File size: 7,095 Bytes
e75a247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import torch
import torch.nn as nn
import torch.nn.functional as F

import dgl
import dgl.function as fn
import numpy as np

"""
    Graph Transformer Layer
    
"""

"""
    Util functions
"""


def src_dot_dst(src_field, dst_field, out_field):
    def func(edges):
        return {out_field: (edges.src[src_field] - edges.dst[dst_field])}

    return func


def scaled_exp(field, scale_constant):
    def func(edges):
        # clamp for softmax numerical stability
        return {field: torch.exp((edges.data[field] / scale_constant).clamp(-5, 5))}

    return func


"""
    Single Attention Head
"""


class MultiHeadAttentionLayer(nn.Module):
    def __init__(self, in_dim, out_dim, num_heads, use_bias):
        super().__init__()

        self.out_dim = out_dim
        self.num_heads = num_heads

        if use_bias:
            self.Q = nn.Linear(in_dim, out_dim * num_heads, bias=True)
            self.K = nn.Linear(in_dim, out_dim * num_heads, bias=True)
            self.V = nn.Linear(in_dim, out_dim * num_heads, bias=True)
        else:
            self.Q = nn.Linear(in_dim, out_dim * num_heads, bias=False)
            self.K = nn.Linear(in_dim, out_dim * num_heads, bias=False)
            self.V = nn.Linear(in_dim, out_dim * num_heads, bias=False)
            self.M1 = nn.Linear(out_dim, out_dim, bias=False)
            self.relu = nn.ReLU()
            self.M2 = nn.Linear(out_dim, out_dim, bias=False)

    def propagate_attention(self, g):
        # Compute attention score
        g.apply_edges(src_dot_dst("K_h", "Q_h", "vector"))  # , edges)
        # if torch.sum(torch.isnan(g.edata["vector"])) > 0:
        #     print("VECTOR ALREADY NAN HERE")
        #     0 / 0
        e_data_m1 = self.M1(g.edata["vector"])
        e_data_m1 = self.relu(e_data_m1)
        e_data_m1 = self.M2(e_data_m1)
        # print("e_data_m1", e_data_m1[0:2])
        g.edata["vector"] = e_data_m1
        g.apply_edges(scaled_exp("vector", np.sqrt(self.out_dim)))
        # print("vector", g.edata["vector"][0:2])
        # if torch.sum(torch.isnan(g.edata["vector"])) > 0:
        #     print(g.edata["vector"])
        # Send weighted values to target nodes
        eids = g.edges()
        # vector attention to modulate individual channels
        g.send_and_recv(eids, fn.u_mul_e("V_h", "vector", "V_h"), fn.sum("V_h", "wV"))
        # print("wV", g.ndata["wV"][0:2])
        g.send_and_recv(eids, fn.copy_e("vector", "vector"), fn.sum("vector", "z"))
        # print("z", g.ndata["z"][0:2])
        # if torch.sum(torch.isnan(g.ndata["z"])) > 0:
        #     0 / 0

    def forward(self, g, h):

        Q_h = self.Q(h)
        K_h = self.K(h)
        V_h = self.V(h)
        # if torch.sum(torch.isnan(Q_h)) > 0:
        #     print("Q_h ALREADY NAN HERE")
        #     0 / 0
        # if torch.sum(torch.isnan(V_h)) > 0:
        #     print("V_h ALREADY NAN HERE")
        #     0 / 0
        # if torch.sum(torch.isnan(K_h)) > 0:
        #     print("K_h ALREADY NAN HERE")
        #     0 / 0
        # Reshaping into [num_nodes, num_heads, feat_dim] to
        # get projections for multi-head attention
        g.ndata["Q_h"] = Q_h.view(-1, self.num_heads, self.out_dim)
        g.ndata["K_h"] = K_h.view(-1, self.num_heads, self.out_dim)
        g.ndata["V_h"] = V_h.view(-1, self.num_heads, self.out_dim)
        # print("q_h", Q_h[0:2])
        # print("K_h", K_h[0:2])
        # print("V_h", V_h[0:2])
        self.propagate_attention(g)

        # g.ndata["z"] = g.ndata["z"].tile((1, 1, self.out_dim))
        mask_empty = g.ndata["z"] > 0
        head_out = g.ndata["wV"]
        head_out[mask_empty] = head_out[mask_empty] / (g.ndata["z"][mask_empty])
        # g.ndata["z"] = g.ndata["z"][:, :, 0].view(
        #     g.ndata["wV"].shape[0], self.num_heads, 1
        # )
        # print("head_out", head_out[0:2])
        # if torch.sum(torch.isnan(head_out)) > 0:
        #     print("head_out ALREADY NAN HERE")
        #     0 / 0
        return head_out


class GraphTransformerLayer(nn.Module):
    """
    Param:
    """

    def __init__(
        self,
        in_dim,
        out_dim,
        num_heads,
        dropout=0.0,
        layer_norm=False,
        batch_norm=True,
        residual=False,
        use_bias=False,
    ):
        super().__init__()

        self.in_channels = in_dim
        self.out_channels = out_dim
        self.num_heads = num_heads
        self.dropout = dropout
        self.residual = residual
        self.layer_norm = layer_norm
        self.batch_norm = batch_norm

        self.attention = MultiHeadAttentionLayer(
            in_dim, out_dim // num_heads, num_heads, use_bias
        )

        self.O = nn.Linear(out_dim, out_dim)

        if self.layer_norm:
            self.layer_norm1 = nn.LayerNorm(out_dim)

        if self.batch_norm:
            self.batch_norm1 = nn.BatchNorm1d(out_dim)

        # FFN
        self.FFN_layer1 = nn.Linear(out_dim, out_dim * 2)
        self.FFN_layer2 = nn.Linear(out_dim * 2, out_dim)

        if self.layer_norm:
            self.layer_norm2 = nn.LayerNorm(out_dim)

        if self.batch_norm:
            self.batch_norm2 = nn.BatchNorm1d(out_dim)

    def forward(self, g, h):
        h_in1 = h  # for first residual connection

        # multi-head attention out
        attn_out = self.attention(g, h)
        h = attn_out.view(-1, self.out_channels)
        # print("output of the attention ", h[0:2])
        # if torch.sum(torch.isnan(h)) > 0:
        #     print("output of the attention ALREADY NAN HERE")
        #     0 / 0
        h = F.dropout(h, self.dropout, training=self.training)

        h = self.O(h)

        if self.residual:
            h = h_in1 + h  # residual connection
        # print("output of residual ", h[0:2])
        # if torch.sum(torch.isnan(h)) > 0:
        #     print("output of the residual ALREADY NAN HERE")
        #     0 / 0
        if self.layer_norm:
            h = self.layer_norm1(h)

        if self.batch_norm:
            h = self.batch_norm1(h)
        # # print("output of batchnorm ", h[0:2])
        # if torch.sum(torch.isnan(h)) > 0:
        #     print("output of the batchnorm ALREADY NAN HERE")
        #     0 / 0
        h_in2 = h  # for second residual connection

        # FFN
        h = self.FFN_layer1(h)
        h = F.relu(h)
        h = F.dropout(h, self.dropout, training=self.training)
        h = self.FFN_layer2(h)
        # print("output of FFN_layer2 ", h[0:2])
        # if torch.sum(torch.isnan(h)) > 0:
        #     print("output of the FFN_layer2 ALREADY NAN HERE")
        #     0 / 0
        if self.residual:
            h = h_in2 + h  # residual connection

        if self.layer_norm:
            h = self.layer_norm2(h)

        if self.batch_norm:
            h = self.batch_norm2(h)

        return h

    def __repr__(self):
        return "{}(in_channels={}, out_channels={}, heads={}, residual={})".format(
            self.__class__.__name__,
            self.in_channels,
            self.out_channels,
            self.num_heads,
            self.residual,
        )