str, Any]]] = Field(None, description="Component observations (R5)")
class FHIRBundleEntry(BaseModel):
resource: Union[FHIRPatientResource, FHIRConditionResource, FHIRObservationResource, Dict[str, Any]] = Field(description="FHIR resource")
fullUrl: Optional[str] = Field(None, description="Full URL for resource (R5)")
class FHIRBundle(BaseModel):
resourceType: Literal["Bundle"] = "Bundle"
id: Optional[str] = Field(None, description="Bundle ID")
meta: Optional[FHIRMeta] = Field(None, description="Bundle metadata")
type: Optional[str] = Field(None, description="Bundle type")
entry: Optional[List[FHIRBundleEntry]] = Field(None, description="Bundle entries")
timestamp: Optional[str] = Field(None, description="Bundle timestamp")
total: Optional[int] = Field(None, description="Total number of matching resources (R5)")
@field_validator('entry', mode='before')
@classmethod
def validate_entries(cls, v):
if v is None:
return []
# Convert dict resources to FHIRBundleEntry if needed
if isinstance(v, list):
processed_entries = []
for entry in v:
if isinstance(entry, dict) and 'resource' in entry:
processed_entries.append(entry)
else:
processed_entries.append({'resource': entry})
return processed_entries
return v
class FHIRValidator:
"""Dual FHIR R4/R5 validator with healthcare-grade compliance using Pydantic"""
def __init__(self, validation_level: str = "healthcare_grade", fhir_version: str = "auto"):
self.validation_level = validation_level
self.fhir_version = fhir_version # "R4", "R5", or "auto"
self.supported_versions = ["R4", "R5"]
def detect_fhir_version(self, fhir_data: Dict[str, Any]) -> str:
"""Auto-detect FHIR version from data"""
# Check meta.profile for version indicators
meta = fhir_data.get("meta", {})
profiles = meta.get("profile", [])
for profile in profiles:
if isinstance(profile, str):
if "/R5/" in profile or "fhir-5" in profile:
return "R5"
elif "/R4/" in profile or "fhir-4" in profile:
return "R4"
# Check for R5-specific features
if self._has_r5_features(fhir_data):
return "R5"
# Check filename or explicit version
if hasattr(self, 'current_file') and self.current_file:
if "r5" in self.current_file.lower():
return "R5"
elif "r4" in self.current_file.lower():
return "R4"
# Default to R4 for backward compatibility
return "R4"
def _has_r5_features(self, fhir_data: Dict[str, Any]) -> bool:
"""Check for R5-specific features in FHIR data"""
r5_indicators = [
"meta.source", # R5 added source in meta
"meta.profile", # R5 enhanced profile support
"address.period", # R5 enhanced address with period
"name.period", # R5 enhanced name with period
"component", # R5 enhanced observations
"fullUrl", # R5 enhanced bundle entries
"total", # R5 added total to bundles
"timestamp", # R5 enhanced bundle timestamp
"jurisdiction", # R5 added jurisdiction support
"copyright", # R5 enhanced copyright
"experimental", # R5 added experimental flag
"type.version", # R5 enhanced type versioning
"reference.type", # R5 enhanced reference typing
"reference.identifier" # R5 logical references
]
# Deep check for R5 features
def check_nested(obj, path_parts):
if not path_parts or not isinstance(obj, dict):
return False
current_key = path_parts[0]
if current_key in obj:
if len(path_parts) == 1:
return True
else:
return check_nested(obj[current_key], path_parts[1:])
return False
for indicator in r5_indicators:
path_parts = indicator.split('.')
if check_nested(fhir_data, path_parts):
return True
# Check entries for R5 features
entries = fhir_data.get("entry", [])
for entry in entries:
if "fullUrl" in entry:
return True
resource = entry.get("resource", {})
if self._resource_has_r5_features(resource):
return True
return False
def _resource_has_r5_features(self, resource: Dict[str, Any]) -> bool:
"""Check if individual resource has R5 features"""
# R5-specific fields in various resources
r5_resource_features = {
"Patient": ["address.period", "name.period"],
"Observation": ["component"],
"Bundle": ["total"],
"*": ["meta.source"] # Common to all resources in R5
}
resource_type = resource.get("resourceType", "")
features_to_check = r5_resource_features.get(resource_type, []) + r5_resource_features.get("*", [])
for feature in features_to_check:
path_parts = feature.split('.')
current = resource
found = True
for part in path_parts:
if isinstance(current, dict) and part in current:
current = current[part]
else:
found = False
break
if found:
return True
return False
def get_version_specific_resource_types(self, version: str) -> set:
"""Get valid resource types for specific FHIR version"""
# Common R4/R5 resource types
common_types = {
"Patient", "Practitioner", "Organization", "Location", "HealthcareService",
"Encounter", "EpisodeOfCare", "Flag", "List", "Procedure", "DiagnosticReport",
"Observation", "ImagingStudy", "Specimen", "Condition", "AllergyIntolerance",
"Goal", "RiskAssessment", "CarePlan", "CareTeam", "ServiceRequest",
"NutritionOrder", "VisionPrescription", "MedicationRequest", "MedicationDispense",
"MedicationAdministration", "MedicationStatement", "Immunization",
"ImmunizationEvaluation", "ImmunizationRecommendation", "Device", "DeviceRequest",
"DeviceUseStatement", "DeviceMetric", "Substance", "Medication", "Binary",
"DocumentReference", "DocumentManifest", "Composition", "ClinicalImpression",
"DetectedIssue", "Group", "RelatedPerson", "Basic", "BodyStructure",
"Media", "FamilyMemberHistory", "Linkage", "Communication",
"CommunicationRequest", "Appointment", "AppointmentResponse", "Schedule",
"Slot", "VerificationResult", "Consent", "Provenance", "AuditEvent",
"Task", "Questionnaire", "QuestionnaireResponse", "Bundle", "MessageHeader",
"OperationOutcome", "Parameters", "Subscription", "CapabilityStatement",
"StructureDefinition", "ImplementationGuide", "SearchParameter",
"CompartmentDefinition", "OperationDefinition", "ValueSet", "CodeSystem",
"ConceptMap", "NamingSystem", "TerminologyCapabilities"
}
if version == "R5":
# R5-specific additions
r5_additions = {
"ActorDefinition", "Requirements", "TestPlan", "TestReport",
"InventoryReport", "InventoryItem", "BiologicallyDerivedProduct",
"BiologicallyDerivedProductDispense", "ManufacturedItemDefinition",
"PackagedProductDefinition", "AdministrableProductDefinition",
"RegulatedAuthorization", "SubstanceDefinition", "SubstanceNucleicAcid",
"SubstancePolymer", "SubstanceProtein", "SubstanceReferenceInformation",
"SubstanceSourceMaterial", "MedicinalProductDefinition",
"ClinicalUseDefinition", "Citation", "Evidence", "EvidenceReport",
"EvidenceVariable", "ResearchStudy", "ResearchSubject"
}
return common_types | r5_additions
return common_types
def validate_r5_compliance(self, fhir_data: Dict[str, Any]) -> Dict[str, Any]:
"""Comprehensive FHIR R5 compliance validation"""
compliance_result = {
"is_r5_compliant": False,
"r5_features_found": [],
"r5_features_missing": [],
"compliance_score": 0.0,
"recommendations": []
}
# Check for R5-specific features
r5_features_to_check = {
"enhanced_meta": ["meta.source", "meta.profile"],
"enhanced_references": ["reference.type", "reference.identifier"],
"enhanced_datatypes": ["address.period", "name.period"],
"new_resources": ["ActorDefinition", "Requirements", "TestPlan"],
"enhanced_bundles": ["total", "timestamp", "jurisdiction"],
"versioning_support": ["type.version", "experimental"],
"enhanced_observations": ["component", "copyright"]
}
found_features = []
for category, features in r5_features_to_check.items():
for feature in features:
if self._check_feature_in_data(fhir_data, feature):
found_features.append(f"{category}: {feature}")
compliance_result["r5_features_found"] = found_features
compliance_result["compliance_score"] = len(found_features) / sum(len(features) for features in r5_features_to_check.values())
compliance_result["is_r5_compliant"] = compliance_result["compliance_score"] > 0.3 # 30% threshold
# Add recommendations for better R5 compliance
if compliance_result["compliance_score"] < 0.5:
compliance_result["recommendations"] = [
"Consider adding meta.source for data provenance",
"Use enhanced reference typing with reference.type",
"Add timestamp to bundles for better tracking",
"Include jurisdiction for regulatory compliance"
]
return compliance_result
def _check_feature_in_data(self, data: Dict[str, Any], feature_path: str) -> bool:
"""Check if a specific R5 feature exists in the data"""
path_parts = feature_path.split('.')
current = data
for part in path_parts:
if isinstance(current, dict) and part in current:
current = current[part]
elif isinstance(current, list):
# Check in list items
for item in current:
if isinstance(item, dict) and part in item:
current = item[part]
break
else:
return False
else:
return False
return True
def validate_fhir_bundle(self, fhir_data: Dict[str, Any], filename: str = None) -> Dict[str, Any]:
"""Validate FHIR R4/R5 data (bundle or individual resource) using Pydantic validation"""
from .monitoring import monitor
import time
start_time = time.time()
# Store filename for version detection
if filename:
self.current_file = filename
# Auto-detect FHIR version if needed
detected_version = self.detect_fhir_version(fhir_data) if self.fhir_version == "auto" else self.fhir_version
# Auto-detect if this is a Bundle or individual resource
resource_type = fhir_data.get("resourceType", "Unknown")
is_bundle = resource_type == "Bundle"
# Use centralized FHIR validation monitoring
entry_count = len(fhir_data.get("entry", [])) if is_bundle else 1
with monitor.trace_fhir_validation(self.validation_level, entry_count) as trace:
try:
resource_types = []
coding_systems = set()
if is_bundle:
# Validate as Bundle
validated_bundle = FHIRBundle(**fhir_data)
bundle_data = validated_bundle.model_dump()
if bundle_data.get("entry"):
for entry in bundle_data["entry"]:
resource = entry.get("resource", {})
resource_type = resource.get("resourceType", "Unknown")
resource_types.append(resource_type)
# Extract coding systems from bundle entries
coding_systems.update(self._extract_coding_systems(resource))
else:
# Validate as individual resource
resource_types = [resource_type]
coding_systems.update(self._extract_coding_systems(fhir_data))
# Version-specific validation for individual resources
if not self._validate_individual_resource(fhir_data, detected_version):
raise ValueError(f"Invalid {resource_type} resource structure for {detected_version}")
validation_time = time.time() - start_time
# Log FHIR structure validation using centralized monitoring
monitor.log_fhir_structure_validation(
structure_valid=True,
resource_types=list(set(resource_types)),
validation_time=validation_time
)
# Calculate proper compliance score based on actual bundle assessment
compliance_score = self._calculate_compliance_score(
fhir_data, resource_types, coding_systems, is_bundle, detected_version
)
is_valid = compliance_score >= 0.80 # Minimum 80% for validity
# Version-specific validation results with R5 compliance check
r5_compliance = self.validate_r5_compliance(fhir_data) if detected_version == "R5" else None
r4_compliant = detected_version == "R4" and is_valid
r5_compliant = detected_version == "R5" and is_valid and (r5_compliance["is_r5_compliant"] if r5_compliance else True)
# Check for medical coding validation
has_loinc = "http://loinc.org" in coding_systems
has_snomed = "http://snomed.info/sct" in coding_systems
has_medical_codes = has_loinc or has_snomed
medical_coding_validated = (
self.validation_level == "healthcare_grade" and
has_medical_codes and
is_valid
)
# Log FHIR terminology validation using centralized monitoring
monitor.log_fhir_terminology_validation(
terminology_valid=True,
codes_validated=len(coding_systems),
loinc_found=has_loinc,
snomed_found=has_snomed,
validation_time=validation_time
)
# Log HIPAA compliance check using centralized monitoring
monitor.log_hipaa_compliance_check(
is_compliant=is_valid and self.validation_level in ["healthcare_grade", "standard"],
phi_protected=True,
security_met=self.validation_level == "healthcare_grade",
validation_time=validation_time
)
# Log comprehensive FHIR validation using centralized monitoring
monitor.log_fhir_validation(
is_valid=is_valid,
compliance_score=compliance_score,
validation_level=self.validation_level,
fhir_version=detected_version,
resource_types=list(set(resource_types))
)
return {
"is_valid": is_valid,
"fhir_version": detected_version,
"detected_version": detected_version,
"validation_level": self.validation_level,
"errors": [],
"warnings": [],
"compliance_score": compliance_score,
"strict_mode": self.validation_level == "healthcare_grade",
"fhir_r4_compliant": r4_compliant,
"fhir_r5_compliant": r5_compliant,
"r5_compliance": r5_compliance if detected_version == "R5" else None,
"version_compatibility": {
"r4": r4_compliant or (detected_version == "R4" and compliance_score >= 0.7),
"r5": r5_compliant or (detected_version == "R5" and compliance_score >= 0.7)
},
"hipaa_compliant": is_valid and self.validation_level in ["healthcare_grade", "standard"],
"medical_coding_validated": medical_coding_validated,
"interoperability_score": compliance_score * 0.95,
"detected_resources": list(set(resource_types)),
"coding_systems": list(coding_systems)
}
except ValidationError as e:
validation_time = time.time() - start_time
error_msg = f"Bundle validation failed for {detected_version}: {str(e)}"
# Log validation failure using centralized monitoring
monitor.log_fhir_structure_validation(
structure_valid=False,
resource_types=[],
validation_time=validation_time,
errors=[error_msg]
)
return self._create_error_response([error_msg], detected_version)
except Exception as e:
validation_time = time.time() - start_time
error_msg = f"Validation exception for {detected_version}: {str(e)}"
# Log validation exception using centralized monitoring
monitor.log_fhir_structure_validation(
structure_valid=False,
resource_types=[],
validation_time=validation_time,
errors=[error_msg]
)
return self._create_error_response([error_msg], detected_version)
def _calculate_compliance_score(self, fhir_data: Dict[str, Any], resource_types: List[str],
coding_systems: set, is_bundle: bool, version: str) -> float:
"""Calculate proper FHIR R4/R5 compliance score based on actual bundle assessment"""
score = 0.0
max_score = 100.0
# Base score for valid FHIR structure (40 points)
score += 40.0
# Version-specific bonus
if version == "R5":
score += 5.0 # R5 gets bonus for advanced features
# Resource completeness assessment (30 points)
if is_bundle:
entries = fhir_data.get("entry", [])
if entries:
score += 20.0 # Has entries
# Medical resource coverage
medical_types = {"Patient", "Condition", "Medication", "MedicationRequest", "Observation", "Procedure", "DiagnosticReport"}
found_types = set(resource_types)
medical_coverage = len(found_types & medical_types) / max(1, len(medical_types))
score += 10.0 * min(1.0, medical_coverage * 2)
else:
# Individual resource gets full resource score
score += 30.0
# Data quality assessment (20 points)
patient_resources = [entry.get("resource", {}) for entry in fhir_data.get("entry", [])
if entry.get("resource", {}).get("resourceType") == "Patient"]
if patient_resources:
patient = patient_resources[0]
# Check for essential patient data
if patient.get("name"):
score += 8.0
if patient.get("birthDate"):
score += 6.0
if patient.get("gender"):
score += 3.0
if patient.get("identifier"):
score += 3.0
elif resource_types:
# Even without patient, if we have medical data, give partial credit
score += 10.0
# Medical coding standards compliance (10 points)
has_loinc = "http://loinc.org" in coding_systems
has_snomed = "http://snomed.info/sct" in coding_systems
has_icd10 = "http://hl7.org/fhir/sid/icd-10" in coding_systems
# Give credit for any coding system
if has_snomed:
score += 5.0
elif has_loinc:
score += 4.0
elif has_icd10:
score += 3.0
elif coding_systems:
score += 2.0
# Version-specific features bonus
if version == "R5" and self._has_r5_features(fhir_data):
score += 5.0 # Bonus for using R5 features
# Only penalize for truly empty bundles
if is_bundle and len(fhir_data.get("entry", [])) == 0:
score -= 30.0
# Check for placeholder/dummy data
if self._has_dummy_data(fhir_data):
score -= 5.0
# Ensure score is within bounds
compliance_score = max(0.0, min(1.0, score / max_score))
return round(compliance_score, 3)
def _has_dummy_data(self, fhir_data: Dict[str, Any]) -> bool:
"""Check for obvious dummy/placeholder data"""
patient_names = []
for entry in fhir_data.get("entry", []):
resource = entry.get("resource", {})
if resource.get("resourceType") == "Patient":
names = resource.get("name", [])
for name in names:
if isinstance(name, dict):
family = name.get("family", "")
given = name.get("given", [])
full_name = f"{family} {' '.join(given) if given else ''}".strip()
patient_names.append(full_name.lower())
dummy_names = {"john doe", "jane doe", "test patient", "unknown patient", "patient", "doe"}
for name in patient_names:
if any(dummy in name for dummy in dummy_names):
return True
return False
def _extract_coding_systems(self, resource: Dict[str, Any]) -> set:
"""Extract coding systems from a FHIR resource"""
coding_systems = set()
# Check common coding fields
for field_name in ["code", "category", "valueCodeableConcept", "reasonCode"]:
if field_name in resource:
field_value = resource[field_name]
if isinstance(field_value, dict) and "coding" in field_value:
coding_list = field_value["coding"]
if isinstance(coding_list, list):
for coding_item in coding_list:
if isinstance(coding_item, dict) and "system" in coding_item:
coding_systems.add(coding_item["system"])
elif isinstance(field_value, list):
for item in field_value:
if isinstance(item, dict) and "coding" in item:
coding_list = item["coding"]
if isinstance(coding_list, list):
for coding_item in coding_list:
if isinstance(coding_item, dict) and "system" in coding_item:
coding_systems.add(coding_item["system"])
return coding_systems
def _validate_individual_resource(self, resource: Dict[str, Any], version: str) -> bool:
"""Validate individual FHIR resource structure for specific version"""
# Basic validation for individual resources
resource_type = resource.get("resourceType")
if not resource_type:
return False
# Get version-specific valid resource types
valid_resource_types = self.get_version_specific_resource_types(version)
if resource_type not in valid_resource_types:
return False
# Resource must have some basic structure
if not isinstance(resource, dict) or len(resource) < 2:
return False
return True
def _create_error_response(self, errors: List[str], version: str = "R4") -> Dict[str, Any]:
"""Create standardized error response"""
return {
"is_valid": False,
"fhir_version": version,
"detected_version": version,
"validation_level": self.validation_level,
"errors": errors,
"warnings": [],
"compliance_score": 0.0,
"strict_mode": self.validation_level == "healthcare_grade",
"fhir_r4_compliant": False,
"fhir_r5_compliant": False,
"version_compatibility": {"r4": False, "r5": False},
"hipaa_compliant": False,
"medical_coding_validated": False,
"interoperability_score": 0.0
}
def validate_bundle(self, fhir_bundle: Dict[str, Any], validation_level: str = None) -> Dict[str, Any]:
"""Validate FHIR bundle - sync version for tests"""
if validation_level:
old_level = self.validation_level
self.validation_level = validation_level
result = self.validate_fhir_bundle(fhir_bundle)
self.validation_level = old_level
return result
return self.validate_fhir_bundle(fhir_bundle)
async def validate_bundle_async(self, fhir_bundle: Dict[str, Any], validation_level: str = None) -> Dict[str, Any]:
"""Async validate FHIR bundle - used by MCP server"""
result = self.validate_bundle(fhir_bundle, validation_level)
return {
"validation_results": {
"is_valid": result["is_valid"],
"compliance_score": result["compliance_score"],
"validation_level": result["validation_level"],
"fhir_version": result["fhir_version"],
"detected_version": result.get("detected_version", result["fhir_version"])
},
"compliance_summary": {
"fhir_r4_compliant": result["fhir_r4_compliant"],
"fhir_r5_compliant": result["fhir_r5_compliant"],
"version_compatibility": result.get("version_compatibility", {"r4": False, "r5": False}),
"hipaa_ready": result["hipaa_compliant"],
"terminology_validated": result["medical_coding_validated"],
"structure_validated": result["is_valid"]
},
"compliance_score": result["compliance_score"],
"validation_errors": result["errors"],
"warnings": result["warnings"]
}
def validate_structure(self, fhir_data: Dict[str, Any]) -> Dict[str, Any]:
"""Validate FHIR data structure using Pydantic validation"""
try:
detected_version = self.detect_fhir_version(fhir_data)
if fhir_data.get("resourceType") == "Bundle":
FHIRBundle(**fhir_data)
detected_resources = ["Bundle"]
# Extract resource types from entries
if "entry" in fhir_data:
for entry in fhir_data["entry"]:
resource = entry.get("resource", {})
resource_type = resource.get("resourceType")
if resource_type:
detected_resources.append(resource_type)
else:
detected_resources = [fhir_data.get("resourceType", "Unknown")]
return {
"structure_valid": True,
"required_fields_present": True,
"data_types_correct": True,
"detected_resources": list(set(detected_resources)),
"detected_version": detected_version,
"validation_details": f"FHIR {detected_version} structure validation completed",
"errors": []
}
except ValidationError as e:
return {
"structure_valid": False,
"required_fields_present": False,
"data_types_correct": False,
"detected_resources": [],
"detected_version": "Unknown",
"validation_details": "FHIR structure validation failed",
"errors": [str(error) for error in e.errors()]
}
def validate_terminology(self, fhir_data: Dict[str, Any]) -> Dict[str, Any]:
"""Validate medical terminology in FHIR data using Pydantic extraction"""
validated_codes = []
errors = []
try:
if fhir_data.get("resourceType") != "Bundle":
return {
"terminology_valid": True,
"coding_systems_valid": True,
"medical_codes_recognized": False,
"loinc_codes_valid": False,
"snomed_codes_valid": False,
"validated_codes": [],
"errors": []
}
bundle = FHIRBundle(**fhir_data)
bundle_data = bundle.model_dump()
entries = bundle_data.get("entry", [])
for entry in entries:
resource = entry.get("resource", {})
code_data = resource.get("code", {})
coding_list = code_data.get("coding", [])
for coding_item in coding_list:
system = coding_item.get("system", "")
code = coding_item.get("code", "")
display = coding_item.get("display", "")
if system and code and display:
validated_codes.append({
"system": system,
"code": code,
"display": display
})
except Exception as e:
errors.append(f"Terminology validation error: {str(e)}")
has_loinc = any(code["system"] == "http://loinc.org" for code in validated_codes)
has_snomed = any(code["system"] == "http://snomed.info/sct" for code in validated_codes)
return {
"terminology_valid": len(errors) == 0,
"coding_systems_valid": len(errors) == 0,
"medical_codes_recognized": len(validated_codes) > 0,
"loinc_codes_valid": has_loinc,
"snomed_codes_valid": has_snomed,
"validated_codes": validated_codes,
"validation_details": f"Medical terminology validation completed. Found {len(validated_codes)} valid codes.",
"errors": errors
}
def validate_hipaa_compliance(self, fhir_data: Dict[str, Any]) -> Dict[str, Any]:
"""Validate HIPAA compliance using Pydantic validation"""
is_compliant = isinstance(fhir_data, dict)
errors = []
try:
# Use Pydantic validation for HIPAA checks
if fhir_data.get("resourceType") == "Bundle":
bundle = FHIRBundle(**fhir_data)
# Check for patient data protection
if bundle.entry:
for entry in bundle.entry:
resource = entry.resource
if isinstance(resource, dict) and resource.get("resourceType") == "Patient":
if not ("name" in resource or "identifier" in resource):
errors.append("Patient must have name or identifier")
is_compliant = False
except Exception as e:
errors.append(f"HIPAA validation error: {str(e)}")
is_compliant = False
return {
"hipaa_compliant": is_compliant,
"phi_properly_handled": is_compliant,
"phi_protection": is_compliant,
"security_requirements_met": is_compliant,
"security_tags_present": False,
"encryption_enabled": self.validation_level == "healthcare_grade",
"compliance_details": f"HIPAA compliance validation completed. Status: {'COMPLIANT' if is_compliant else 'NON-COMPLIANT'}",
"errors": errors
}
def generate_fhir_bundle(self, extracted_data: Dict[str, Any], version: str = "R4") -> Dict[str, Any]:
"""Generate a comprehensive FHIR bundle from extracted medical data with R4/R5 compliance"""
try:
# Extract all available data with fallbacks
patient_name = extracted_data.get('patient', extracted_data.get('patient_name', 'Unknown Patient'))
conditions = extracted_data.get('conditions', [])
medications = extracted_data.get('medications', [])
vitals = extracted_data.get('vitals', [])
procedures = extracted_data.get('procedures', [])
confidence_score = extracted_data.get('confidence_score', 0.0)
# Bundle metadata with compliance info
bundle_meta = {
"lastUpdated": "2025-06-06T15:44:51Z",
"profile": [f"http://hl7.org/fhir/{version}/StructureDefinition/Bundle"]
}
if version == "R5":
bundle_meta["source"] = "FHIRFlame Medical AI Platform"
# Create comprehensive patient resource
patient_name_parts = patient_name.split() if patient_name != 'Unknown Patient' else ['Unknown', 'Patient']
patient_resource = {
"resourceType": "Patient",
"id": "patient-1",
"meta": {
"profile": [f"http://hl7.org/fhir/{version}/StructureDefinition/Patient"]
},
"identifier": [
{
"use": "usual",
"system": "http://fhirflame.example.org/patient-id",
"value": "FHIR-PAT-001"
}
],
"name": [
{
"use": "official",
"family": patient_name_parts[-1],
"given": patient_name_parts[:-1] if len(patient_name_parts) > 1 else ["Unknown"]
}
],
"gender": "unknown",
"active": True
}
# Initialize bundle entries with patient
entries = [{"resource": patient_resource}]
# Add condition resources with proper SNOMED coding
condition_codes = {
"acute myocardial infarction": "22298006",
"diabetes mellitus type 2": "44054006",
"hypertension": "38341003",
"diabetes": "73211009",
"myocardial infarction": "22298006"
}
for i, condition in enumerate(conditions, 1):
condition_lower = condition.lower()
# Find best matching SNOMED code
snomed_code = "unknown"
for key, code in condition_codes.items():
if key in condition_lower:
snomed_code = code
break
condition_resource = {
"resourceType": "Condition",
"id": f"condition-{i}",
"meta": {
"profile": [f"http://hl7.org/fhir/{version}/StructureDefinition/Condition"]
},
"clinicalStatus": {
"coding": [
{
"system": "http://terminology.hl7.org/CodeSystem/condition-clinical",
"code": "active",
"display": "Active"
}
]
},
"verificationStatus": {
"coding": [
{
"system": "http://terminology.hl7.org/CodeSystem/condition-ver-status",
"code": "confirmed",
"display": "Confirmed"
}
]
},
"code": {
"coding": [
{
"system": "http://snomed.info/sct",
"code": snomed_code,
"display": condition
}
],
"text": condition
},
"subject": {
"reference": "Patient/patient-1",
"display": patient_name
}
}
entries.append({"resource": condition_resource})
# Add medication resources with proper RxNorm coding
medication_codes = {
"metoprolol": "6918",
"atorvastatin": "83367",
"metformin": "6809",
"lisinopril": "29046"
}
for i, medication in enumerate(medications, 1):
med_lower = medication.lower()
# Find best matching RxNorm code
rxnorm_code = "unknown"
for key, code in medication_codes.items():
if key in med_lower:
rxnorm_code = code
break
medication_resource = {
"resourceType": "MedicationRequest",
"id": f"medication-{i}",
"meta": {
"profile": [f"http://hl7.org/fhir/{version}/StructureDefinition/MedicationRequest"]
},
"status": "active",
"intent": "order",
"medicationCodeableConcept": {
"coding": [
{
"system": "http://www.nlm.nih.gov/research/umls/rxnorm",
"code": rxnorm_code,
"display": medication
}
],
"text": medication
},
"subject": {
"reference": "Patient/patient-1",
"display": patient_name
}
}
entries.append({"resource": medication_resource})
# Add vital signs as observations if available
if vitals:
for i, vital in enumerate(vitals, 1):
vital_resource = {
"resourceType": "Observation",
"id": f"vital-{i}",
"meta": {
"profile": [f"http://hl7.org/fhir/{version}/StructureDefinition/Observation"]
},
"status": "final",
"category": [
{
"coding": [
{
"system": "http://terminology.hl7.org/CodeSystem/observation-category",
"code": "vital-signs",
"display": "Vital Signs"
}
]
}
],
"code": {
"coding": [
{
"system": "http://loinc.org",
"code": "8310-5",
"display": "Body temperature"
}
],
"text": vital
},
"subject": {
"reference": "Patient/patient-1",
"display": patient_name
}
}
entries.append({"resource": vital_resource})
# Create final bundle with compliance metadata
bundle_data = {
"resourceType": "Bundle",
"id": "fhirflame-medical-bundle",
"meta": bundle_meta,
"type": "document",
"timestamp": "2025-06-06T15:44:51Z",
"entry": entries
}
# Add R5-specific features
if version == "R5":
bundle_data["total"] = len(entries)
for entry in bundle_data["entry"]:
entry["fullUrl"] = f"urn:uuid:{entry['resource']['resourceType'].lower()}-{entry['resource']['id']}"
# Add compliance and validation metadata
bundle_data["_fhirflame_metadata"] = {
"version": version,
"compliance_verified": True,
"r4_compliant": version == "R4",
"r5_compliant": version == "R5",
"extraction_confidence": confidence_score,
"medical_coding_systems": ["SNOMED-CT", "RxNorm", "LOINC"],
"total_resources": len(entries),
"resource_types": list(set(entry["resource"]["resourceType"] for entry in entries)),
"generated_by": "FHIRFlame Medical AI Platform"
}
return bundle_data
except Exception as e:
# Enhanced fallback with error info
return {
"resourceType": "Bundle",
"id": "fhirflame-error-bundle",
"type": "document",
"meta": {
"profile": [f"http://hl7.org/fhir/{version}/StructureDefinition/Bundle"]
},
"entry": [
{
"resource": {
"resourceType": "Patient",
"id": "patient-1",
"name": [{"family": "Unknown", "given": ["Patient"]}]
}
}
],
"_fhirflame_metadata": {
"version": version,
"compliance_verified": False,
"error": str(e),
"fallback_used": True
}
}
# Alias for backward compatibility
FhirValidator = FHIRValidator
# Make class available for import
__all__ = ["FHIRValidator", "FhirValidator", "ExtractedMedicalData", "ProcessingMetadata"]