File size: 4,999 Bytes
e75a247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import numpy as np
import math

import awkward as ak


def _concat(arrays, axis=0):
    if len(arrays) == 0:
        return np.array([])
    if isinstance(arrays[0], np.ndarray):
        return np.concatenate(arrays, axis=axis)
    else:
        return ak.concatenate(arrays, axis=axis)


def _stack(arrays, axis=1):
    if len(arrays) == 0:
        return np.array([])
    if isinstance(arrays[0], np.ndarray):
        return np.stack(arrays, axis=axis)
    else:
        return ak.concatenate(arrays, axis=axis)


def _pad_vector(a, value=-1, dtype="float32"):
    maxlen = 2000
    maxlen2 = 5

    x = (np.ones((len(a), maxlen, maxlen2)) * value).astype(dtype)
    for idx, s in enumerate(a):
        for idx_vec, s_vec in enumerate(s):
            x[idx, idx_vec, : len(s_vec)] = s_vec
    return x


def _pad(a, maxlen, value=0, dtype="float32"):
    if isinstance(a, np.ndarray) and a.ndim >= 2 and a.shape[1] == maxlen:
        return a
    elif isinstance(a, ak.Array):
        if a.ndim == 1:
            a = ak.unflatten(a, 1)
        a = ak.fill_none(ak.pad_none(a, maxlen, clip=True), value)
        return ak.values_astype(a, dtype)
    else:
        x = (np.ones((len(a), maxlen)) * value).astype(dtype)
        for idx, s in enumerate(a):
            if not len(s):
                continue
            trunc = s[:maxlen].astype(dtype)
            x[idx, : len(trunc)] = trunc
        return x


def _repeat_pad(a, maxlen, shuffle=False, dtype="float32"):
    x = ak.to_numpy(ak.flatten(a))
    x = np.tile(x, int(np.ceil(len(a) * maxlen / len(x))))
    if shuffle:
        np.random.shuffle(x)
    x = x[: len(a) * maxlen].reshape((len(a), maxlen))
    mask = _pad(ak.zeros_like(a), maxlen, value=1)
    x = _pad(a, maxlen) + mask * x
    return ak.values_astype(x, dtype)


def _clip(a, a_min, a_max):
    try:
        return np.clip(a, a_min, a_max)
    except ValueError:
        return ak.unflatten(np.clip(ak.flatten(a), a_min, a_max), ak.num(a))


def _knn(support, query, k, n_jobs=1):
    from scipy.spatial import cKDTree

    kdtree = cKDTree(support)
    d, idx = kdtree.query(query, k, n_jobs=n_jobs)
    return idx


def _batch_knn(supports, queries, k, maxlen_s, maxlen_q=None, n_jobs=1):
    assert len(supports) == len(queries)
    if maxlen_q is None:
        maxlen_q = maxlen_s
    batch_knn_idx = np.ones((len(supports), maxlen_q, k), dtype="int32") * (
        maxlen_s - 1
    )
    for i, (s, q) in enumerate(zip(supports, queries)):
        batch_knn_idx[i, : len(q[:maxlen_q]), :] = _knn(
            s[:maxlen_s], q[:maxlen_q], k, n_jobs=n_jobs
        ).reshape(
            (-1, k)
        )  # (len(q), k)
    return batch_knn_idx


def _batch_permute_indices(array, maxlen):
    batch_permute_idx = np.tile(np.arange(maxlen), (len(array), 1))
    for i, a in enumerate(array):
        batch_permute_idx[i, : len(a)] = np.random.permutation(len(a[:maxlen]))
    return batch_permute_idx


def _batch_argsort(array, maxlen):
    batch_argsort_idx = np.tile(np.arange(maxlen), (len(array), 1))
    for i, a in enumerate(array):
        batch_argsort_idx[i, : len(a)] = np.argsort(a[:maxlen])
    return batch_argsort_idx


def _batch_gather(array, indices):
    out = array.zeros_like()
    for i, (a, idx) in enumerate(zip(array, indices)):
        maxlen = min(len(a), len(idx))
        out[i][:maxlen] = a[idx[:maxlen]]
    return out


def _p4_from_pxpypze(px, py, pz, energy):
    import vector

    vector.register_awkward()
    return vector.zip({"px": px, "py": py, "pz": pz, "energy": energy})


def _p4_from_ptetaphie(pt, eta, phi, energy):
    import vector

    vector.register_awkward()
    return vector.zip({"pt": pt, "eta": eta, "phi": phi, "energy": energy})


def _p4_from_ptetaphim(pt, eta, phi, mass):
    import vector

    vector.register_awkward()
    return vector.zip({"pt": pt, "eta": eta, "phi": phi, "mass": mass})


def _get_variable_names(expr, exclude=["awkward", "ak", "np", "numpy", "math"]):
    import ast

    root = ast.parse(expr)
    return sorted(
        {
            node.id
            for node in ast.walk(root)
            if isinstance(node, ast.Name) and not node.id.startswith("_")
        }
        - set(exclude)
    )


def _eval_expr(expr, table):
    tmp = {k: table[k] for k in _get_variable_names(expr)}
    tmp.update(
        {
            "math": math,
            "np": np,
            "numpy": np,
            "ak": ak,
            "awkward": ak,
            "_concat": _concat,
            "_stack": _stack,
            "_pad": _pad,
            "_repeat_pad": _repeat_pad,
            "_clip": _clip,
            "_batch_knn": _batch_knn,
            "_batch_permute_indices": _batch_permute_indices,
            "_batch_argsort": _batch_argsort,
            "_batch_gather": _batch_gather,
            "_p4_from_pxpypze": _p4_from_pxpypze,
            "_p4_from_ptetaphie": _p4_from_ptetaphie,
            "_p4_from_ptetaphim": _p4_from_ptetaphim,
        }
    )
    return eval(expr, tmp)