Spaces:
Sleeping
Sleeping
File size: 47,610 Bytes
e75a247 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 |
import fastjet
import os
import copy
import json
import numpy as np
import awkward as ak
import torch.utils.data
import time
import pickle
from collections import OrderedDict
from functools import partial
from concurrent.futures.thread import ThreadPoolExecutor
from src.logger.logger import _logger, warn_once
from src.data.tools import _pad, _repeat_pad, _clip, _pad_vector
from src.data.fileio import _read_files
from src.data.config import DataConfig, _md5
from src.data.preprocess import (
_apply_selection,
_build_new_variables,
_build_weights,
AutoStandardizer,
WeightMaker,
)
from src.dataset.functions_data import to_tensor
from src.layers.object_cond import calc_eta_phi
from torch_scatter import scatter_sum
from src.dataset.functions_graph import (create_graph, create_jets_outputs,
create_jets_outputs_new, create_jets_outputs_Delphes, create_jets_outputs_Delphes2)
from src.dataset.functions_data import Event, EventCollection, EventJets
from src.utils.utils import CPU_Unpickler
from src.dataset.functions_data import EventPFCands, concat_event_collection
def get_pseudojets_fastjet(pfcands):
pseudojets = []
for i in range(len(pfcands)):
pseudojets.append(fastjet.PseudoJet(pfcands.pxyz[i, 0].item(), pfcands.pxyz[i, 1].item(), pfcands.pxyz[i, 2].item(), pfcands.E[i].item()))
return pseudojets
def _finalize_inputs(table, data_config):
# transformation
output = {}
# transformation
for k, params in data_config.preprocess_params.items():
if data_config._auto_standardization and params["center"] == "auto":
raise ValueError("No valid standardization params for %s" % k)
# if params["center"] is not None:
# table[k] = (table[k] - params["center"]) * params["scale"]
if params["length"] is not None:
# if k == "hit_genlink":
# pad_fn = partial(_pad_vector, value=-1)
# table[k] = pad_fn(table[k])
# else:
pad_fn = partial(_pad, value=0)
table[k] = pad_fn(table[k], params["length"])
# stack variables for each input group
for k, names in data_config.input_dicts.items():
if (
len(names) == 1
and data_config.preprocess_params[names[0]]["length"] is None
):
output["_" + k] = ak.to_numpy(ak.values_astype(table[names[0]], "float32"))
else:
output["_" + k] = ak.to_numpy(
np.stack(
[ak.to_numpy(table[n]).astype("float32") for n in names], axis=1
)
)
# copy monitor variables
for k in data_config.z_variables:
if k not in output:
output[k] = ak.to_numpy(table[k])
return output
def _padlabel(table, _data_config):
for k in _data_config.label_value:
pad_fn = partial(_pad, value=0)
table[k] = pad_fn(table[k], 400)
return table
def _preprocess(table, data_config, options):
# apply selection
table = _apply_selection(
table,
data_config.selection
if options["training"]
else data_config.test_time_selection,
)
if len(table) == 0:
return []
# table = _padlabel(table,data_config)
# define new variables
table = _build_new_variables(table, data_config.var_funcs)
# else:
indices = np.arange(
len(table[table.fields[0]])
) # np.arange(len(table[data_config.label_names[0]]))
# shuffle
if options["shuffle"]:
np.random.shuffle(indices)
# perform input variable standardization, clipping, padding and stacking
table = _finalize_inputs(table, data_config)
return table, indices
def _load_next(data_config, filelist, load_range, options):
table = _read_files(
filelist, data_config.load_branches, load_range, treename=data_config.treename
)
table, indices = _preprocess(table, data_config, options)
return table, indices
class _SimpleIter(object):
r"""_SimpleIter
Iterator object for ``SimpleIterDataset''.
"""
def __init__(self, **kwargs):
# inherit all properties from SimpleIterDataset
self.__dict__.update(**kwargs)
self.iter_count = 0 # to raise StopIteration when dataset_cap is reached
if "dataset_cap" in kwargs and kwargs["dataset_cap"] is not None:
self.dataset_cap = kwargs["dataset_cap"]
self._sampler_options["shuffle"] = False
print("!!! Dataset_cap flag set, disabling shuffling")
else:
self.dataset_cap = None
# executor to read files and run preprocessing asynchronously
self.executor = ThreadPoolExecutor(max_workers=1) if self._async_load else None
# init: prefetch holds table and indices for the next fetch
self.prefetch = None
self.table = None
self.indices = []
self.cursor = 0
self._seed = None
worker_info = torch.utils.data.get_worker_info()
file_dict = self._init_file_dict.copy()
if worker_info is not None:
# in a worker process
self._name += "_worker%d" % worker_info.id
self._seed = worker_info.seed & 0xFFFFFFFF
np.random.seed(self._seed)
# split workload by files
new_file_dict = {}
for name, files in file_dict.items():
new_files = files[worker_info.id :: worker_info.num_workers]
assert len(new_files) > 0
new_file_dict[name] = new_files
file_dict = new_file_dict
self.worker_file_dict = file_dict
self.worker_filelist = sum(file_dict.values(), [])
self.worker_info = worker_info
self.restart()
def restart(self):
print("=== Restarting DataIter %s, seed=%s ===" % (self._name, self._seed))
# re-shuffle filelist and load range if for training
filelist = self.worker_filelist.copy()
if self._sampler_options["shuffle"]:
np.random.shuffle(filelist)
if self._file_fraction < 1:
num_files = int(len(filelist) * self._file_fraction)
filelist = filelist[:num_files]
self.filelist = filelist
if self._init_load_range_and_fraction is None:
self.load_range = (0, 1)
else:
(start_pos, end_pos), load_frac = self._init_load_range_and_fraction
interval = (end_pos - start_pos) * load_frac
if self._sampler_options["shuffle"]:
offset = np.random.uniform(start_pos, end_pos - interval)
self.load_range = (offset, offset + interval)
else:
self.load_range = (start_pos, start_pos + interval)
_logger.debug(
"Init iter [%d], will load %d (out of %d*%s=%d) files with load_range=%s:\n%s",
0 if self.worker_info is None else self.worker_info.id,
len(self.filelist),
len(sum(self._init_file_dict.values(), [])),
self._file_fraction,
int(len(sum(self._init_file_dict.values(), [])) * self._file_fraction),
str(self.load_range),
)
# '\n'.join(self.filelist[: 3]) + '\n ... ' + self.filelist[-1],)
_logger.info(
"Restarted DataIter %s, load_range=%s, file_list:\n%s"
% (
self._name,
str(self.load_range),
json.dumps(self.worker_file_dict, indent=2),
)
)
# reset file fetching cursor
self.ipos = 0 if self._fetch_by_files else self.load_range[0]
# prefetch the first entry asynchronously
self._try_get_next(init=True)
def __next__(self):
# print(self.ipos, self.cursor)
graph_empty = True
self.iter_count += 1
if self.dataset_cap is not None and self.iter_count > self.dataset_cap:
raise StopIteration
while graph_empty:
if len(self.filelist) == 0:
raise StopIteration
try:
i = self.indices[self.cursor]
except IndexError:
# case 1: first entry, `self.indices` is still empty
# case 2: running out of entries, `self.indices` is not empty
while True:
if self._in_memory and len(self.indices) > 0:
# only need to re-shuffle the indices, if this is not the first entry
if self._sampler_options["shuffle"]:
np.random.shuffle(self.indices)
break
if self.prefetch is None:
# reaching the end as prefetch got nothing
self.table = None
if self._async_load:
self.executor.shutdown(wait=False)
raise StopIteration
# get result from prefetch
if self._async_load:
self.table, self.indices = self.prefetch.result()
else:
self.table, self.indices = self.prefetch
# try to load the next ones asynchronously
self._try_get_next()
# check if any entries are fetched (i.e., passing selection) -- if not, do another fetch
if len(self.indices) > 0:
break
# reset cursor
self.cursor = 0
i = self.indices[self.cursor]
self.cursor += 1
data, graph_empty = self.get_data(i)
return data
def _try_get_next(self, init=False):
end_of_list = (
self.ipos >= len(self.filelist)
if self._fetch_by_files
else self.ipos >= self.load_range[1]
)
if end_of_list:
if init:
raise RuntimeError(
"Nothing to load for worker %d" % 0
if self.worker_info is None
else self.worker_info.id
)
if self._infinity_mode and not self._in_memory:
# infinity mode: re-start
self.restart()
return
else:
# finite mode: set prefetch to None, exit
self.prefetch = None
return
if self._fetch_by_files:
filelist = self.filelist[int(self.ipos) : int(self.ipos + self._fetch_step)]
load_range = self.load_range
else:
filelist = self.filelist
load_range = (
self.ipos,
min(self.ipos + self._fetch_step, self.load_range[1]),
)
# _logger.info('Start fetching next batch, len(filelist)=%d, load_range=%s'%(len(filelist), load_range))
if self._async_load:
self.prefetch = self.executor.submit(
_load_next,
self._data_config,
filelist,
load_range,
self._sampler_options,
)
else:
self.prefetch = _load_next(
self._data_config, filelist, load_range, self._sampler_options
)
self.ipos += self._fetch_step
def get_data(self, i):
# inputs
X = {k: self.table["_" + k][i].copy() for k in self._data_config.input_names}
if "EFlowPhoton" in X:
return create_jets_outputs_Delphes(X), False
elif "PFCands" in X:
# v2 config
return create_jets_outputs_Delphes2(X), False
return create_jets_outputs_new(X), False
class EventDatasetCollection(torch.utils.data.Dataset):
def __init__(self, dir_list, args, aug_soft=False, aug_collinear=False, shuffle_seed=10):
self.event_collections_dict = OrderedDict()
if args:
aug_soft = args.augment_soft_particles
else:
aug_soft=False
for dir in dir_list:
self.event_collections_dict[dir] = EventDataset.from_directory(dir, mmap=True, aug_soft=aug_soft or aug_soft, seed=0, aug_collinear=aug_collinear)
self.n_events = sum([x.n_events for x in self.event_collections_dict.values()])
evt_idx = np.arange(0, self.n_events) # now shuffle this using the shuffle_seed and a separate random generator
rng = np.random.default_rng(shuffle_seed)
rng.shuffle(evt_idx)
self.old_to_new_idx = evt_idx
self.event_thresholds = [x.n_events for x in self.event_collections_dict.values()]
self.event_thresholds = np.cumsum([0] + self.event_thresholds)
self.dir_list = dir_list
def __len__(self):
return self.n_events
def get_idx(self, i):
assert i < self.n_events, "Index out of bounds: %d >= %d" % (i, self.n_events)
for j in range(len(self.event_thresholds)-1):
threshold = self.event_thresholds[j]
if i >= threshold and i < self.event_thresholds[j+1]:
#print("-------------", i, threshold, self.event_thresholds, j, self.dir_list[j])
return self.event_collections_dict[self.dir_list[j]][i - threshold]
def getitem(self, i):
return self.get_idx(i)
def __iter__(self):
for i in range(self.n_events):
yield self.get_idx(self.old_to_new_idx[i])
def __getitem__(self, i):
assert i < self.n_events, "Index out of bounds: %d >= %d" % (i, self.n_events)
return self.get_idx(self.old_to_new_idx[i])
# A collection of EventDatasets.
# You should use a sampler together with this, as by default it just concatenates the EventDatasets together!
def get_batch_bounds(batch_idx):
# batch_idx: tensor of format [0,0,0,0,1,1,1...]
# returns tensor of format [0, 4, ...]
print("Batch idx", batch_idx.shape, batch_idx[(batch_idx>3130) & (batch_idx < 3140)])
batches = sorted(batch_idx.unique().tolist())
skipped = []
for i in range(batch_idx.max().int().item()):
if i not in batches:
skipped.append(i)
# reverse sort skipped
skipped = sorted(skipped, reverse=True)
result = torch.zeros(batch_idx.max().int().item() + 2 + len(skipped))
#for i, b in enumerate(batches):
# assert i == b
# result[i] = torch.where(batch_idx==b)[0].min()
# result[i+1] = torch.where(batch_idx==b)[0].max()
b_list = batch_idx.int().tolist()
prev = -1
for i, b in enumerate(b_list):
if b != prev:
result[b] = i
prev = b
result[-1] = len(b_list)
print("skipped", skipped)
for s in skipped:
if s == 0:
result[s] = 0
else:
result[s] = result[s+1]
print("result", result.shape, result[3130:3140].tolist())
return result
def filter_pfcands(pfcands):
# filter the GenParticles so that dark matter particles are not present
# dark matter particles are defined as those with abs(pdgId) > 10000 or pdgId between 50-60
# TODO: filter out high eta - temporarily this is done here, but it should be done in the ntuplizer in order to avoid big files
mask = (torch.abs(pfcands.pid) < 10000) & ((torch.abs(pfcands.pid) < 50) | (torch.abs(pfcands.pid) > 60)) & (torch.abs(pfcands.eta) < 2.4) & (pfcands.pt > 0.5) #& (pfcands.pt > 0.5)
pfcands.mask(mask)
return pfcands
class EventDataset(torch.utils.data.Dataset):
@staticmethod
def from_directory(dir, mmap=True, model_clusters_file=None, model_output_file=None, include_model_jets_unfiltered=False, fastjet_R=None, parton_level=False, gen_level=False, aug_soft=False, seed=0, aug_collinear=False, pt_jet_cutoff=100):
result = {}
for file in os.listdir(dir):
if file == "metadata.pkl":
metadata = pickle.load(open(os.path.join(dir, file), "rb"))
else:
print("File:", file)
result[file.split(".")[0]] = np.load(
os.path.join(dir, file), mmap_mode="r" if mmap else None
)
dataset = EventDataset(result, metadata, model_clusters_file=model_clusters_file,
model_output_file=model_output_file,
include_model_jets_unfiltered=include_model_jets_unfiltered,
fastjet_R=fastjet_R, parton_level=parton_level, gen_level=gen_level, aug_soft=aug_soft,
seed=seed, aug_collinear=aug_collinear, pt_jet_cutoff=pt_jet_cutoff)
return dataset
def get_pfcands_key(self):
pfcands_key = "pfcands"
print("get_pfcands_key")
if self.gen_level:
return "final_gen_particles"
if self.parton_level:
return "final_parton_level_particles"
if self.model_output is None:
if self.gen_level:
return "final_gen_particles"
if self.parton_level:
return "final_parton_level_particles"
return pfcands_key # ignore
for i in [0, 1, 2]: # try the first three if it fits
start = {key: self.metadata[key + "_batch_idx"][i] for key in self.attrs}
end = {key: self.metadata[key + "_batch_idx"][i + 1] for key in self.attrs}
result = {key: self.events[key][start[key]:end[key]] for key in self.attrs}
result = {key: EventCollection.deserialize(result[key], batch_number=None, cls=Event.evt_collections[key])
for key in self.attrs}
if "final_parton_level_particles" in result:
result["final_parton_level_particles"] = filter_pfcands(result["final_parton_level_particles"])
if "final_gen_particles" in result:
result["final_gen_particles"] = filter_pfcands(result["final_gen_particles"])
event_filter_s, event_filter_e = self.model_output["event_idx_bounds"][i].int().item(), \
self.model_output["event_idx_bounds"][i + 1].int().item()
diff = event_filter_e - event_filter_s
if diff != len(result["pfcands"]):
if diff == len(result["final_parton_level_particles"]):
pfcands_key = "final_parton_level_particles"
break
if diff == len(result["final_gen_particles"]):
pfcands_key = "final_gen_particles"
break
print("Found pfcands_key=%s" % pfcands_key)
return pfcands_key
def __init__(self, events, metadata, model_clusters_file=None, model_output_file=None, include_model_jets_unfiltered=False, fastjet_R=None, parton_level=False, gen_level=False, aug_soft=False, seed=0, aug_collinear=False, pt_jet_cutoff=100):
# events: serialized events dict
# metadata: dict with metadata
self.events = events
self.n_events = metadata["n_events"]
self.attrs = metadata["attrs"]
self.metadata = metadata
self.include_model_jets_unfiltered = include_model_jets_unfiltered
self.model_i = 0
self.parton_level = parton_level
self.gen_level = gen_level
self.augment_soft_particles = aug_soft
self.aug_collinear = aug_collinear
self.seed = seed
self.pt_jet_cutoff = pt_jet_cutoff
#self.pfcands_key = "pfcands"
# set to final_parton_level_particles or final_gen_particles in case needed
#for key in self.attrs:
# self.evt_idx_to_batch_idx[key] = {}
if model_output_file is not None:
if type(model_output_file) == str:
self.model_output = CPU_Unpickler(open(model_output_file, "rb")).load()
else:
self.model_output = model_output_file
self.model_output["event_idx_bounds"] = get_batch_bounds(self.model_output["event_idx"])
self.n_events = self.model_output["event_idx"].max().int().item() # sometimes the last batch gets cut off, which causes problems
if model_clusters_file is not None:
self.model_clusters = to_tensor(pickle.load((open(model_clusters_file, "rb"))))
else:
self.model_clusters = self.model_output["model_cluster"]
# model_output["batch_idx"] contains the batch index for each event. model_clusters is an array of the model labels for each event.
else:
self.model_output = None
self.model_clusters = None
if fastjet_R is not None:
self.fastjet_jetdef = {r: fastjet.JetDefinition(fastjet.antikt_algorithm, r) for r in fastjet_R}
## fastjet_R is an array of radiuses for which to compute that
self.pfcands_key = self.get_pfcands_key()
def __len__(self):
return self.n_events
# def __next__(self):
def add_model_output(self, model_output):
if model_output is not None:
if type(model_output) == str:
self.model_output = CPU_Unpickler(open(model_output, "rb")).load()
else:
self.model_output = model_output
self.model_output["event_idx_bounds"] = get_batch_bounds(self.model_output["event_idx"])
self.n_events = self.model_output["event_idx"].max().int().item() # sometimes the last batch gets cut off, which causes problems
self.model_clusters = self.model_output["model_cluster"]
# model_output["batch_idx"] contains the batch index for each event. model_clusters is an array of the model labels for each event.
else:
self.model_output = None
self.model_clusters = None
@staticmethod
def pfcands_add_soft_particles(pfcands, n_soft, random_generator, add_original_particle_mapping=False):
# augment the dataset with soft particles
eta_bounds = [-2.4, 2.4]
phi_bounds = [-3.14, 3.14]
#pt_bounds = [0.02, 0.5]
# choose random eta and phi
# use the random generator for eta, phi
eta = random_generator.uniform(eta_bounds[0], eta_bounds[1], n_soft).astype(np.double)
phi = random_generator.uniform(phi_bounds[0], phi_bounds[1], n_soft).astype(np.double)
#pt = random_generator.uniform(pt_bounds[0], pt_bounds[1], n_soft).astype(np.double)
pt = np.ones(n_soft).astype(np.double) * 1e-2
charge = np.zeros(n_soft).astype(np.double)
pid = np.zeros(n_soft).astype(np.double)
mass = np.zeros(n_soft).astype(np.double)
if hasattr(pfcands, "status"):
status = np.zeros(n_soft)
soft_pfcands = EventPFCands(pt, eta, phi, mass, charge, pid, pf_cand_jet_idx=-1 * torch.ones(n_soft), status=status)
else:
soft_pfcands = EventPFCands(pt, eta, phi, mass, charge, pid, pf_cand_jet_idx=-1*torch.ones(n_soft))
soft_pfcands.original_particle_mapping = torch.tensor([-1] * len(soft_pfcands))
pfcandsc = copy.deepcopy(pfcands)
pfcandsc.original_particle_mapping = torch.arange(len(pfcands))
pfcandsc = concat_event_collection([pfcandsc, soft_pfcands], nobatch=1)
if not add_original_particle_mapping:
pfcandsc.original_particle_mapping = torch.arange(len(pfcandsc)) # For now, ignore the soft particles
#print("Original PM:", pfcandsc.original_particle_mapping.max())
return pfcandsc
@staticmethod
def pfcands_split_particles(pfcands, random_generator):
# Augment the dataset by spliting the harder particles
# 5 highest pt particles
k = min(5, len(pfcands))
highest_pt_idx = torch.topk(pfcands.pt, k)[1]
weights = pfcands.pt[highest_pt_idx]
# Pick a random particle to split according to weights
n_to_split = random_generator.randint(0, k)
#idx = random_generator.choice(highest_pt_idx, p=weights / weights.sum())
indices = highest_pt_idx[:n_to_split]
pfcandsc = copy.deepcopy(pfcands)
pfcandsc.original_particle_mapping = torch.arange(len(pfcands))
# assert that indices are all lower than len(pfcands)
if not torch.all(indices < len(pfcands)):
print("Indices:", indices)
print("PFCands:", pfcands.pt)
print("PFCands len:", len(pfcands.pt))
raise ValueError("Indices are out of bounds")
for idx in indices:
split_into = random_generator.randint(2, 5)
# split the particle into
eta = pfcands.eta[idx]
phi = pfcands.phi[idx]
pt = pfcands.pt[idx] / split_into
charge = pfcands.charge[idx]
mass = 0
pid = pfcands.pid[idx]
colinear_pfcands = EventPFCands(pt=[pt], eta=[eta], phi=[phi], mass=[mass], charge=[charge], pid=[pid], pf_cand_jet_idx=[pfcands.pf_cand_jet_idx[idx]], original_particle_mapping=[idx])
#pfcandsc.original_particle_mapping[idx] = idx
pfcandsc.pt[idx] = pt
for _ in range(split_into-1):
pfcandsc = concat_event_collection([pfcandsc, colinear_pfcands], nobatch=1)
if pfcandsc.original_particle_mapping.max() >= len(pfcands):
#print("Original PM:", pfcandsc.original_particle_mapping.max(), "len pfcands", len(pfcands))
raise ValueError("Original particle mapping is out of bounds")
return pfcandsc
def get_idx(self, i):
#print("Getting idx", i)
start = {key: self.metadata[key + "_batch_idx"][i] for key in self.attrs}
end = {key: self.metadata[key + "_batch_idx"][i + 1] for key in self.attrs}
result = {key: self.events[key][start[key]:end[key]] for key in self.attrs}
result = {key: EventCollection.deserialize(result[key], batch_number=None, cls=Event.evt_collections[key]) for
key in self.attrs}
result["pfcands"] = filter_pfcands(result["pfcands"])
if "final_parton_level_particles" in result:
#print("i=", i)
#print("BEFORE:", len(result["final_parton_level_particles"]))
result["final_parton_level_particles"] = filter_pfcands(result["final_parton_level_particles"])
#print("AFTER:", len(result["final_parton_level_particles"]))
#print("------")
if "final_gen_particles" in result:
result["final_gen_particles"] = filter_pfcands(result["final_gen_particles"])
## augment pfcands here
if self.augment_soft_particles:
random_generator = np.random.RandomState(seed=i + self.seed)
#n_soft = int(random_generator.uniform(10, 1000))
n_soft = 500
#n_soft = 1000
result["pfcands"] = EventDataset.pfcands_add_soft_particles(result["pfcands"], n_soft, random_generator)
if "final_parton_level_particles" in result:
result["final_parton_level_particles"] = EventDataset.pfcands_add_soft_particles(result["final_parton_level_particles"], n_soft, random_generator) # Also augment parton-level event for testing
if "final_gen_particles" in result:
result["final_gen_particles"] = EventDataset.pfcands_add_soft_particles(result["final_gen_particles"], n_soft, random_generator)
else:
result["pfcands"].original_particle_mapping = torch.arange(len(result["pfcands"].pt))
if self.aug_collinear:
random_generator = np.random.RandomState(seed=i + self.seed)
if i % 2: # Every second one:
result["pfcands"] = EventDataset.pfcands_split_particles(result["pfcands"], random_generator)
if "final_parton_level_particles" in result:
result["final_parton_level_particles"] = EventDataset.pfcands_split_particles(
result["final_parton_level_particles"], random_generator
)
# Also augment parton-level event for testing
if "final_gen_particles" in result:
result["final_gen_particles"] = EventDataset.pfcands_split_particles(result["final_gen_particles"], random_generator)
else:
n_soft = 500
result["pfcands"] = EventDataset.pfcands_add_soft_particles(result["pfcands"], n_soft, random_generator,
add_original_particle_mapping=True)
if "final_parton_level_particles" in result:
result["final_parton_level_particles"] = EventDataset.pfcands_add_soft_particles(
result["final_parton_level_particles"], n_soft, random_generator, add_original_particle_mapping=True
)
# Also augment parton-level event for testing
if "final_gen_particles" in result:
result["final_gen_particles"] = EventDataset.pfcands_add_soft_particles(
result["final_gen_particles"],
n_soft,
random_generator,
add_original_particle_mapping=True
)
if self.model_output is not None:
#if "final_parton_level_particles" in result and len(result["final_parton_level_particles"]) == 0:
# print("!!")
# return None
result["model_jets"], bc_scores_pfcands, bc_labels_pfcands = self.get_model_jets(i, pfcands=result[self.pfcands_key], include_target=1, dq=result["matrix_element_gen_particles"])
result[self.pfcands_key].bc_scores_pfcands = bc_scores_pfcands
result[self.pfcands_key].bc_labels_pfcands = bc_labels_pfcands
if self.include_model_jets_unfiltered:
result["model_jets_unfiltered"], _, _ = self.get_model_jets(i, pfcands=result[self.pfcands_key], filter=False)
if hasattr(self, "fastjet_jetdef") and self.fastjet_jetdef is not None:
if self.gen_level:
result["fastjet_jets"] = {key: EventDataset.get_fastjet_jets(result, self.fastjet_jetdef[key], key="final_gen_particles", pt_cutoff=self.pt_jet_cutoff) for key in self.fastjet_jetdef}
elif self.parton_level:
result["fastjet_jets"] = {key: EventDataset.get_fastjet_jets(result, self.fastjet_jetdef[key], key="final_parton_level_particles", pt_cutoff=self.pt_jet_cutoff) for key in self.fastjet_jetdef}
else:
result["fastjet_jets"] = {key: EventDataset.get_fastjet_jets(result, self.fastjet_jetdef[key], key="pfcands", pt_cutoff=self.pt_jet_cutoff) for key
in self.fastjet_jetdef}
if "genjets" in result:
result["genjets"] = EventDataset.mask_jets(result["genjets"])
evt = Event(**result)
assert evt.pfcands.original_particle_mapping.max() < len(evt.pfcands.pt), "Original particle mapping is out of bounds: " + str(evt.original_particle_mapping.max()) + " >= " + str(len(evt.pfcands.pt))
return evt
@staticmethod
def get_target_obj_score(clusters_eta, clusters_phi, clusters_pt, event_idx_clusters, dq_eta, dq_phi, dq_event_idx):
# return the target scores for each cluster (reteurns list of 1's and 0's)
# dq_coords: list of [eta, phi] for each dark quark
# dq_event_idx: list of event_idx for each dark quarks
target = []
for event in event_idx_clusters.unique():
filt = event_idx_clusters == event
clusters = torch.stack([clusters_eta[filt], clusters_phi[filt], clusters_pt[filt]], dim=1)
dq_coords_event = torch.stack([dq_eta[dq_event_idx == event], dq_phi[dq_event_idx == event]], dim=1)
dist_matrix = torch.cdist(
dq_coords_event,
clusters[:, :2].to(dq_coords_event.device),
p=2
).T
if len(dist_matrix) == 0:
target.append(torch.zeros(len(clusters)).int().to(dist_matrix.device))
continue
closest_quark_dist, closest_quark_idx = dist_matrix.min(dim=1)
closest_quark_idx[closest_quark_dist > 0.8] = -1
target.append((closest_quark_idx != -1).float())
if len(target):
return torch.cat(target).flatten()
return torch.tensor([])
@staticmethod
def mask_jets(jets, cutoff=100):
mask = jets.pt >= cutoff
return EventJets(jets.pt[mask], jets.eta[mask], jets.phi[mask], jets.mass[mask])
@staticmethod
def get_model_jets_static(i, pfcands, model_output, model_clusters):
event_filter_s, event_filter_e = model_output["event_idx_bounds"][i].int().item(), model_output["event_idx_bounds"][i + 1].int().item()
pfcands_pt = pfcands.pt
pfcands_pxyz = pfcands.pxyz
pfcands_E = pfcands.E
#assert len(pfcands_pt) == event_filter_e - event_filter_s, "Error!, len(pfcands_pt)==%d, event_filter_e-event_filter_s=%d" % (len(pfcands_pt), event_filter_e - event_filter_s)
if not len(pfcands_pt) == event_filter_e - event_filter_s:
return None
# jets_pt = scatter_sum(to_tensor(pfcands_pt), self.model_clusters[event_filter] + 1, dim=0)[1:]
jets_pxyz = scatter_sum(to_tensor(pfcands_pxyz), model_clusters[event_filter_s:event_filter_e] + 1, dim=0)[1:]
jets_pt = torch.norm(jets_pxyz[:, :2], p=2, dim=-1)
jets_eta, jets_phi = calc_eta_phi(jets_pxyz, False)
# jets_mass = torch.zeros_like(jets_eta)
jets_E = scatter_sum(to_tensor(pfcands_E), model_clusters[event_filter_s:event_filter_e] + 1, dim=0)[1:]
jets_mass = torch.sqrt(jets_E ** 2 - jets_pxyz.norm(dim=-1) ** 2)
cluster_labels = model_clusters[event_filter_s:event_filter_e]
bc_scores = model_output["pred"][event_filter_s:event_filter_e, -1]
cutoff = 100
mask = jets_pt >= cutoff
return EventJets(jets_pt[mask], jets_eta[mask], jets_phi[mask], jets_mass[mask])
@staticmethod
def get_jets_fastjets_raw_with_assignment(pfcands, jetdef, pt_cutoff=100):
pt = []
eta = []
phis = []
mass = []
particle_to_jet = {} # this will map particle_idx -> jet_idx
array = get_pseudojets_fastjet(pfcands)
for idx, pseudojet in enumerate(array):
pseudojet.set_user_index(idx)
cluster = fastjet.ClusterSequence(array, jetdef)
inc_jets = cluster.inclusive_jets()
jet_idx = 0
for elem in inc_jets:
if elem.pt() < pt_cutoff:
continue
# print("pt:", elem.pt(), "eta:", elem.rap(), "phi:", elem.phi())ž
pt.append(elem.pt())
eta.append(elem.rap())
phi = elem.phi()
if phi > np.pi:
phi -= 2 * np.pi
phis.append(phi)
mass.append(elem.m())
# Get constituents of this jet
constituents = cluster.constituents(elem)
for constituent in constituents:
particle_idx = constituent.user_index()
particle_to_jet[particle_idx] = jet_idx
jet_idx += 1
return pt, eta, phis, mass, particle_to_jet
@staticmethod
def get_jets_fastjets_raw(pfcands, jetdef, pt_cutoff=100):
pt = []
eta = []
phis = []
mass = []
array = get_pseudojets_fastjet(pfcands)
cluster = fastjet.ClusterSequence(array, jetdef)
inc_jets = cluster.inclusive_jets()
for elem in inc_jets:
if elem.pt() < pt_cutoff:
continue
# print("pt:", elem.pt(), "eta:", elem.rap(), "phi:", elem.phi())ž
pt.append(elem.pt())
eta.append(elem.rap())
phi = elem.phi()
if phi > np.pi:
phi -= 2 * np.pi
phis.append(phi)
mass.append(elem.m())
return pt, eta, phis, mass
@staticmethod
def get_fastjet_jets_with_assignment(event, jetdef, key="pfcands", pt_cutoff=100):
if type(event) == dict:
k = event[key]
else:
k = getattr(event, key)
pt, eta, phi, m, assignment = EventDataset.get_jets_fastjets_raw_with_assignment(k, jetdef, pt_cutoff=pt_cutoff)
return EventJets(torch.tensor(pt), torch.tensor(eta), torch.tensor(phi), torch.tensor(m)), assignment
@staticmethod
def get_fastjet_jets(event, jetdef, key="pfcands", pt_cutoff=100):
if type(event) == dict:
k = event[key]
else:
k = getattr(event, key)
pt, eta, phi, m = EventDataset.get_jets_fastjets_raw(k, jetdef, pt_cutoff=pt_cutoff)
return EventJets(torch.tensor(pt), torch.tensor(eta), torch.tensor(phi), torch.tensor(m))
def get_model_jets(self, i, pfcands, filter=True, dq=None, include_target=False):
event_filter_s, event_filter_e = self.model_output["event_idx_bounds"][i].int().item(), self.model_output["event_idx_bounds"][i+1].int().item()
pfcands_pt = pfcands.pt
pfcands_pxyz = pfcands.pxyz
pfcands_E = pfcands.E
obj_score = None
#print("Len pfcands_pt", len(pfcands_pt), "event_filter_e", event_filter_e, "event_filter_s", event_filter_s)
if len(pfcands_pt) == 0:
return EventJets(torch.tensor([]), torch.tensor([]), torch.tensor([]) ,torch.tensor([])), None, None
assert len(pfcands_pt) == event_filter_e - event_filter_s, "Error! filter={} len(pfcands_pt)={} event_filter_e={} event_filter_s={}".format(filter, len(pfcands_pt), event_filter_e, event_filter_s)
#jets_pt = scatter_sum(to_tensor(pfcands_pt), self.model_clusters[event_filter] + 1, dim=0)[1:]
jets_pxyz = scatter_sum(to_tensor(pfcands_pxyz), self.model_clusters[event_filter_s:event_filter_e] + 1, dim=0)[1:]
jets_pt = torch.norm(jets_pxyz[:, :2], p=2, dim=-1)
jets_eta, jets_phi = calc_eta_phi(jets_pxyz, False)
#jets_mass = torch.zeros_like(jets_eta)
jets_E = scatter_sum(to_tensor(pfcands_E), self.model_clusters[event_filter_s:event_filter_e] + 1, dim=0)[1:]
jets_mass = torch.sqrt(jets_E**2 - jets_pxyz.norm(dim=-1)**2)
cluster_labels = self.model_clusters[event_filter_s:event_filter_e]
bc_scores = self.model_output["pred"][event_filter_s:event_filter_e, -1]
if "obj_score_pred" in self.model_output and not torch.is_tensor(self.model_output["obj_score_pred"]):
self.model_output["obj_score_pred"] = torch.cat(self.model_output["obj_score_pred"])
print("Concatenated obj_score_pred")
target_obj_score = None
if filter:
cutoff = self.pt_jet_cutoff
mask = jets_pt >= cutoff
if "obj_score_pred" in self.model_output:
obj_score = self.model_output["obj_score_pred"][(self.model_output["event_clusters_idx"] == i)]
#print("Jets pt", jets_pt, "obj score", obj_score)
assert len(obj_score) == len(jets_pt), "Error! len(obj_score)=%d, len(jets_pt)=%d" % (
len(obj_score), len(jets_pt))
if include_target:
target_obj_score = EventDataset.get_target_obj_score(jets_eta, jets_phi, jets_pt, torch.zeros(jets_pt.size(0)), dq.eta, dq.phi, torch.zeros(dq.eta.size(0)))
else:
mask = torch.ones_like(jets_pt, dtype=torch.bool)
if obj_score is not None:
obj_score = obj_score[mask]
assert len(jets_pt[mask]) == len(obj_score), "Error! len(jets_pt[mask])=%d, len(obj_score)=%d" % (len(jets_pt[mask]), len(obj_score))
if target_obj_score is not None:
target_obj_score = target_obj_score[mask]
assert len(jets_pt[mask]) == len(target_obj_score), "Error! len(jets_pt[mask])=%d, len(obj_score)=%d" % (len(jets_pt[mask]), len(obj_score))
return EventJets(jets_pt[mask], jets_eta[mask], jets_phi[mask], jets_mass[mask], obj_score=obj_score, target_obj_score=target_obj_score), bc_scores, cluster_labels
def get_iter(self):
self.i = 0
while self.i < self.n_events:
yield self.get_idx(self.i)
self.i += 1
def __iter__(self):
return self.get_iter()
def __getitem__(self, i):
assert i < self.n_events, "Index out of bounds: %d >= %d" % (i, self.n_events)
return self.get_idx(i)
class SimpleIterDataset(torch.utils.data.IterableDataset):
r"""Base IterableDataset.
Handles dataloading.
Arguments:
file_dict (dict): dictionary of lists of files to be loaded.
data_config_file (str): YAML file containing data format information.
for_training (bool): flag indicating whether the dataset is used for training or testing.
When set to ``True``, will enable shuffling and sampling-based reweighting.
When set to ``False``, will disable shuffling and reweighting, but will load the observer variables.
load_range_and_fraction (tuple of tuples, ``((start_pos, end_pos), load_frac)``): fractional range of events to load from each file.
E.g., setting load_range_and_fraction=((0, 0.8), 0.5) will randomly load 50% out of the first 80% events from each file (so load 50%*80% = 40% of the file).
fetch_by_files (bool): flag to control how events are retrieved each time we fetch data from disk.
When set to ``True``, will read only a small number (set by ``fetch_step``) of files each time, but load all the events in these files.
When set to ``False``, will read from all input files, but load only a small fraction (set by ``fetch_step``) of events each time.
Default is ``False``, which results in a more uniform sample distribution but reduces the data loading speed.
fetch_step (float or int): fraction of events (when ``fetch_by_files=False``) or number of files (when ``fetch_by_files=True``) to load each time we fetch data from disk.
Event shuffling and reweighting (sampling) is performed each time after we fetch data.
So set this to a large enough value to avoid getting an imbalanced minibatch (due to reweighting/sampling), especially when ``fetch_by_files`` set to ``True``.
Will load all events (files) at once if set to non-positive value.
file_fraction (float): fraction of files to load.
"""
def __init__(
self,
file_dict,
data_config_file,
for_training=True,
load_range_and_fraction=None,
extra_selection=None,
fetch_by_files=False,
fetch_step=0.01,
file_fraction=1,
remake_weights=False,
up_sample=True,
weight_scale=1,
max_resample=10,
async_load=True,
infinity_mode=False,
in_memory=False,
name="",
laplace=False,
edges=False,
diffs=False,
dataset_cap=None,
n_noise=0,
synthetic=False,
synthetic_npart_min=2,
synthetic_npart_max=5,
jets=False,
):
self._iters = {} if infinity_mode or in_memory else None
_init_args = set(self.__dict__.keys())
self._init_file_dict = file_dict
self._init_load_range_and_fraction = load_range_and_fraction
self._fetch_by_files = fetch_by_files
self._fetch_step = fetch_step
self._file_fraction = file_fraction
self._async_load = async_load
self._infinity_mode = infinity_mode
self._in_memory = in_memory
self._name = name
self.laplace = laplace
self.edges = edges
self.diffs = diffs
self.synthetic = synthetic
self.synthetic_npart_min = synthetic_npart_min
self.synthetic_npart_max = synthetic_npart_max
self.dataset_cap = dataset_cap # used to cap the dataset to some fixed number of events - used for debugging purposes
self.n_noise = n_noise
self.jets = jets
# ==== sampling parameters ====
self._sampler_options = {
"up_sample": up_sample,
"weight_scale": weight_scale,
"max_resample": max_resample,
}
if for_training:
self._sampler_options.update(training=True, shuffle=False, reweight=True)
else:
self._sampler_options.update(training=False, shuffle=False, reweight=False)
# discover auto-generated reweight file
if ".auto.yaml" in data_config_file:
data_config_autogen_file = data_config_file
else:
data_config_md5 = _md5(data_config_file)
data_config_autogen_file = data_config_file.replace(
".yaml", ".%s.auto.yaml" % data_config_md5
)
if os.path.exists(data_config_autogen_file):
data_config_file = data_config_autogen_file
_logger.info(
"Found file %s w/ auto-generated preprocessing information, will use that instead!"
% data_config_file
)
# load data config (w/ observers now -- so they will be included in the auto-generated yaml)
self._data_config = DataConfig.load(data_config_file)
if for_training:
# produce variable standardization info if needed
if self._data_config._missing_standardization_info:
s = AutoStandardizer(file_dict, self._data_config)
self._data_config = s.produce(data_config_autogen_file)
# produce reweight info if needed
# if self._sampler_options['reweight'] and self._data_config.weight_name and not self._data_config.use_precomputed_weights:
# if remake_weights or self._data_config.reweight_hists is None:
# w = WeightMaker(file_dict, self._data_config)
# self._data_config = w.produce(data_config_autogen_file)
# reload data_config w/o observers for training
if (
os.path.exists(data_config_autogen_file)
and data_config_file != data_config_autogen_file
):
data_config_file = data_config_autogen_file
_logger.info(
"Found file %s w/ auto-generated preprocessing information, will use that instead!"
% data_config_file
)
self._data_config = DataConfig.load(
data_config_file, load_observers=False, extra_selection=extra_selection
)
else:
self._data_config = DataConfig.load(
data_config_file,
load_reweight_info=False,
extra_test_selection=extra_selection,
)
# Derive all variables added to self.__dict__
self._init_args = set(self.__dict__.keys()) - _init_args
@property
def config(self):
return self._data_config
def __iter__(self):
if self._iters is None:
kwargs = {k: copy.deepcopy(self.__dict__[k]) for k in self._init_args}
return _SimpleIter(**kwargs)
else:
worker_info = torch.utils.data.get_worker_info()
worker_id = worker_info.id if worker_info is not None else 0
try:
return self._iters[worker_id]
except KeyError:
kwargs = {k: copy.deepcopy(self.__dict__[k]) for k in self._init_args}
self._iters[worker_id] = _SimpleIter(**kwargs)
return self._iters[worker_id]
|