File size: 44,282 Bytes
e75a247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
import numpy as np
import torch
#from torch_scatter import scatter_add, scatter_sum

def get_ratios(e_hits, part_idx, y):
    """Obtain the percentage of energy of the particle present in the hits

    Args:
        e_hits (_type_): _description_
        part_idx (_type_): _description_
        y (_type_): _description_

    Returns:
        _type_: _description_
    """
    energy_from_showers = scatter_sum(e_hits, part_idx.long(), dim=0)
    # y_energy = y[:, 3]
    y_energy = y.E
    energy_from_showers = energy_from_showers[1:]
    assert len(energy_from_showers) > 0
    return (energy_from_showers.flatten() / y_energy).tolist()


def get_number_hits(e_hits, part_idx):
    number_of_hits = scatter_sum(torch.ones_like(e_hits), part_idx.long(), dim=0)
    return (number_of_hits[1:].flatten()).tolist()

def get_e_reco(e_hits, part_idx):
    number_of_hits = scatter_sum(e_hits, part_idx.long(), dim=0)
    return number_of_hits[1:].flatten()

def get_number_of_daughters(hit_type_feature, hit_particle_link, daughters):
    a = hit_particle_link
    b = daughters
    a_u = torch.unique(a)
    number_of_p = torch.zeros_like(a_u)
    for p, i in enumerate(a_u):
        mask2 = a == i
        number_of_p[p] = torch.sum(torch.unique(b[mask2]) != -1)
    return number_of_p


def find_mask_no_energy(
    hit_particle_link,
    hit_type_a,
    hit_energies,
    y,
    daughters,
    predict=False,
    is_Ks=False,
):
    """This function remove particles with tracks only and remove particles with low fractions
    # Remove 2212 going to multiple particles without tracks for now
    # remove particles below energy cut
    # remove particles that decayed in the tracker
    # remove particles with two tracks (due to bad tracking)
    # remove particles with daughters for the moment

    Args:
        hit_particle_link (_type_): _description_
        hit_type_a (_type_): _description_
        hit_energies (_type_): _description_
        y (_type_): _description_

    Returns:
        _type_: _description_
    """

    number_of_daughters = get_number_of_daughters(
        hit_type_a, hit_particle_link, daughters
    )
    list_p = np.unique(hit_particle_link)
    list_remove = []
    part_frac = torch.tensor(get_ratios(hit_energies, hit_particle_link, y))
    number_of_hits = get_number_hits(hit_energies, hit_particle_link)
    if predict:
        energy_cut = 0.1
        filt1 = (torch.where(part_frac >= energy_cut)[0] + 1).long().tolist()
    else:
        energy_cut = 0.01
        filt1 = (torch.where(part_frac >= energy_cut)[0] + 1).long().tolist()
    number_of_tracks = scatter_add(1 * (hit_type_a == 1), hit_particle_link.long())[1:]
    if is_Ks == False:
        for index, p in enumerate(list_p):
            mask = hit_particle_link == p
            hit_types = np.unique(hit_type_a[mask])

            if predict:
                if (
                    np.array_equal(hit_types, [0, 1])
                    or int(p) not in filt1
                    or (number_of_hits[index] < 2)
                    or (y.decayed_in_tracker[index] == 1)
                    or number_of_tracks[index] == 2
                    or number_of_daughters[index] > 1
                ):
                    list_remove.append(p)
            else:
                if (
                    np.array_equal(hit_types, [0, 1])
                    or int(p) not in filt1
                    or (number_of_hits[index] < 2)
                    or number_of_tracks[index] == 2
                    or number_of_daughters[index] > 1
                ):
                    list_remove.append(p)
    if len(list_remove) > 0:
        mask = torch.tensor(np.full((len(hit_particle_link)), False, dtype=bool))
        for p in list_remove:
            mask1 = hit_particle_link == p
            mask = mask1 + mask

    else:
        mask = np.full((len(hit_particle_link)), False, dtype=bool)

    if len(list_remove) > 0:
        mask_particles = np.full((len(list_p)), False, dtype=bool)
        for p in list_remove:
            mask_particles1 = list_p == p
            mask_particles = mask_particles1 + mask_particles

    else:
        mask_particles = np.full((len(list_p)), False, dtype=bool)
    return mask, mask_particles


class CachedIndexList:
    def __init__(self, lst):
        self.lst = lst
        self.cache = {}

    def index(self, value):
        if value in self.cache:
            return self.cache[value]
        else:
            idx = self.lst.index(value)
            self.cache[value] = idx
            return idx


def find_cluster_id(hit_particle_link):
    unique_list_particles = list(np.unique(hit_particle_link))

    if np.sum(np.array(unique_list_particles) == -1) > 0:
        non_noise_idx = torch.where(hit_particle_link != -1)[0]  #
        noise_idx = torch.where(hit_particle_link == -1)[0]  #
        unique_list_particles1 = torch.unique(hit_particle_link)[1:]
        cluster_id_ = torch.searchsorted(
            unique_list_particles1, hit_particle_link[non_noise_idx], right=False
        )
        cluster_id_small = 1.0 * cluster_id_ + 1
        cluster_id = hit_particle_link.clone()
        cluster_id[non_noise_idx] = cluster_id_small
        cluster_id[noise_idx] = 0
    else:
        c_unique_list_particles = CachedIndexList(unique_list_particles)
        cluster_id = map(
            lambda x: c_unique_list_particles.index(x), hit_particle_link.tolist()
        )
        cluster_id = torch.Tensor(list(cluster_id)) + 1
    return cluster_id, unique_list_particles


def scatter_count(input: torch.Tensor):
    return scatter_add(torch.ones_like(input, dtype=torch.long), input.long())


def get_particle_features(unique_list_particles, output, prediction, connection_list):
    unique_list_particles = torch.Tensor(unique_list_particles).to(torch.int64)
    if prediction:
        number_particle_features = 12 - 2
    else:
        number_particle_features = 9 - 2
    if output["pf_features"].shape[0] == 18:
        number_particle_features += 8  # add vertex information
    features_particles = torch.permute(
        torch.tensor(
            output["pf_features"][
                2:number_particle_features, list(unique_list_particles)
            ]
        ),
        (1, 0),
    )  #
    # particle_coord are just features 10, 11, 12
    if features_particles.shape[1] == 16: # Using config with part_pxyz and part_vertex_xyz
        #print("Using config with part_pxyz and part_vertex_xyz")
        particle_coord = features_particles[:, 10:13]
        vertex_coord = features_particles[:, 13:16]
        # normalize particle coords
        particle_coord = particle_coord# / np.linalg.norm(particle_coord, axis=1).reshape(-1, 1)  # DO NOT NORMALIZE
        #particle_coord, spherical_to_cartesian(
        #    features_particles[:, 1],
        #    features_particles[:, 0],  # theta and phi are mixed!!!
        #    features_particles[:, 2],
        #    normalized=True,
        #)
    else:
        particle_coord = spherical_to_cartesian(
            features_particles[:, 1],
            features_particles[:, 0],  # theta and phi are mixed!!!
            features_particles[:, 2],
            normalized=True,
        )
        vertex_coord = torch.zeros_like(particle_coord)
    y_mass = features_particles[:, 3].view(-1).unsqueeze(1)
    y_mom = features_particles[:, 2].view(-1).unsqueeze(1)
    y_energy = torch.sqrt(y_mass**2 + y_mom**2)
    y_pid = features_particles[:, 4].view(-1).unsqueeze(1)
    if prediction:
        y_data_graph = Particles_GT(
            particle_coord,
            y_energy,
            y_mom,
            y_mass,
            y_pid,
            features_particles[:, 5].view(-1).unsqueeze(1),
            features_particles[:, 6].view(-1).unsqueeze(1),
            unique_list_particles=unique_list_particles,
            vertex=vertex_coord,
        )
    else:
        y_data_graph = Particles_GT(
            particle_coord,
            y_energy,
            y_mom,
            y_mass,
            y_pid,
            unique_list_particles=unique_list_particles,
            vertex=vertex_coord,
        )
    return y_data_graph


def modify_index_link_for_gamma_e(
    hit_type_feature, hit_particle_link, daughters, output, number_part, is_Ks=False
):
    """Split all particles that have daughters, mostly for brems and conversions but also for protons and neutrons

    Returns:
        hit_particle_link: new link
        hit_link_modified: bool for modified hits
    """
    hit_link_modified = torch.zeros_like(hit_particle_link).to(hit_particle_link.device)
    mask = hit_type_feature > 1
    a = hit_particle_link[mask]
    b = daughters[mask]
    a_u = torch.unique(a)
    number_of_p = torch.zeros_like(a_u)
    connections_list = []
    for p, i in enumerate(a_u):
        mask2 = a == i
        list_of_daugthers = torch.unique(b[mask2])
        number_of_p[p] = len(list_of_daugthers)
        if (number_of_p[p] > 1) and (torch.sum(list_of_daugthers == i) > 0):
            connections_list.append([i, torch.unique(b[mask2])])
    pid_particles = torch.tensor(output["pf_features"][6, 0:number_part])
    electron_photon_mask = (torch.abs(pid_particles[a_u.long()]) == 11) + (
        pid_particles[a_u.long()] == 22
    )
    electron_photon_mask = (
        electron_photon_mask * number_of_p > 1
    )  # electron_photon_mask *
    if is_Ks:
        index_change = a_u  # [electron_photon_mask]
    else:
        index_change = a_u[electron_photon_mask]
    for i in index_change:
        mask_n = mask * (hit_particle_link == i)
        hit_particle_link[mask_n] = daughters[mask_n]
        hit_link_modified[mask_n] = 1
    return hit_particle_link, hit_link_modified, connections_list


def get_hit_features(
    output, number_hits, prediction, number_part, hit_chis, pos_pxpy, is_Ks=False
):

    hit_particle_link = torch.tensor(output["pf_vectoronly"][0, 0:number_hits])
    if prediction:
        indx_daugthers = 3
    else:
        indx_daugthers = 1
    daughters = torch.tensor(output["pf_vectoronly"][indx_daugthers, 0:number_hits])
    if prediction:
        pandora_cluster = torch.tensor(output["pf_vectoronly"][1, 0:number_hits])
        pandora_pfo_link = torch.tensor(output["pf_vectoronly"][2, 0:number_hits])
        if is_Ks:
            pandora_mom = torch.permute(
                torch.tensor(output["pf_points_pfo"][0:3, 0:number_hits]), (1, 0)
            )
            pandora_ref_point = torch.permute(
                torch.tensor(output["pf_points_pfo"][3:6, 0:number_hits]), (1, 0)
            )
            if output["pf_points_pfo"].shape[0] > 6:
                pandora_pid = torch.tensor(output["pf_points_pfo"][6, 0:number_hits])
            else:
                # zeros
                # print("Zeros for pandora pid!")
                pandora_pid=torch.zeros(number_hits)

        else:
            pandora_mom = None
            pandora_ref_point = None
            pandora_pid = None
        if is_Ks:
            pandora_cluster_energy = torch.tensor(
                output["pf_features"][9, 0:number_hits]
            )
            pfo_energy = torch.tensor(output["pf_features"][10, 0:number_hits])
            chi_squared_tracks = torch.tensor(output["pf_features"][11, 0:number_hits])
        elif hit_chis:
            pandora_cluster_energy = torch.tensor(
                output["pf_features"][-3, 0:number_hits]
            )
            pfo_energy = torch.tensor(output["pf_features"][-2, 0:number_hits])
            chi_squared_tracks = torch.tensor(output["pf_features"][-1, 0:number_hits])
        else:
            pandora_cluster_energy = torch.tensor(
                output["pf_features"][-2, 0:number_hits]
            )
            pfo_energy = torch.tensor(output["pf_features"][-1, 0:number_hits])
            chi_squared_tracks = None

    else:
        pandora_cluster = None
        pandora_pfo_link = None
        pandora_cluster_energy = None
        pfo_energy = None
        chi_squared_tracks = None
        pandora_mom = None
        pandora_ref_point = None
        pandora_pid = None
    # hit type
    hit_type_feature = torch.permute(
        torch.tensor(output["pf_vectors"][:, 0:number_hits]), (1, 0)
    )[:, 0].to(torch.int64)

    (
        hit_particle_link,
        hit_link_modified,
        connection_list,
    ) = modify_index_link_for_gamma_e(
        hit_type_feature, hit_particle_link, daughters, output, number_part, is_Ks
    )

    cluster_id, unique_list_particles = find_cluster_id(hit_particle_link)

    # position, e, p
    pos_xyz_hits = torch.permute(
        torch.tensor(output["pf_points"][0:3, 0:number_hits]), (1, 0)
    )
    pf_features_hits = torch.permute(
        torch.tensor(output["pf_features"][0:2, 0:number_hits]), (1, 0)
    )  # removed theta, phi
    p_hits = pf_features_hits[:, 0].unsqueeze(1)
    p_hits[p_hits == -1] = 0  # correct p  of Hcal hits to be 0
    e_hits = pf_features_hits[:, 1].unsqueeze(1)
    e_hits[e_hits == -1] = 0  # correct the energy of the tracks to be 0
    if pos_pxpy:
        pos_pxpypz = torch.permute(
            torch.tensor(output["pf_points"][3:, 0:number_hits]), (1, 0)
        )
    else:
        pos_pxpypz = pos_xyz_hits
    # pos_pxpypz = pos_theta_phi

    return (
        pos_xyz_hits,
        pos_pxpypz,
        p_hits,
        e_hits,
        hit_particle_link,
        pandora_cluster,
        pandora_cluster_energy,
        pfo_energy,
        pandora_mom,
        pandora_ref_point,
        pandora_pid,
        unique_list_particles,
        cluster_id,
        hit_type_feature,
        pandora_pfo_link,
        daughters,
        hit_link_modified,
        connection_list,
        chi_squared_tracks,
    )


def standardize_coordinates(coord_cart_hits):
    if len(coord_cart_hits) == 0:
        return coord_cart_hits, None
    std_scaler = StandardScaler()
    coord_cart_hits = std_scaler.fit_transform(coord_cart_hits)
    return torch.tensor(coord_cart_hits).float(), std_scaler


def create_dif_interactions(i, j, pos, number_p):
    x_interactions = pos
    x_interactions = torch.reshape(x_interactions, [number_p, 1, 2])
    x_interactions = x_interactions.repeat(1, number_p, 1)
    xi = x_interactions[i, j, :]
    xj = x_interactions[j, i, :]
    x_interactions_m = xi - xj
    return x_interactions_m


def spherical_to_cartesian(phi, theta, r, normalized=False):
    if normalized:
        r = torch.ones_like(phi)
    x = r * torch.sin(theta) * torch.cos(phi)
    y = r * torch.sin(theta) * torch.sin(phi)
    z = r * torch.cos(theta)
    return torch.cat((x.unsqueeze(1), y.unsqueeze(1), z.unsqueeze(1)), dim=1)


def calculate_distance_to_boundary(g):
    r = 2150
    r_in_endcap = 2307
    mask_endcap = (torch.abs(g.ndata["pos_hits_xyz"][:, 2]) - r_in_endcap) > 0
    mask_barrer = ~mask_endcap
    weight = torch.ones_like(g.ndata["pos_hits_xyz"][:, 0])
    C = g.ndata["pos_hits_xyz"]
    A = torch.Tensor([0, 0, 1]).to(C.device)
    P = (
        r
        * 1
        / (torch.norm(torch.cross(A.view(1, -1), C, dim=-1), dim=1)).unsqueeze(1)
        * C
    )
    P1 = torch.abs(r_in_endcap / g.ndata["pos_hits_xyz"][:, 2].unsqueeze(1)) * C
    weight[mask_barrer] = torch.norm(P - C, dim=1)[mask_barrer]
    weight[mask_endcap] = torch.norm(P1[mask_endcap] - C[mask_endcap], dim=1)
    g.ndata["radial_distance"] = weight
    weight_ = torch.exp(-(weight / 1000))
    g.ndata["radial_distance_exp"] = weight_
    return g

class EventCollection:
    def mask(self, mask):
        for k in self.__dict__:
            if getattr(self, k) is not None:
                if type(getattr(self, k)) == list:
                    if getattr(self, k)[0] is not None:
                        setattr(self, k, getattr(self, k)[mask])
                elif not type(getattr(self, k)) == dict:
                    setattr(self, k, getattr(self, k)[mask])
                else:
                    raise NotImplementedError("Need to implement correct indexing")
                    # TODO: for the mapping pfcands_idx to jet_idx

    def copy(self):
        obj = type(self).__new__(self.__class__)
        obj.__dict__.update(self.__dict__)
        return obj

    def serialize(self):
        # get all the self.init_attrs and concat them together. Also return batch_number
        res = []
        for attr in self.init_attrs:
            if attr == "status" and not hasattr(self, attr):
                continue
            res.append(getattr(self, attr))
        data = torch.stack(res).T
        #data = torch.stack([getattr(self, attr) for attr in self.init_attrs]).T
        assert data.shape[0] == self.batch_number.max().item()
        return data, self.batch_number

    def __getitem__(self, i):
        data = {}
        s, e = self.batch_number[i], self.batch_number[i + 1]
        for attr in type(self).init_attrs:
            if attr == "status" and not hasattr(self, attr):
                continue
            data[attr] = getattr(self, attr)[s:e]
        return type(self)(**data)

    @staticmethod
    def deserialize(data_matrix, batch_number, cls):
        data = {}
        filt = None
        for i, key in enumerate(cls.init_attrs):
            if i >= data_matrix.shape[1]:
                break # For some PFCands, 'status' is not populated
            data[key] = data_matrix[:, i]
            #if key == "pid" and pid_filter:
            #    filt = ~np.bool(np.abs(data[key]) >= 10000 + (np.abs(data[key]) >= 50 * np.abs(data[key]) <= 60))
        return cls(**data, batch_number=batch_number)


def concat_event_collection(list_event_collection, nobatch=False):
    c = list_event_collection[0]
    list_of_attrs = c.init_attrs
    #for k in c.__dict__:
    #    if getattr(c, k) is not None:
    #        if isinstance(getattr(c, k), torch.Tensor):
    #            list_of_attrs.append(k)
    result = {}
    for attr in list_of_attrs:
        if hasattr(c, attr):
            result[attr] = torch.cat([getattr(c, attr) for c in list_event_collection], dim=0)
    if hasattr(c, "original_particle_mapping") and c.original_particle_mapping is not None:
        result["original_particle_mapping"] = torch.cat([c.original_particle_mapping for c in list_event_collection], dim=0)
    if not nobatch:
        batch_number, to_add_idx = add_batch_number(list_event_collection, attr=list_of_attrs[0])
        #if hasattr(c, "original_particle_mapping") and c.original_particle_mapping is not None:
        #    #filt = result["original_particle_mapping"] != -1
        #    #result["original_particle_mapping"][filt] += to_add_idx[filt]
        return type(c)(**result, batch_number=batch_number)
    else:
        return type(c)(**result)

def concat_events(list_events):
    attrs = list_events[0].init_attrs
    result = {}
    for attr in attrs:
        result[attr] = concat_event_collection([getattr(e, attr) for e in list_events])
        # assert result[attr].batch_number.max() == len(list_events)# sometimes the event is empty (e.g. no found jets)
    return Event(**result, n_events=len(list_events))

def renumber_clusters(tensor):
    unique = tensor.unique()
    mapping = torch.zeros(unique.max().int().item() + 1)
    for i, u in enumerate(unique):
        mapping[u] = i
    return mapping[tensor]

class TensorCollection:
    def __init__(self, **kwargs):
        self.__dict__.update(kwargs)
    def to(self, device):
        # Move all tensors to device
        for k, v in self.__dict__.items():
            if torch.is_tensor(v):
                setattr(self, k, v.to(device))
        return self
    def dict_rep(self):
        d = {}
        for k, v in self.__dict__.items():
            if torch.is_tensor(v):
                d[k] = v
        return d
    #def __getitem__(self, i):
    #    return TensorCollection(**{k: v[i] for k, v in self.__dict__.items()})


def get_corrected_batch(event_batch, cluster_idx, test):
    # return a batch with fake nodes in it (as .fake_nodes_idx property) and cluster_idx should be set to -1 for the nodes that don't belong anywhere
    # cluster_idx should be a tensor of the same length as the input vectors
    clusters = torch.where(torch.tensor(cluster_idx) != -1)[0]
    new_batch_idx = torch.tensor(cluster_idx[clusters])
    # for each cluster, add a fake node that has zeros for vectors, scalars and pt
    batch_idx_fake_nodes = torch.sort(new_batch_idx.unique())[0]
    vectors_fake_nodes = torch.zeros(len(batch_idx_fake_nodes), event_batch.input_vectors.shape[1])
    vectors_fake_nodes = vectors_fake_nodes.to(event_batch.input_vectors.device)
    scalars_fake_nodes = torch.zeros(len(batch_idx_fake_nodes), event_batch.input_scalars.shape[1])
    scalars_fake_nodes = scalars_fake_nodes.to(event_batch.input_scalars.device)
    pt_fake_nodes = torch.zeros(len(batch_idx_fake_nodes))
    pt_fake_nodes = pt_fake_nodes.to(event_batch.pt.device)
    #event_batch.input_vectors[clusters]
    #event_batch.input_scalars[clusters]
    #event_batch.pt[clusters]
    #
    input_vectors = torch.cat([event_batch.input_vectors[clusters], vectors_fake_nodes], dim=0)
    input_scalars = torch.cat([event_batch.input_scalars[clusters], scalars_fake_nodes], dim=0)
    pt = torch.cat([event_batch.pt[clusters], pt_fake_nodes], dim=0)
    batch_idx = torch.cat([new_batch_idx, batch_idx_fake_nodes], dim=0)
    batch_sort_idx = torch.argsort(batch_idx) # the models need batch idx in ascending order in order to correctly construct the attention mask
    #return EventBatch(
    #    input_vectors=input_vectors[batch_sort_idx],
    #    input_scalars=input_scalars[batch_sort_idx],
    #    pt=pt[batch_sort_idx],
    #    batch_idx=batch_idx[batch_sort_idx],
    #    fake_nodes_idx=batch_idx_fake_nodes + len(new_batch_idx),
    #)
    #For returning without the fake nodes (!!!!!)
    #print("New batch idx", renumber_clusters(new_batch_idx))
    return EventBatch(
        input_vectors=event_batch.input_vectors[clusters],
        input_scalars=event_batch.input_scalars[clusters],
        pt=event_batch.pt[clusters],
        batch_idx=new_batch_idx,
        renumber_clusters=not test
    )

def get_batch(event, batch_config, y, test=False, external_batch_filter=None):
    # Returns the EventBatch class, with correct scalars etc.
    # If test=True, it will put all events in the batch, i.e. no filtering of the events without signal.
    pfcands = event.pfcands
    if batch_config.get("parton_level", False):
        pfcands = event.final_parton_level_particles
    if batch_config.get("gen_level", False):
        pfcands = event.final_gen_particles
    batch_idx_pfcands = torch.zeros(len(pfcands)).long()
    #batch_idx_special_pfcands = torch.zeros(len(event.special_pfcands)).long()
    for i in range(len(pfcands.batch_number) - 1):
        batch_idx_pfcands[pfcands.batch_number[i]:pfcands.batch_number[i+1]] = i
    batch_filter = []
    if batch_config.get("quark_dist_loss", False):
        lbl = y.labels
    elif batch_config.get("obj_score", False):
        lbl = y.labels
        dq_coords = y.dq_coords
        dq_coords_batch_idx = y.dq_coords_batch_idx
    else:
        lbl = y
    if not (test or batch_config.get("quark_dist_loss", False)): # dont filter for quark distance loss
        for i in batch_idx_pfcands.unique().tolist():
            if (lbl[batch_idx_pfcands == i] == -1).all():
                batch_filter.append(i)
    #for i in range(len(event.special_pfcands.batch_number) - 1):
    #    batch_idx_special_pfcands[event.special_pfcands.batch_number[i]:event.special_pfcands.batch_number[i+1]] = i
    #batch_idx = torch.cat([batch_idx_pfcands, batch_idx_special_pfcands])
    batch_idx = batch_idx_pfcands
    batch_idx = batch_idx.to(pfcands.pt.device)
    if batch_config.get("use_p_xyz", False):
        #batch_vectors = torch.cat([event.pfcands.pxyz, event.special_pfcands.pxyz], dim=0)
        batch_vectors = pfcands.pxyz
    elif batch_config.get("use_four_momenta", False):
        batch_vectors = torch.cat([pfcands.E.unsqueeze(-1), pfcands.pxyz], dim=1)
        assert batch_vectors.shape[0] == pfcands.E.shape[0]
    else:
        raise NotImplementedError
    chg = pfcands.charge.unsqueeze(1)
    if batch_config.get("no_pid", False):
        batch_scalars_pfcands = chg
    else:
        pids = batch_config.get("pids", [11, 13, 22, 130, 211, 0, 1, 2, 3])  # 0, 1, 2, 3 are the special PFcands
        # onehot encode pids of event.pfcands.pid
        pids_onehot = torch.zeros(len(pfcands), len(pids))
        for i in pfcands.pid:
            if abs(i).item() not in pids:
                print(i, "not in", pids)
                raise Exception
        for i, pid in enumerate(pids):
            pids_onehot[:, i] = (pfcands.pid.abs() == pid).float()
        assert (pids_onehot.sum(dim=1) == 1).all()
        batch_scalars_pfcands = torch.cat([chg, pids_onehot], dim=1)
    #if batch_config.get("use_p_xyz", False):
    #    # also add pt as a scalar
    batch_scalars_pfcands = torch.cat([batch_scalars_pfcands, pfcands.pt.unsqueeze(1), pfcands.E.unsqueeze(1)], dim=1)
    #pids_onehot_special_pfcands = torch.zeros(len(event.special_pfcands), len(pids))
    #for i, pid in enumerate(pids):
    #    pids_onehot_special_pfcands[:, i] = (event.special_pfcands.pid.abs() == pid).float()
    #assert (pids_onehot_special_pfcands.sum(dim=1) == 1).all()
    #batch_scalars_special_pfcands =event.special_pfcands.charge.unsqueeze(1) #torch.cat([event.special_pfcands.charge.unsqueeze(1), pids_onehot_special_pfcands], dim=1)
    batch_scalars = batch_scalars_pfcands # torch.cat([batch_scalars_pfcands, batch_scalars_special_pfcands], dim=0)
    if batch_idx.max() != event.n_events - 1:
        print("Error!!")
        print("Batch idx", batch_idx.max(), batch_idx.tolist())
        print("N events", event.n_events)
        print("Batch number:", pfcands.batch_number)
    #assert batch_idx.max() == event.n_events - 1
    filt = ~torch.isin(batch_idx_pfcands, torch.tensor(batch_filter))
    if batch_config.get("obj_score", False):
        filt_dq = ~torch.isin(dq_coords_batch_idx, torch.tensor(batch_filter))
    dropped_batches = batch_idx[~filt].unique()
    #if (~filt).sum() > 0:
    #    #print("Found events with no signal!!! Dropping it in training", (~filt).sum() / len(filt), batch_filter)
    #    #print("Renumbered", renumber_clusters(batch_idx[filt]).unique())
    #    #print("Original", batch_idx[filt].unique())
    #    #print("ALL", batch_idx.unique())
    if batch_config.get("quark_dist_loss", False):
        y_filt = y
    elif batch_config.get("obj_score", False):
        #print(dq_coords[0].shape, filt_dq.shape, lbl.shape, filt.shape, dq_coords[1].shape)
        #print(dq_coords_batch_idx[filt_dq])
        y_filt = TensorCollection(labels=lbl[filt], dq_eta=dq_coords[0][filt_dq], dq_phi=dq_coords[1][filt_dq],
                                  dq_coords_batch_idx=renumber_clusters(dq_coords_batch_idx[filt_dq].int()))
    else:
        y_filt = y[filt]
        #print("Filtering y!" , len(y[filt]), len(batch_vectors[filt]))
    print("------- Dropped batches:", dropped_batches)
    if pfcands.original_particle_mapping is not None:
        opm = pfcands.original_particle_mapping[filt]
    else: opm = None
    return EventBatch(
        input_vectors=batch_vectors[filt],
        input_scalars=batch_scalars[filt],
        batch_idx=batch_idx[filt],
        pt=pfcands.pt[filt],
        filter=filt,
        dropped_batches=dropped_batches,
        renumber=not test,
        original_particle_mapping=opm
    ), y_filt


def to_tensor(item):
    if isinstance(item, torch.Tensor):
        # if it's float, change to double
        if item.dtype == torch.float32:
            return item.double()
        return item
    item = torch.tensor(item)
    if item.dtype == torch.float32:
        return item.double()
    return item

class EventPFCands(EventCollection):
    init_attrs = ["pt", "eta", "phi", "mass", "charge", "pid", "pf_cand_jet_idx", "status"]
    def __init__(
        self,
        pt,
        eta,
        phi,
        mass,
        charge,
        pid,
        jet_idx=None,
        pfcands_idx=None,
        batch_number=None,
        offline=False,
        pf_cand_jet_idx=None, # Optional: provide either this or pfcands_idx & jet_idx
        status=None,  # optional
        pid_filter=True, # if true, remove invisible GenParticles (abs(pid) > 10000 or (pid >= 50 and pid <= 60)
        original_particle_mapping=None
    ):
        #print("Jet idx:", jet_idx)
        #print("PFCands_idx:", pfcands_idx)
        self.pt = to_tensor(pt)
        self.eta = to_tensor(eta)
        self.theta = 2 * torch.atan(torch.exp(-self.eta))
        self.p = self.pt / torch.sin(self.theta)
        self.phi = to_tensor(phi)
        self.pxyz = torch.stack(
      (self.p * torch.cos(self.phi) * torch.sin(self.theta),
             self.p * torch.sin(self.phi) * torch.sin(self.theta),
             self.p * torch.cos(self.theta)),
            dim=1
        )
        #assert (torch.abs(torch.norm(self.pxyz, dim=1) - self.p) < 0.1).all(), (torch.abs(torch.norm(self.pxyz, dim=1) - self.p).max())
        if not (torch.abs(torch.norm(self.pxyz, dim=1) - self.p) < 0.05).all():
            print("!!!!!", (torch.abs(torch.norm(self.pxyz, dim=1) - self.p)).max())
            # argmax
            am = torch.argmax(torch.abs(torch.norm(self.pxyz, dim=1) - self.p))
            print("pt", self.pt[am], "eta", self.eta[am], "phi", self.phi[am], "mass", mass[am], "batch_number", batch_number)
            #print("pt", self.pt, "eta", self.eta, "phi", self.phi, "mass", mass, "batch_number", batch_number)

        self.mass = to_tensor(mass)
        self.E = torch.sqrt(self.mass ** 2 + self.p ** 2)
        self.charge = to_tensor(charge)
        self.pid = to_tensor(pid)
        if original_particle_mapping is not None:
            self.original_particle_mapping = to_tensor(original_particle_mapping)
        else:
            self.original_particle_mapping = original_particle_mapping
        if status is not None:
            self.status = to_tensor(status)
        #self.init_attrs.append("status")
        if pf_cand_jet_idx is not None:
            self.pf_cand_jet_idx = to_tensor(pf_cand_jet_idx)
        else:
            self.pf_cand_jet_idx = torch.ones(len(self.pt)).int() * -1
            for i, pfcand_idx in enumerate(pfcands_idx):
                if int(pfcand_idx) >= len(self.pt):
                    print("Out of bounds")
                    if not offline:
                        raise Exception
                else:
                    self.pf_cand_jet_idx[int(pfcand_idx)] = int(jet_idx[i])
        if batch_number is not None:
            self.batch_number = batch_number
    def __len__(self):
        return len(self.pt)

class EventMetadataAndMET(EventCollection):
    # Extra info belonging to the event: MET, trigger info etc.
    init_attrs = ["pt", "phi", "scouting_trig", "offline_trig", "veto_trig"]
    def __init__(self, pt, phi, scouting_trig, offline_trig, veto_trig, batch_number=None):

        self.pt = to_tensor(pt)
        self.phi = to_tensor(phi)
        self.scouting_trig = to_tensor(scouting_trig)
        self.offline_trig = to_tensor(offline_trig)
        self.veto_trig = to_tensor(veto_trig)
        if batch_number is not None:
            self.batch_number = to_tensor(batch_number)
    def __len__(self):
        return len(self.pt)

class EventJets(EventCollection):
    init_attrs = ["pt", "eta", "phi", "mass"]
    def __init__(
        self,
        pt,
        eta,
        phi,
        mass,
        area=None,
        obj_score=None,
        target_obj_score=None,
        batch_number=None
    ):
        self.pt = to_tensor(pt)
        self.eta = to_tensor(eta)
        self.theta = 2 * torch.atan(torch.exp(-self.eta))
        self.p = pt / torch.sin(self.theta)
        self.phi = to_tensor(phi)
        self.pxyz = torch.stack(
      (self.p * torch.cos(self.phi) * torch.sin(self.theta),
             self.p * torch.sin(self.phi) * torch.sin(self.theta),
             self.p * torch.cos(self.theta)),
            dim=1
        )
        if obj_score is not None:
            self.obj_score = to_tensor(obj_score)
        if target_obj_score is not None:
            self.target_obj_score = to_tensor(target_obj_score)
        tst = torch.abs(torch.norm(self.pxyz, dim=1) - self.p)
        #if not (tst[~torch.isnan(tst)] < 1e-2).all():
        #    print("!!!!!", (torch.abs(torch.norm(self.pxyz, dim=1) - self.p)).max())
        #    print("pt", self.pt, "eta", self.eta, "phi", self.phi, "mass", mass, "batch_number", batch_number)
        #    assert False
        self.mass = to_tensor(mass)
        self.area = area
        self.E = torch.sqrt(self.mass ** 2 + self.p ** 2)

        if self.area is not None:
            self.area = to_tensor(self.area)
        if batch_number is not None:
            self.batch_number = to_tensor(batch_number)

    def __len__(self):
        return len(self.pt)

class Particles_GT:
    def __init__(
        self,
        coordinates,
        energy,
        momentum,
        mass,
        pid,
        decayed_in_calo=None,
        decayed_in_tracker=None,
        batch_number=None,
        unique_list_particles=None,
        energy_corrected=None,
        vertex=None,
    ):
        self.coord = coordinates
        self.E = energy
        self.E_corrected = energy
        if energy_corrected is not None:
            self.E_corrected = energy_corrected
        assert len(coordinates) == len(energy)
        self.m = momentum
        self.mass = mass
        self.pid = pid
        self.vertex = vertex
        if unique_list_particles is not None:
            self.unique_list_particles = unique_list_particles
        if decayed_in_calo is not None:
            self.decayed_in_calo = decayed_in_calo
        if decayed_in_tracker is not None:
            self.decayed_in_tracker = decayed_in_tracker
        if batch_number is not None:
            self.batch_number = batch_number

    def __len__(self):
        return len(self.E)

    def mask(self, mask):
        for k in self.__dict__:
            if getattr(self, k) is not None:
                if type(getattr(self, k)) == list:
                    if getattr(self, k)[0] is not None:
                        setattr(self, k, getattr(self, k)[mask])
                else:
                    setattr(self, k, getattr(self, k)[mask])

    def copy(self):
        obj = type(self).__new__(self.__class__)
        obj.__dict__.update(self.__dict__)
        return obj

    def calculate_corrected_E(self, g, connections_list):
        for element in connections_list:
            # checked there is track
            parent_particle = element[0]
            mask_i = g.ndata["particle_number_nomap"] == parent_particle
            track_number = torch.sum(g.ndata["hit_type"][mask_i] == 1)
            if track_number > 0:
                # find index in list
                index_parent = torch.argmax(
                    1 * (self.unique_list_particles == parent_particle)
                )
                energy_daugthers = 0
                for daugther in element[1]:
                    if daugther != parent_particle:
                        if torch.sum(self.unique_list_particles == daugther) > 0:
                            index_daugthers = torch.argmax(
                                1 * (self.unique_list_particles == daugther)
                            )
                            energy_daugthers = (
                                self.E[index_daugthers] + energy_daugthers
                            )
                self.E_corrected[index_parent] = (
                    self.E_corrected[index_parent] - energy_daugthers
                )
                self.coord[index_parent] *= (1 - energy_daugthers / torch.norm(self.coord[index_parent]))

def concatenate_Particles_GT(list_of_Particles_GT):
    list_coord = [p[1].coord for p in list_of_Particles_GT]
    list_vertex = [p[1].vertex for p in list_of_Particles_GT]
    list_coord = torch.cat(list_coord, dim=0)
    list_E = [p[1].E for p in list_of_Particles_GT]
    list_E = torch.cat(list_E, dim=0)
    list_E_corr = [p[1].E_corrected for p in list_of_Particles_GT]
    list_E_corr = torch.cat(list_E_corr, dim=0)
    list_m = [p[1].m for p in list_of_Particles_GT]
    list_m = torch.cat(list_m, dim=0)
    list_mass = [p[1].mass for p in list_of_Particles_GT]
    list_mass = torch.cat(list_mass, dim=0)
    list_pid = [p[1].pid for p in list_of_Particles_GT]
    list_pid = torch.cat(list_pid, dim=0)
    if list_vertex[0] is not None:
        list_vertex = torch.cat(list_vertex, dim=0)
    if hasattr(list_of_Particles_GT[0], "decayed_in_calo"):
        list_dec_calo = [p[1].decayed_in_calo for p in list_of_Particles_GT]
        list_dec_track = [p[1].decayed_in_tracker for p in list_of_Particles_GT]
        list_dec_calo = torch.cat(list_dec_calo, dim=0)
        list_dec_track = torch.cat(list_dec_track, dim=0)
    else:
        list_dec_calo = None
        list_dec_track = None
    batch_number = add_batch_number(list_of_Particles_GT)
    return Particles_GT(
        list_coord,
        list_E,
        list_m,
        list_mass,
        list_pid,
        list_dec_calo,
        list_dec_track,
        batch_number,
        energy_corrected=list_E_corr,
        vertex=list_vertex,
    )

def add_batch_number(list_event_collections, attr):
    list_y = []
    list_y_to_add = [] # Computes a list of numbers to add to the original_particle_idx or similar fields
    idx = 0
    list_y.append(idx)
    for i, el in enumerate(list_event_collections):
        num_in_batch = el.__dict__[attr].shape[0]
        list_y.append(idx + num_in_batch)
        list_y_to_add += [idx] * num_in_batch
        idx += num_in_batch
    list_y = torch.tensor(list_y)
    return list_y, torch.tensor(list_y_to_add)

def create_noise_label(hit_energies, hit_particle_link, y, cluster_id):
    unique_p_numbers = torch.unique(cluster_id)
    number_of_hits = get_number_hits(hit_energies, cluster_id)
    e_reco = get_e_reco(hit_energies, cluster_id)
    mask_hits = to_tensor(number_of_hits) < 6
    mask_p = e_reco<0.10
    mask_all = mask_hits.view(-1) + mask_p.view(-1)
    list_remove = unique_p_numbers[mask_all.view(-1)]

    if len(list_remove) > 0:
        mask = to_tensor(np.full((len(cluster_id)), False, dtype=bool))
        for p in list_remove:
            mask1 = cluster_id == p
            mask = mask1 + mask
    else:
        mask = to_tensor(np.full((len(cluster_id)), False, dtype=bool))
    list_p = unique_p_numbers
    if len(list_remove) > 0:
        mask_particles = np.full((len(list_p)), False, dtype=bool)
        for p in list_remove:
            mask_particles1 = list_p == p
            mask_particles = mask_particles1 + mask_particles
    else:
        mask_particles = to_tensor(np.full((len(list_p)), False, dtype=bool))
    return mask.to(bool), ~mask_particles.to(bool)

class EventBatch:
    def __init__(self, input_vectors, input_scalars, batch_idx, pt, original_particle_mapping=None, filter=None, dropped_batches=None, fake_nodes_idx=None, batch_idx_events=None, renumber=False):
        self.input_vectors = input_vectors
        self.input_scalars = input_scalars
        self.batch_idx = batch_idx #renumber_clusters(batch_idx)
        if renumber:
            self.batch_idx = renumber_clusters(batch_idx)
        self.pt = pt
        self.filter = filter
        self.dropped_batches = dropped_batches
        self.original_particle_mapping = original_particle_mapping
        if fake_nodes_idx is not None:
            self.fake_nodes_idx = fake_nodes_idx
        if batch_idx_events is not None:
            self.batch_idx_events = batch_idx_events # Used for 
    def to(self, device):
        self.input_vectors = self.input_vectors.to(device)
        self.input_scalars = self.input_scalars.to(device)
        self.batch_idx = self.batch_idx.to(device)
        self.pt = self.pt.to(device)
        if self.filter is not None:
            self.filter = self.filter.to(device)
        if self.original_particle_mapping is not None:
            self.original_particle_mapping = self.original_particle_mapping.to(device)
        return self
    def cpu(self):
        return self.to(torch.device("cpu"))

class Event:
    evt_collections = {"jets": EventJets, "genjets": EventJets, "pfcands": EventPFCands,
                       "offline_pfcands": EventPFCands, "MET": EventMetadataAndMET, "fatjets": EventJets,
                       "special_pfcands": EventPFCands, "matrix_element_gen_particles": EventPFCands,
                       "model_jets": EventJets, "final_gen_particles": EventPFCands,
                       "final_parton_level_particles": EventPFCands}
    def __init__(self, jets=None, genjets=None, pfcands=None, offline_pfcands=None, MET=None, fatjets=None,
                 special_pfcands=None, matrix_element_gen_particles=None, model_jets=None, model_jets_unfiltered=None,
                 n_events=1, fastjet_jets=None, final_gen_particles=None, final_parton_level_particles=None):
        self.jets = jets
        self.genjets = genjets
        self.pfcands = pfcands
        self.offline_pfcands = offline_pfcands
        self.MET = MET
        self.fatjets = fatjets
        self.fastjet_jets = fastjet_jets
        self.special_pfcands = special_pfcands
        self.matrix_element_gen_particles = matrix_element_gen_particles
        self.model_jets = model_jets
        self.model_jets_unfiltered = model_jets_unfiltered
        self.init_attrs = []
        self.n_events = n_events
        self.final_gen_particles = final_gen_particles
        self.final_parton_level_particles = final_parton_level_particles
        if jets is not None:
            self.init_attrs.append("jets")
        if genjets is not None:
            self.init_attrs.append("genjets")
        if pfcands is not None:
            self.init_attrs.append("pfcands")
        if offline_pfcands is not None:
            self.init_attrs.append("offline_pfcands")
        if MET is not None:
            self.init_attrs.append("MET")
        if fatjets is not None:
            self.init_attrs.append("fatjets")
        if special_pfcands is not None:
            self.init_attrs.append("special_pfcands")
        if matrix_element_gen_particles is not None:
            self.init_attrs.append("matrix_element_gen_particles")
        if model_jets is not None:
            self.init_attrs.append("model_jets")
        if model_jets_unfiltered is not None:
            self.init_attrs.append("model_jets_unfiltered")
        if final_gen_particles is not None:
            self.init_attrs.append("final_gen_particles")
        if final_parton_level_particles is not None:
            self.init_attrs.append("final_parton_level_particles")
        #if fastjet_jets is not None:
        #    self.init_attrs.append("fastjet_jets")
    ''' @staticmethod
    def deserialize(result, result_metadata, event_idx=None):
        # 'result' arrays can be mmap-ed.
        # If event_idx is not None and is set to a list, only the selected event_idx will be returned.
        n_events = result_metadata["n_events"]
        attrs = result.keys()
        if event_idx is None:
            event_idx = to_tensor(list(range(n_events)))
        else:
            event_idx = to_tensor(event_idx)
            assert (event_idx < n_events).all()
        return Event(**{key: result[key][torch.isin(result_metadata[key + "_batch_idx"], event_idx)] for key in attrs}, n_events=n_events)
    '''
    def __len__(self):
        return self.n_events
    def serialize(self):
        result = {}
        result_metadata = {"n_events": self.n_events, "attrs": self.init_attrs}
        for key in self.init_attrs:
            s = getattr(self, key).serialize()
            result[key] = s[0]
            result_metadata[key + "_batch_idx"] = s[1]
        return result, result_metadata
    def __getitem__(self, i):
        dic = {}
        for key in self.init_attrs:
            #s, e = getattr(self, key).batch_number[i], getattr(self, key).batch_number[i + 1]
            dic[key] = getattr(self, key)[i]
        return Event(**dic, n_events=1)