File size: 45,340 Bytes
e75a247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
from typing import Tuple, Union
import numpy as np
import torch
from torch_scatter import scatter_max, scatter_add, scatter_mean
from src.layers.loss_fill_space_torch import LLFillSpace


def safe_index(arr, index):
    # One-hot index (or zero if it's not in the array)
    if index not in arr:
        return 0
    else:
        return arr.index(index) + 1


def assert_no_nans(x):
    """
    Raises AssertionError if there is a nan in the tensor
    """
    if torch.isnan(x).any():
        print(x)
    assert not torch.isnan(x).any()


# FIXME: Use a logger instead of this
DEBUG = False


def debug(*args, **kwargs):
    if DEBUG:
        print(*args, **kwargs)


def calc_LV_Lbeta(
    original_coords,
    g,
    distance_threshold,
    beta: torch.Tensor,
    cluster_space_coords: torch.Tensor,  # Predicted by model
    cluster_index_per_event: torch.Tensor,  # Truth hit->cluster index, e.g. [0, 1, 1, 0, 1, -1, 0, 1, 1]
    batch: torch.Tensor, # E.g. [0, 0, 0, 0, 1, 1, 1, 1, 1]
    # From here on just parameters
    qmin: float = 0.1,
    s_B: float = 1.0,
    noise_cluster_index: int = 0,  # cluster_index entries with this value are noise/noise
    beta_stabilizing="soft_q_scaling",
    huberize_norm_for_V_attractive=False,
    beta_term_option="paper",
    frac_combinations=0,  # fraction of the all possible pairs to be used for the clustering loss
    attr_weight=1.0,
    repul_weight=1.0,
    use_average_cc_pos=0.0,
    loss_type="hgcalimplementation",
    tracking=False,
    dis=False,
    beta_type="default",
    noise_logits=None,
    lorentz_norm=False,
    spatial_part_only=False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], dict]:
    """
    Calculates the L_V and L_beta object condensation losses.
    Concepts:
    - A hit belongs to exactly one cluster (cluster_index_per_event is (n_hits,)),
      and to exactly one event (batch is (n_hits,))
    - A cluster index of `noise_cluster_index` means the cluster is a noise cluster.
      There is typically one noise cluster per event. Any hit in a noise cluster
      is a 'noise hit'. A hit in an object is called a 'signal hit' for lack of a
      better term.
    - An 'object' is a cluster that is *not* a noise cluster.
    beta_stabilizing: Choices are ['paper', 'clip', 'soft_q_scaling']:
        paper: beta is sigmoid(model_output), q = beta.arctanh()**2 + qmin
        clip:  beta is clipped to 1-1e-4, q = beta.arctanh()**2 + qmin
        soft_q_scaling: beta is sigmoid(model_output), q = (clip(beta)/1.002).arctanh()**2 + qmin
    huberize_norm_for_V_attractive: Huberizes the norms when used in the attractive potential
    beta_term_option: Choices are ['paper', 'short-range-potential']:
        Choosing 'short-range-potential' introduces a short range potential around high
        beta points, acting like V_attractive.
    Note this function has modifications w.r.t. the implementation in 2002.03605:
    - The norms for V_repulsive are now Gaussian (instead of linear hinge)
    - Noise_logits: If set to an array, it is the output of the noise classifier (whether a particle belongs to a jet or not)
    """
    # remove dummy rows added for dataloader #TODO think of better way to do this
    device = beta.device
    if torch.isnan(beta).any():
        print("There are nans in beta! L198", len(beta[torch.isnan(beta)]))

    beta = torch.nan_to_num(beta, nan=0.0)
    assert_no_nans(beta)
    # ________________________________

    # Calculate a bunch of needed counts and indices locally

    # cluster_index: unique index over events
    # E.g. cluster_index_per_event=[ 0, 0, 1, 2, 0, 0, 1], batch=[0, 0, 0, 0, 1, 1, 1]
    #      -> cluster_index=[ 0, 0, 1, 2, 3, 3, 4 ]
    cluster_index, n_clusters_per_event = batch_cluster_indices(
        cluster_index_per_event, batch
    )
    n_clusters = n_clusters_per_event.sum()
    n_hits, cluster_space_dim = cluster_space_coords.size()
    batch_size = batch.max().detach().cpu().item() + 1
    n_hits_per_event = scatter_count(batch)

    # Index of cluster -> event (n_clusters,)
    batch_cluster = scatter_counts_to_indices(n_clusters_per_event)

    # Per-hit boolean, indicating whether hit is sig or noise
    is_noise = cluster_index_per_event == noise_cluster_index
    is_sig = ~is_noise
    n_hits_sig = is_sig.sum()
    n_sig_hits_per_event = scatter_count(batch[is_sig])
    # Per-cluster boolean, indicating whether cluster is an object or noise
    is_object = scatter_max(is_sig.long(), cluster_index)[0].bool()
    is_noise_cluster = ~is_object

    # FIXME: This assumes noise_cluster_index == 0!!
    # Not sure how to do this in a performant way in case noise_cluster_index != 0
    if noise_cluster_index != 0:
        raise NotImplementedError
    object_index_per_event = cluster_index_per_event[is_sig] - 1
    object_index, n_objects_per_event = batch_cluster_indices(
        object_index_per_event, batch[is_sig]
    )
    n_hits_per_object = scatter_count(object_index)
    # print("n_hits_per_object", n_hits_per_object)
    batch_object = batch_cluster[is_object]
    n_objects = is_object.sum()

    assert object_index.size() == (n_hits_sig,)
    assert is_object.size() == (n_clusters,)
    assert torch.all(n_hits_per_object > 0)
    assert object_index.max() + 1 == n_objects

    # ________________________________
    # L_V term
    # Calculate q
    if beta_type == "default":
        if loss_type == "hgcalimplementation" or loss_type == "vrepweighted":
            q = (beta.clip(0.0, 1 - 1e-4).arctanh() / 1.01) ** 2 + qmin
        elif beta_stabilizing == "paper":
            q = beta.arctanh() ** 2 + qmin
        elif beta_stabilizing == "clip":
            beta = beta.clip(0.0, 1 - 1e-4)
            q = beta.arctanh() ** 2 + qmin
        elif beta_stabilizing == "soft_q_scaling":
            q = (beta.clip(0.0, 1 - 1e-4) / 1.002).arctanh() ** 2 + qmin
        else:
            raise ValueError(f"beta_stablizing mode {beta_stabilizing} is not known")
    elif beta_type  == "pt":
        q = beta
    elif beta_type == "pt+bc":
        q = beta
    #if beta_type in ["pt", "pt+bc"]:
    #    q[q<0.5] = 0.5 # cap the q
    assert_no_nans(q)
    assert q.device == device
    assert q.size() == (n_hits,)
    # Calculate q_alpha, the max q per object, and the indices of said maxima
    # assert hit_energies.shape == q.shape
    # q_alpha, index_alpha = scatter_max(hit_energies[is_sig], object_index)
    q_alpha, index_alpha = scatter_max(q[is_sig], object_index)
    assert q_alpha.size() == (n_objects,)

    # Get the cluster space coordinates and betas for these maxima hits too
    x_alpha = cluster_space_coords[is_sig][index_alpha]
    #x_alpha_original = original_coords[is_sig][index_alpha]

    if use_average_cc_pos > 0:
        #! this is a func of beta and q so maybe we could also do it with only q
        x_alpha_sum = scatter_add(
            q[is_sig].view(-1, 1).repeat(1, 3) * cluster_space_coords[is_sig],
            object_index,
            dim=0,
        )  # * beta[is_sig].view(-1, 1).repeat(1, 3)
        qbeta_alpha_sum = scatter_add(q[is_sig], object_index) + 1e-9  # * beta[is_sig]
        div_fac = 1 / qbeta_alpha_sum
        div_fac = torch.nan_to_num(div_fac, nan=0)
        x_alpha_mean = torch.mul(x_alpha_sum, div_fac.view(-1, 1).repeat(1, 3))
        x_alpha = use_average_cc_pos * x_alpha_mean + (1 - use_average_cc_pos) * x_alpha
    if dis:
        phi_sum = scatter_add(
            beta[is_sig].view(-1) * distance_threshold[is_sig].view(-1),
            object_index,
            dim=0,
        )
        phi_alpha_sum = scatter_add(beta[is_sig].view(-1), object_index) + 1e-9
        phi_alpha = phi_sum / phi_alpha_sum

    beta_alpha = beta[is_sig][index_alpha]
    assert x_alpha.size() == (n_objects, cluster_space_dim)
    assert beta_alpha.size() == (n_objects,)


    # Connectivity matrix from hit (row) -> cluster (column)
    # Index to matrix, e.g.:
    # [1, 3, 1, 0] --> [
    #     [0, 1, 0, 0],
    #     [0, 0, 0, 1],
    #     [0, 1, 0, 0],
    #     [1, 0, 0, 0]
    #     ]
    M = torch.nn.functional.one_hot(cluster_index).long()

    # Anti-connectivity matrix; be sure not to connect hits to clusters in different events!
    M_inv = get_inter_event_norms_mask(batch, n_clusters_per_event) - M

    # Throw away noise cluster columns; we never need them
    M = M[:, is_object]
    M_inv = M_inv[:, is_object]
    assert M.size() == (n_hits, n_objects)
    assert M_inv.size() == (n_hits, n_objects)

    # Calculate all norms
    # Warning: Should not be used without a mask!
    # Contains norms between hits and objects from different events
    # (n_hits, 1, cluster_space_dim) - (1, n_objects, cluster_space_dim)
    #   gives (n_hits, n_objects, cluster_space_dim)
    norms = (cluster_space_coords.unsqueeze(1) - x_alpha.unsqueeze(0)).norm(dim=-1)
    assert norms.size() == (n_hits, n_objects)
    L_clusters = torch.tensor(0.0).to(device)
    if frac_combinations != 0:
        L_clusters = L_clusters_calc(
            batch, cluster_space_coords, cluster_index, frac_combinations, q
        )

    # -------
    # Attractive potential term
    # First get all the relevant norms: We only want norms of signal hits
    # w.r.t. the object they belong to, i.e. no noise hits and no noise clusters.
    # First select all norms of all signal hits w.r.t. all objects, mask out later

    if loss_type == "hgcalimplementation" or loss_type == "vrepweighted":
        # if dis:
        #     N_k = torch.sum(M, dim=0)  # number of hits per object
        #     norms = torch.sum(
        #         torch.square(cluster_space_coords.unsqueeze(1) - x_alpha.unsqueeze(0)),
        #         dim=-1,
        #     )
        #     norms_att = norms[is_sig]
        #     norms_att = norms_att / (2 * phi_alpha.unsqueeze(0) ** 2 + 1e-6)
        #     #! att func as in line 159 of object condensation
        #     norms_att = torch.log(
        #         torch.exp(torch.Tensor([1]).to(norms_att.device)) * norms_att + 1
        #     )
     
        N_k = torch.sum(M, dim=0)  # number of hits per object
        if lorentz_norm:
            diff = cluster_space_coords.unsqueeze(1) - x_alpha.unsqueeze(0)
            norms = diff[:, :, 0]**2 - torch.sum(diff[:, :, 1:] ** 2, dim=-1)
            norms = norms.abs() ## ??? Why is this needed? wrong convention?
            #print("Norms", norms[:15])
        else:
            if spatial_part_only:
                norms = torch.sum(
                    torch.square(cluster_space_coords[:, 1:4].unsqueeze(1) - x_alpha[:, 1:4].unsqueeze(0)),
                    dim=-1,
                )
            else:
                norms = torch.sum(
                    torch.square(cluster_space_coords.unsqueeze(1) - x_alpha.unsqueeze(0)),
                    dim=-1,
                ) # Take the norm squared
        norms_att = norms[is_sig]
        #! att func as in line 159 of object condensation
        
        norms_att = torch.log(
            torch.exp(torch.Tensor([1]).to(norms_att.device)) * norms_att / 2 + 1
        )

    elif huberize_norm_for_V_attractive:
        norms_att = norms[is_sig]
        # Huberized version (linear but times 4)
        # Be sure to not move 'off-diagonal' away from zero
        # (i.e. norms of hits w.r.t. clusters they do _not_ belong to)
        norms_att = huber(norms_att + 1e-5, 4.0)
    else:
        norms_att = norms[is_sig]
        # Paper version is simply norms squared (no need for mask)
        norms_att = norms_att**2
    assert norms_att.size() == (n_hits_sig, n_objects)

    # Now apply the mask to keep only norms of signal hits w.r.t. to the object
    # they belong to
    norms_att *= M[is_sig]

    # Sum over hits, then sum per event, then divide by n_hits_per_event, then sum over events
    if loss_type == "hgcalimplementation":
        # Final potential term
        # (n_sig_hits, 1) * (1, n_objects) * (n_sig_hits, n_objects)
        # hit_type = (g.ndata["hit_type"][is_sig].view(-1)==3)*4+1  #weight 5 for hadronic hits, 1 for
        # tracks = g.ndata["hit_type"][is_sig]==1
        # hit_type[tracks] = 250
        # total_sum_hits_types = scatter_add(hit_type.view(-1), object_index)
        V_attractive = q[is_sig].unsqueeze(-1) * q_alpha.unsqueeze(0) * norms_att
        assert V_attractive.size() == (n_hits_sig, n_objects)
        #! each shower is account for separately
        V_attractive = V_attractive.sum(dim=0)  # K objects
        #! divide by the number of accounted points
      
        V_attractive = V_attractive.view(-1) / (N_k.view(-1) + 1e-3)
        # V_attractive = V_attractive.view(-1) / (total_sum_hits_types.view(-1) + 1e-3)
        # L_V_attractive = torch.mean(V_attractive)

        ## multiply by a weight that depends on the energy of the shower:
        # print("e_hits", e_hits)
        # print("weight_att", weight_att)
        # L_V_attractive = torch.sum(V_attractive*weight_att)
        L_V_attractive = torch.mean(V_attractive)
        # L_V_attractive = L_V_attractive / torch.sum(weight_att)

        L_V_attractive_2 = torch.sum(V_attractive)
    elif loss_type == "vrepweighted":
        if tracking:
            # weight the vtx hits inside the shower
            V_attractive = (
                g.ndata["weights"][is_sig].unsqueeze(-1)
                * q[is_sig].unsqueeze(-1)
                * q_alpha.unsqueeze(0)
                * norms_att
            )
            assert V_attractive.size() == (n_hits_sig, n_objects)
            V_attractive = V_attractive.sum(dim=0)  # K objects

            L_V_attractive = torch.mean(V_attractive.view(-1))
        else:
            # # weight per hit per shower to compensate for ecal hcal unbalance in hadronic showers
            # ecal_hits = scatter_add(
            #     1 * (g.ndata["hit_type"][is_sig] == 2), object_index
            # )
            # hcal_hits = scatter_add(
            #     1 * (g.ndata["hit_type"][is_sig] == 3), object_index
            # )
            # weights = torch.ones_like(g.ndata["hit_type"][is_sig])
            # weight_ecal_per_object = 1.0 * ecal_hits.clone() + 1
            # weight_hcal_per_object = 1.0 * ecal_hits.clone() + 1
            # mask = (ecal_hits > 2) * (hcal_hits > 2)
            # weight_ecal_per_object[mask] = (ecal_hits + hcal_hits)[mask] / (
            #     2 * ecal_hits
            # )[mask]
            # weight_hcal_per_object[mask] = (ecal_hits + hcal_hits)[mask] / (
            #     2 * hcal_hits
            # )[mask]
            # weights[g.ndata["hit_type"][is_sig] == 2] = weight_ecal_per_object[
            #     object_index
            # ]
            # weights[g.ndata["hit_type"][is_sig] == 3] = weight_hcal_per_object[
            #     object_index
            # ]

            # # weight with an energy log of the hits
            # e_hits = g.ndata["e_hits"][is_sig].view(-1)
            # p_hits = g.ndata["h"][:, -1][is_sig].view(-1)
            # log_scale_s = torch.log(e_hits + p_hits) + 10
            # e_sum_hits = scatter_add(log_scale_s, object_index)
            # # need to take out the weight of alpha otherwise it won't add up to 1
            # e_sum_hits = e_sum_hits - (log_scale_s[index_alpha])
            # e_rel = (log_scale_s) / e_sum_hits[object_index]

            # weight of the hit depending on the radial distance:
            # this weight should help to seed
            # weight_radial_distance = torch.exp(
            #     -g.ndata["radial_distance"][is_sig] / 100
            # )
            # weight_per_object = scatter_add(weight_radial_distance, object_index)
            # weight_radial_distance = (
            #     weight_radial_distance / weight_per_object[object_index]
            # )

            V_attractive = (
                q[is_sig].unsqueeze(-1)  ## weight_radial_distance.unsqueeze(-1)
                * q_alpha.unsqueeze(0)
                * norms_att
            )

            # weight modified showers with a higher weight
            modified_showers = scatter_max(g.ndata["hit_link_modified"], object_index)[
                0
            ]
            n_modified = torch.sum(modified_showers)
            weight_modified = len(modified_showers) / (2 * n_modified)
            weight_unmodified = len(modified_showers) / (
                2 * (len(modified_showers) - n_modified)
            )
            modified_showers[modified_showers > 0] = weight_modified
            modified_showers[modified_showers == 0] = weight_unmodified
            assert V_attractive.size() == (n_hits_sig, n_objects)
            V_attractive = V_attractive.sum(dim=0)  # K objects
            L_V_attractive = torch.sum(
                modified_showers.view(-1) * V_attractive.view(-1)
            ) / len(modified_showers)
    else:
        # Final potential term
        # (n_sig_hits, 1) * (1, n_objects) * (n_sig_hits, n_objects)
        V_attractive = q[is_sig].unsqueeze(-1) * q_alpha.unsqueeze(0) * norms_att
        assert V_attractive.size() == (n_hits_sig, n_objects)
        #! in comparison this works per hit
        V_attractive = (
            scatter_add(V_attractive.sum(dim=0), batch_object) / n_hits_per_event
        )
        assert V_attractive.size() == (batch_size,)
        L_V_attractive = V_attractive.sum()

    # -------
    # Repulsive potential term

    # Get all the relevant norms: We want norms of any hit w.r.t. to
    # objects they do *not* belong to, i.e. no noise clusters.
    # We do however want to keep norms of noise hits w.r.t. objects
    # Power-scale the norms: Gaussian scaling term instead of a cone
    # Mask out the norms of hits w.r.t. the cluster they belong to
    if loss_type == "hgcalimplementation" or loss_type == "vrepweighted":
        if dis:
            norms = norms / (2 * phi_alpha.unsqueeze(0) ** 2 + 1e-6)
            norms_rep = torch.exp(-(norms)) * M_inv
            norms_rep2 = torch.exp(-(norms) * 10) * M_inv
        else:
            norms_rep = torch.exp(-(norms) / 2) * M_inv
            # norms_rep2 = torch.exp(-(norms) * 10) * M_inv
            norms_rep2 = torch.exp(-(norms) * 10) * M_inv
    else:
        norms_rep = torch.exp(-4.0 * norms**2) * M_inv

    # (n_sig_hits, 1) * (1, n_objects) * (n_sig_hits, n_objects)
    V_repulsive = q.unsqueeze(1) * q_alpha.unsqueeze(0) * norms_rep

    # No need to apply a V = max(0, V); by construction V>=0
    assert V_repulsive.size() == (n_hits, n_objects)

    # Sum over hits, then sum per event, then divide by n_hits_per_event, then sum up events
    nope = n_objects_per_event - 1
    nope[nope == 0] = 1
    if loss_type == "hgcalimplementation" or loss_type == "vrepweighted":
        #! sum each object repulsive terms
        L_V_repulsive = V_repulsive.sum(dim=0)  # size number of objects
        number_of_repulsive_terms_per_object = torch.sum(M_inv, dim=0)
        L_V_repulsive = L_V_repulsive.view(
            -1
        ) / number_of_repulsive_terms_per_object.view(-1)
        V_repulsive2 = q.unsqueeze(1) * q_alpha.unsqueeze(0) * norms_rep2
        L_V_repulsive2 = V_repulsive2.sum(dim=0)  # size number of objects

        L_V_repulsive2 = L_V_repulsive2.view(-1)
        L_V_attractive_2 = L_V_attractive_2.view(-1)

        # if not tracking:
        #     #! add to terms function (divide by total number of showers per event)
        #     # L_V_repulsive = scatter_add(L_V_repulsive, object_index) / n_objects
        #     per_shower_weight = torch.exp(1 / (e_particles_pred_per_object + 0.4))
        #     soft_m = torch.nn.Softmax(dim=0)
        #     per_shower_weight = soft_m(per_shower_weight) * len(L_V_repulsive)
        #     L_V_repulsive = torch.mean(L_V_repulsive * per_shower_weight)
        # else:
        # if tracking:
        #     L_V_repulsive = torch.mean(L_V_repulsive * per_shower_weight)
        # else:
        if loss_type == "vrepweighted":
            L_V_repulsive = torch.sum(
                modified_showers.view(-1) * L_V_repulsive.view(-1)
            ) / len(modified_showers)
            L_V_repulsive2 = torch.sum(
                modified_showers.view(-1) * L_V_repulsive2.view(-1)
            ) / len(modified_showers)
        else:
            L_V_repulsive = torch.mean(L_V_repulsive)
            L_V_repulsive2 = torch.mean(L_V_repulsive2)
    else:
        L_V_repulsive = (
            scatter_add(V_repulsive.sum(dim=0), batch_object)
            / (n_hits_per_event * nope)
        ).sum()

    L_V = (
        attr_weight * L_V_attractive + repul_weight * L_V_repulsive
    )
    n_noise_hits_per_event = scatter_count(batch[is_noise])
    n_noise_hits_per_event[n_noise_hits_per_event == 0] = 1
    L_beta_noise = (
        s_B
        * (
            (scatter_add(beta[is_noise], batch[is_noise])) / n_noise_hits_per_event
        ).sum()
    )
    if loss_type == "hgcalimplementation":
        beta_per_object_c = scatter_add(beta[is_sig], object_index)
        beta_alpha = beta[is_sig][index_alpha]
        L_beta_sig = torch.mean(
            1 - beta_alpha + 1 - torch.clip(beta_per_object_c, 0, 1)
        )

        L_beta_noise = L_beta_noise / 4
        # ? note: the training that worked quite well was dividing this by the batch size (1/4)

    elif loss_type == "vrepweighted":
        # version one:
        beta_per_object_c = scatter_add(beta[is_sig], object_index)
        beta_alpha = beta[is_sig][index_alpha]
        L_beta_sig = 1 - beta_alpha + 1 - torch.clip(beta_per_object_c, 0, 1)
        L_beta_sig = torch.sum(L_beta_sig.view(-1) * modified_showers.view(-1))
        L_beta_sig = L_beta_sig / len(modified_showers)

        L_beta_noise = L_beta_noise / batch_size
        # ? note: the training that worked quite well was dividing this by the batch size (1/4)

    elif beta_term_option == "paper":
        beta_alpha = beta[is_sig][index_alpha]
        L_beta_sig = torch.sum(  # maybe 0.5 for less aggressive loss
            scatter_add((1 - beta_alpha), batch_object) / n_objects_per_event
        )
        # print("L_beta_sig", L_beta_sig / batch_size)
        # beta_exp = beta[is_sig]
        # beta_exp[index_alpha] = 0
        # # L_exp = torch.mean(beta_exp)
        # beta_exp = torch.exp(0.5 * beta_exp)
        # L_exp = torch.mean(scatter_add(beta_exp, batch) / n_hits_per_event)

    elif beta_term_option == "short-range-potential":
        # First collect the norms: We only want norms of hits w.r.t. the object they
        # belong to (like in V_attractive)
        # Apply transformation first, and then apply mask to keep only the norms we want,
        # then sum over hits, so the result is (n_objects,)
        norms_beta_sig = (1.0 / (20.0 * norms[is_sig] ** 2 + 1.0) * M[is_sig]).sum(
            dim=0
        )
        assert torch.all(norms_beta_sig >= 1.0) and torch.all(
            norms_beta_sig <= n_hits_per_object
        )
        # Subtract from 1. to remove self interaction, divide by number of hits per object
        norms_beta_sig = (1.0 - norms_beta_sig) / n_hits_per_object
        assert torch.all(norms_beta_sig >= -1.0) and torch.all(norms_beta_sig <= 0.0)
        norms_beta_sig *= beta_alpha
        # Conclusion:
        # lower beta --> higher loss (less negative)
        # higher norms --> higher loss

        # Sum over objects, divide by number of objects per event, then sum over events
        L_beta_norms_term = (
            scatter_add(norms_beta_sig, batch_object) / n_objects_per_event
        ).sum()
        assert L_beta_norms_term >= -batch_size and L_beta_norms_term <= 0.0

        # Logbeta term: Take -.2*torch.log(beta_alpha[is_object]+1e-9), sum it over objects,
        # divide by n_objects_per_event, then sum over events (same pattern as above)
        # lower beta --> higher loss
        L_beta_logbeta_term = (
            scatter_add(-0.2 * torch.log(beta_alpha + 1e-9), batch_object)
            / n_objects_per_event
        ).sum()

        # Final L_beta term
        L_beta_sig = L_beta_norms_term + L_beta_logbeta_term

    else:
        valid_options = ["paper", "short-range-potential"]
        raise ValueError(
            f'beta_term_option "{beta_term_option}" is not valid, choose from {valid_options}'
        )

    L_beta = L_beta_noise + L_beta_sig
    if beta_type == "pt" or beta_type == "pt+bc":
        L_beta = torch.tensor(0.)
        L_beta_sig = torch.tensor(0.)
        L_beta_noise = torch.tensor(0.)
    #L_alpha_coordinates = torch.mean(torch.norm(x_alpha_original - x_alpha, p=2, dim=1))
    x_original = original_coords / torch.norm(original_coords, p=2, dim=1).view(-1, 1)
    x_virtual  = cluster_space_coords / torch.norm(cluster_space_coords, p=2, dim=1).view(-1, 1)
    loss_coord = torch.mean(torch.norm(x_original - x_virtual, p=2, dim=1)) # We just compare the direction
    if beta_type == "pt+bc":
        assert noise_logits is not None
        y_true_noise = 1 - is_noise.float()
        num_positives = torch.sum(y_true_noise).item()
        num_negatives = len(y_true_noise) - num_positives
        num_all = len(y_true_noise)
        # Compute weights
        pos_weight = num_all / num_positives if num_positives > 0 else 0
        neg_weight = num_all / num_negatives if num_negatives > 0 else 0
        weight = pos_weight * y_true_noise + neg_weight * (1 - y_true_noise)
        L_bc = torch.nn.BCELoss(weight=weight)(
            noise_logits, 1-is_noise.float()
        )
    #if torch.isnan(L_beta / batch_size):
    #    print("isnan!!!")
    #    print(L_beta, batch_size)
    #    print("L_beta_noise", L_beta_noise)
    #    print("L_beta_sig", L_beta_sig)
    result = {
        "loss_potential": L_V,  # 0
        "loss_beta": L_beta,
        "loss_beta_sig": L_beta_sig, # signal part of the betas
        "loss_beta_noise": L_beta_noise, # noise part of the betas
        "loss_attractive": L_V_attractive,
        "loss_repulsive": L_V_repulsive,
        "loss_coord": loss_coord,
    }
    if beta_type == "pt+bc":
        result["loss_noise_classification"] = L_bc
    return result



def huber(d, delta):
    """
    See: https://en.wikipedia.org/wiki/Huber_loss#Definition
    Multiplied by 2 w.r.t Wikipedia version (aligning with Jan's definition)
    """
    return torch.where(
        torch.abs(d) <= delta, d**2, 2.0 * delta * (torch.abs(d) - delta)
    )


def batch_cluster_indices(
    cluster_id: torch.Tensor, batch: torch.Tensor
) -> Tuple[torch.LongTensor, torch.LongTensor]:
    """
    Turns cluster indices per event to an index in the whole batch
    Example:
    cluster_id = torch.LongTensor([0, 0, 1, 1, 2, 0, 0, 1, 1, 1, 0, 0, 1])
    batch = torch.LongTensor([0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2])
    -->
    offset = torch.LongTensor([0, 0, 0, 0, 0, 3, 3, 3, 3, 3, 5, 5, 5])
    output = torch.LongTensor([0, 0, 1, 1, 2, 3, 3, 4, 4, 4, 5, 5, 6])
    """
    device = cluster_id.device
    assert cluster_id.device == batch.device
    # Count the number of clusters per entry in the batch
    n_clusters_per_event = scatter_max(cluster_id, batch, dim=-1)[0] + 1
    # Offsets are then a cumulative sum
    offset_values_nozero = n_clusters_per_event[:-1].cumsum(dim=-1)
    # Prefix a zero
    offset_values = torch.cat((torch.zeros(1, device=device), offset_values_nozero))
    # Fill it per hit
    offset = torch.gather(offset_values, 0, batch).long()
    return offset + cluster_id, n_clusters_per_event


def get_clustering_np(
    betas: np.array, X: np.array, tbeta: float = 0.1, td: float = 1.0
) -> np.array:
    """
    Returns a clustering of hits -> cluster_index, based on the GravNet model
    output (predicted betas and cluster space coordinates) and the clustering
    parameters tbeta and td.
    Takes numpy arrays as input.
    """
    n_points = betas.shape[0]
    select_condpoints = betas > tbeta
    # Get indices passing the threshold
    indices_condpoints = np.nonzero(select_condpoints)[0]
    # Order them by decreasing beta value
    indices_condpoints = indices_condpoints[np.argsort(-betas[select_condpoints])]
    # Assign points to condensation points
    # Only assign previously unassigned points (no overwriting)
    # Points unassigned at the end are bkg (-1)
    unassigned = np.arange(n_points)
    clustering = -1 * np.ones(n_points, dtype=np.int32)
    for index_condpoint in indices_condpoints:
        d = np.linalg.norm(X[unassigned] - X[index_condpoint], axis=-1)
        assigned_to_this_condpoint = unassigned[d < td]
        clustering[assigned_to_this_condpoint] = index_condpoint
        unassigned = unassigned[~(d < td)]
    return clustering


def get_clustering(betas: torch.Tensor, X: torch.Tensor, tbeta=0.1, td=1.0):
    """
    Returns a clustering of hits -> cluster_index, based on the GravNet model
    output (predicted betas and cluster space coordinates) and the clustering
    parameters tbeta and td.
    Takes torch.Tensors as input.
    """
    n_points = betas.size(0)
    select_condpoints = betas > tbeta
    # Get indices passing the threshold
    indices_condpoints = select_condpoints.nonzero()
    # Order them by decreasing beta value
    indices_condpoints = indices_condpoints[(-betas[select_condpoints]).argsort()]
    # Assign points to condensation points
    # Only assign previously unassigned points (no overwriting)
    # Points unassigned at the end are bkg (-1)
    unassigned = torch.arange(n_points)
    clustering = -1 * torch.ones(n_points, dtype=torch.long)
    for index_condpoint in indices_condpoints:
        d = torch.norm(X[unassigned] - X[index_condpoint][0], dim=-1)
        assigned_to_this_condpoint = unassigned[d < td]
        clustering[assigned_to_this_condpoint] = index_condpoint[0]
        unassigned = unassigned[~(d < td)]
    return clustering


def scatter_count(input: torch.Tensor):
    """
    Returns ordered counts over an index array
    Example:
    >>> scatter_count(torch.Tensor([0, 0, 0, 1, 1, 2, 2])) # input
    >>> [3, 2, 2]
    Index assumptions work like in torch_scatter, so:
    >>> scatter_count(torch.Tensor([1, 1, 1, 2, 2, 4, 4]))
    >>> tensor([0, 3, 2, 0, 2])
    """
    return scatter_add(torch.ones_like(input, dtype=torch.long), input.long())


def scatter_counts_to_indices(input: torch.LongTensor) -> torch.LongTensor:
    """
    Converts counts to indices. This is the inverse operation of scatter_count
    Example:
    input:  [3, 2, 2]
    output: [0, 0, 0, 1, 1, 2, 2]
    """
    return torch.repeat_interleave(
        torch.arange(input.size(0), device=input.device), input
    ).long()


def get_inter_event_norms_mask(
    batch: torch.LongTensor, nclusters_per_event: torch.LongTensor
):
    """
    Creates mask of (nhits x nclusters) that is only 1 if hit i is in the same event as cluster j
    Example:
    cluster_id_per_event = torch.LongTensor([0, 0, 1, 1, 2, 0, 0, 1, 1, 1, 0, 0, 1])
    batch = torch.LongTensor([0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2])
    Should return:
    torch.LongTensor([
        [1, 1, 1, 0, 0, 0, 0],
        [1, 1, 1, 0, 0, 0, 0],
        [1, 1, 1, 0, 0, 0, 0],
        [1, 1, 1, 0, 0, 0, 0],
        [1, 1, 1, 0, 0, 0, 0],
        [0, 0, 0, 1, 1, 0, 0],
        [0, 0, 0, 1, 1, 0, 0],
        [0, 0, 0, 1, 1, 0, 0],
        [0, 0, 0, 1, 1, 0, 0],
        [0, 0, 0, 1, 1, 0, 0],
        [0, 0, 0, 0, 0, 1, 1],
        [0, 0, 0, 0, 0, 1, 1],
        [0, 0, 0, 0, 0, 1, 1],
        ])
    """
    device = batch.device
    # Following the example:
    # Expand batch to the following (nhits x nevents) matrix (little hacky, boolean mask -> long):
    # [[1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    #  [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0],
    #  [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1]]
    batch_expanded_as_ones = (
        batch
        == torch.arange(batch.max() + 1, dtype=torch.long, device=device).unsqueeze(-1)
    ).long()
    # Then repeat_interleave it to expand it to nclusters rows, and transpose to get (nhits x nclusters)
    return batch_expanded_as_ones.repeat_interleave(nclusters_per_event, dim=0).T


def isin(ar1, ar2):
    """To be replaced by torch.isin for newer releases of torch"""
    return (ar1[..., None] == ar2).any(-1)


def reincrementalize(y: torch.Tensor, batch: torch.Tensor) -> torch.Tensor:
    """Re-indexes y so that missing clusters are no longer counted.
    Example:
        >>> y = torch.LongTensor([
            0, 0, 0, 1, 1, 3, 3,
            0, 0, 0, 0, 0, 2, 2, 3, 3,
            0, 0, 1, 1
            ])
        >>> batch = torch.LongTensor([
            0, 0, 0, 0, 0, 0, 0,
            1, 1, 1, 1, 1, 1, 1, 1, 1,
            2, 2, 2, 2,
            ])
        >>> print(reincrementalize(y, batch))
        tensor([0, 0, 0, 1, 1, 2, 2, 0, 0, 0, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1])
    """
    y_offset, n_per_event = batch_cluster_indices(y, batch)
    offset = y_offset - y
    n_clusters = n_per_event.sum()
    holes = (
        (~isin(torch.arange(n_clusters, device=y.device), y_offset))
        .nonzero()
        .squeeze(-1)
    )
    n_per_event_without_holes = n_per_event.clone()
    n_per_event_cumsum = n_per_event.cumsum(0)
    for hole in holes.sort(descending=True).values:
        y_offset[y_offset > hole] -= 1
        i_event = (hole > n_per_event_cumsum).long().argmin()
        n_per_event_without_holes[i_event] -= 1
    offset_per_event = torch.zeros_like(n_per_event_without_holes)
    offset_per_event[1:] = n_per_event_without_holes.cumsum(0)[:-1]
    offset_without_holes = torch.gather(offset_per_event, 0, batch).long()
    reincrementalized = y_offset - offset_without_holes
    return reincrementalized


def L_clusters_calc(batch, cluster_space_coords, cluster_index, frac_combinations, q):
    number_of_pairs = 0
    for batch_id in batch.unique():
        # do all possible pairs...
        bmask = batch == batch_id
        clust_space_filt = cluster_space_coords[bmask]
        pos_pairs_all = []
        neg_pairs_all = []
        if len(cluster_index[bmask].unique()) <= 1:
            continue
        L_clusters = torch.tensor(0.0).to(q.device)
        for cluster in cluster_index[bmask].unique():
            coords_pos = clust_space_filt[cluster_index[bmask] == cluster]
            coords_neg = clust_space_filt[cluster_index[bmask] != cluster]
            if len(coords_neg) == 0:
                continue
            clust_idx = cluster_index[bmask] == cluster
            # all_ones = torch.ones_like((clust_idx, clust_idx))
            # pos_pairs = [[i, j] for i in range(len(coords_pos)) for j in range (len(coords_pos)) if i < j]
            total_num = (len(coords_pos) ** 2) / 2
            num = int(frac_combinations * total_num)
            pos_pairs = []
            for i in range(num):
                pos_pairs.append(
                    [
                        np.random.randint(len(coords_pos)),
                        np.random.randint(len(coords_pos)),
                    ]
                )
            neg_pairs = []
            for i in range(len(pos_pairs)):
                neg_pairs.append(
                    [
                        np.random.randint(len(coords_pos)),
                        np.random.randint(len(coords_neg)),
                    ]
                )
            pos_pairs_all += pos_pairs
            neg_pairs_all += neg_pairs
        pos_pairs = torch.tensor(pos_pairs_all)
        neg_pairs = torch.tensor(neg_pairs_all)
        """# do just a small sample of the pairs. ...
        bmask = batch == batch_id

        #L_clusters = 0   # Loss of randomly sampled distances between points inside and outside clusters

        pos_idx, neg_idx = [], []
        for cluster in cluster_index[bmask].unique():
            clust_idx = (cluster_index == cluster)[bmask]
            perm = torch.randperm(clust_idx.sum())
            perm1 = torch.randperm((~clust_idx).sum())
            perm2 = torch.randperm(clust_idx.sum())
            #cutoff = clust_idx.sum()//2
            pos_lst = clust_idx.nonzero()[perm]
            neg_lst = (~clust_idx).nonzero()[perm1]
            neg_lst_second = clust_idx.nonzero()[perm2]
            if len(pos_lst) % 2:
                pos_lst = pos_lst[:-1]
            if len(neg_lst) % 2:
                neg_lst = neg_lst[:-1]
            len_cap = min(len(pos_lst), len(neg_lst), len(neg_lst_second))
            if len_cap % 2:
                len_cap -= 1
            pos_lst = pos_lst[:len_cap]
            neg_lst = neg_lst[:len_cap]
            neg_lst_second = neg_lst_second[:len_cap]
            pos_pairs = pos_lst.reshape(-1, 2)
            neg_pairs = torch.cat([neg_lst, neg_lst_second], dim=1)
            neg_pairs = neg_pairs[:pos_lst.shape[0]//2, :]
            pos_idx.append(pos_pairs)
            neg_idx.append(neg_pairs)
        pos_idx = torch.cat(pos_idx)
        neg_idx = torch.cat(neg_idx)"""
        assert pos_pairs.shape == neg_pairs.shape
        if len(pos_pairs) == 0:
            continue
        cluster_space_coords_filtered = cluster_space_coords[bmask]
        qs_filtered = q[bmask]
        pos_norms = (
            cluster_space_coords_filtered[pos_pairs[:, 0]]
            - cluster_space_coords_filtered[pos_pairs[:, 1]]
        ).norm(dim=-1)

        neg_norms = (
            cluster_space_coords_filtered[neg_pairs[:, 0]]
            - cluster_space_coords_filtered[neg_pairs[:, 1]]
        ).norm(dim=-1)
        q_pos = qs_filtered[pos_pairs[:, 0]]
        q_neg = qs_filtered[neg_pairs[:, 0]]
        q_s = torch.cat([q_pos, q_neg])
        norms_pos = torch.cat([pos_norms, neg_norms])
        ys = torch.cat([torch.ones_like(pos_norms), -torch.ones_like(neg_norms)])
        L_clusters += torch.sum(
            q_s * torch.nn.HingeEmbeddingLoss(reduce=None)(norms_pos, ys)
        )
        number_of_pairs += norms_pos.shape[0]
    if number_of_pairs > 0:
        L_clusters = L_clusters / number_of_pairs
    return L_clusters

def calc_eta_phi(coords, return_stacked=True):
    """
    Calculate eta and phi from cartesian coordinates
    """
    x = coords[:, 0]
    y = coords[:, 1]
    z = coords[:, 2]
    #eta, phi = torch.atan2(y, x), torch.asin(z / coords.norm(dim=1))
    phi = torch.arctan2(y, x)
    eta = torch.arctanh(z / torch.sqrt(x**2 + y**2 + z**2))
    if not return_stacked:
        return eta, phi
    return torch.stack([eta, phi], dim=1)

def loss_func_aug(y_pred, y_pred_aug, batch, batch_aug, event, event_aug):
    coords_pred = y_pred[:, :3]
    coords_pred_aug = y_pred_aug[:, :3]
    original_particle_mapping = batch_aug.original_particle_mapping
    #print("N in batch:", event.pfcands.batch_number)
    #print("N in batch aug:", event_aug.pfcands.batch_number)
    to_add_to_batch = event.pfcands.batch_number[:-1]
    aug_batch_num = event_aug.pfcands.batch_number
    print("Original particle mapping: (before sum)", original_particle_mapping.tolist())
    filt_idx = torch.where(original_particle_mapping != -1)[0].tolist()
    for i in range(len(aug_batch_num)-1):
        for item in filt_idx:
            if item >= aug_batch_num[i] and item < aug_batch_num[i+1]:
                assert original_particle_mapping[item] != -1, "Original particle mapping should not be -1"
                assert to_add_to_batch[i] >= 0, "Batch number should be >= 0: " + str(to_add_to_batch[i])
                original_particle_mapping[item] += to_add_to_batch[i] # Try this due to some indexing issues
        #original_particle_mapping[aug_batch_num[i]:aug_batch_num[i+1]][filt] += to_add_to_batch[i]
    #print("Original particle mapping:", original_particle_mapping[original_particle_mapping != -1])
    #original_particle_mapping[original_particle_mapping != -1] += batch_idx[original_particle_mapping != -1]
    if not original_particle_mapping.max() < len(coords_pred):
        print("Coords shapes", coords_pred.shape, coords_pred_aug.shape)
        print("Original particle mapping:", original_particle_mapping[original_particle_mapping != -1], original_particle_mapping.shape, original_particle_mapping[original_particle_mapping!=-1].max())
        print("Batch number in event:", event.pfcands.batch_number)
        print("Batch number in event aug:", event_aug.pfcands.batch_number)
        print("Len batch", batch.input_vectors.shape, "len batch_aug", batch_aug.input_vectors.shape)
        raise ValueError("Original particle mapping out of bounds")
    assert original_particle_mapping.max() < len(coords_pred)
    coords_pred_aug_target = coords_pred[original_particle_mapping[original_particle_mapping != -1]]
    coords_pred_aug_output = coords_pred_aug[original_particle_mapping != -1]
    print("Output:", coords_pred_aug_output[:5], "Target:", coords_pred_aug_target[:5])
    loss = torch.nn.MSELoss()(coords_pred_aug_output, coords_pred_aug_target)
    return loss


def object_condensation_loss(
        batch, # input event
        pred,
        labels,
        batch_numbers,
        q_min=3.0,
        frac_clustering_loss=0.1,
        attr_weight=1.0,
        repul_weight=1.0,
        fill_loss_weight=1.0,
        use_average_cc_pos=0.0,
        loss_type="hgcalimplementation",
        clust_space_norm="none",
        dis=False,
        coord_weight=0.0,
        beta_type="default",
        lorentz_norm=False,
        spatial_part_only=False,
        loss_quark_distance=False,
        oc_scalars=False,
        loss_obj_score=False
):
    """
    :param batch: Model input
    :param pred: Model output, containing regressed coordinates + betas
    :param clust_space_dim: Number of dimensions in the cluster space
    :return:
    """
    _, S = pred.shape
    noise_logits = None
    if beta_type == "default":
        clust_space_dim = S - 1
        bj = torch.sigmoid(torch.reshape(pred[:, clust_space_dim], [-1, 1])) # betas
    elif beta_type == "pt":
        bj = batch.pt
        clust_space_dim = S
    elif beta_type == "pt+bc":
        bj = batch.pt
        clust_space_dim = S - 1
        noise_logits = pred[:, clust_space_dim]
    original_coords = batch.input_vectors
    if oc_scalars:
        original_coords = original_coords[:, 1:4]
    if dis:
        distance_threshold = torch.reshape(pred[:, -1], [-1, 1])
    else:
        distance_threshold = 0
    xj = pred[:, :clust_space_dim] # Coordinates in clustering space
    #xj = calc_eta_phi(xj)
    if clust_space_norm == "twonorm":
        xj = torch.nn.functional.normalize(xj, dim=1)
    elif clust_space_norm == "tanh":
        xj = torch.tanh(xj)
    elif clust_space_norm == "none":
        pass
    else:
        raise NotImplementedError
    if not loss_quark_distance:
        clustering_index_l = labels
        if loss_obj_score:
            clustering_index_l = labels.labels+1
        a = calc_LV_Lbeta(
            original_coords,
            batch,
            distance_threshold,
            beta=bj.view(-1),
            cluster_space_coords=xj,  # Predicted by model
            cluster_index_per_event=clustering_index_l.view(
                -1
            ).long(),  # Truth hit->cluster index
            batch=batch_numbers.long(),
            qmin=q_min,
            attr_weight=attr_weight,
            repul_weight=repul_weight,
            use_average_cc_pos=use_average_cc_pos,
            loss_type=loss_type,
            dis=dis,
            beta_type=beta_type,
            noise_logits=noise_logits,
            lorentz_norm=lorentz_norm,
            spatial_part_only=spatial_part_only
        )
        loss = a["loss_potential"] + a["loss_beta"]
        if coord_weight > 0:
            loss += a["loss_coord"] * coord_weight
    else:
        # quark distance loss
        target_coords = labels.labels_coordinates[labels.labels[labels.labels != -1]]
        if lorentz_norm:
            diff = xj[labels.labels != -1] - labels.labels_coordinates[labels.labels != -1]
            norms = diff[:, :, 0]**2 - torch.sum(diff[:, :, 1:] ** 2, dim=-1)
            norms = norms.abs()
        else:
            if spatial_part_only:
                x_coords = xj[labels.labels != -1, 1:4]
                x_true = target_coords[:, 1:4]
            else:
                x_coords = xj[labels.labels != -1]
                x_true = target_coords
            #norms = torch.norm(x_coords - x_true, p=2, dim=1)
            # cosine similarity
            norms = 2 - (torch.nn.functional.cosine_similarity(x_coords, x_true[:, 1:4], dim=1) + 1)
        a = {"norms_loss": torch.mean(norms)}
        loss = a["norms_loss"]
        if beta_type == "pt+bc":
            # TODO: polish this, it's another loss that should be computed outside calc_LV_Lbeta
            assert noise_logits is not None
            is_noise = labels.labels == -1
            y_true_noise = 1 - is_noise.float()
            num_positives = torch.sum(y_true_noise).item()
            num_negatives = len(y_true_noise) - num_positives
            num_all = len(y_true_noise)
            # Compute weights
            pos_weight = num_all / num_positives if num_positives > 0 else 0
            neg_weight = num_all / num_negatives if num_negatives > 0 else 0
            weight = pos_weight * y_true_noise + neg_weight * (1 - y_true_noise)
            L_bc = torch.nn.BCELoss(weight=weight)(
                noise_logits, 1 - is_noise.float()
            )
            a["loss_noise_classification"] = L_bc
    if beta_type == "pt+bc":
        loss += a["loss_noise_classification"]
    return loss, a