Spaces:
Sleeping
Sleeping
File size: 45,340 Bytes
e75a247 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 |
from typing import Tuple, Union
import numpy as np
import torch
from torch_scatter import scatter_max, scatter_add, scatter_mean
from src.layers.loss_fill_space_torch import LLFillSpace
def safe_index(arr, index):
# One-hot index (or zero if it's not in the array)
if index not in arr:
return 0
else:
return arr.index(index) + 1
def assert_no_nans(x):
"""
Raises AssertionError if there is a nan in the tensor
"""
if torch.isnan(x).any():
print(x)
assert not torch.isnan(x).any()
# FIXME: Use a logger instead of this
DEBUG = False
def debug(*args, **kwargs):
if DEBUG:
print(*args, **kwargs)
def calc_LV_Lbeta(
original_coords,
g,
distance_threshold,
beta: torch.Tensor,
cluster_space_coords: torch.Tensor, # Predicted by model
cluster_index_per_event: torch.Tensor, # Truth hit->cluster index, e.g. [0, 1, 1, 0, 1, -1, 0, 1, 1]
batch: torch.Tensor, # E.g. [0, 0, 0, 0, 1, 1, 1, 1, 1]
# From here on just parameters
qmin: float = 0.1,
s_B: float = 1.0,
noise_cluster_index: int = 0, # cluster_index entries with this value are noise/noise
beta_stabilizing="soft_q_scaling",
huberize_norm_for_V_attractive=False,
beta_term_option="paper",
frac_combinations=0, # fraction of the all possible pairs to be used for the clustering loss
attr_weight=1.0,
repul_weight=1.0,
use_average_cc_pos=0.0,
loss_type="hgcalimplementation",
tracking=False,
dis=False,
beta_type="default",
noise_logits=None,
lorentz_norm=False,
spatial_part_only=False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], dict]:
"""
Calculates the L_V and L_beta object condensation losses.
Concepts:
- A hit belongs to exactly one cluster (cluster_index_per_event is (n_hits,)),
and to exactly one event (batch is (n_hits,))
- A cluster index of `noise_cluster_index` means the cluster is a noise cluster.
There is typically one noise cluster per event. Any hit in a noise cluster
is a 'noise hit'. A hit in an object is called a 'signal hit' for lack of a
better term.
- An 'object' is a cluster that is *not* a noise cluster.
beta_stabilizing: Choices are ['paper', 'clip', 'soft_q_scaling']:
paper: beta is sigmoid(model_output), q = beta.arctanh()**2 + qmin
clip: beta is clipped to 1-1e-4, q = beta.arctanh()**2 + qmin
soft_q_scaling: beta is sigmoid(model_output), q = (clip(beta)/1.002).arctanh()**2 + qmin
huberize_norm_for_V_attractive: Huberizes the norms when used in the attractive potential
beta_term_option: Choices are ['paper', 'short-range-potential']:
Choosing 'short-range-potential' introduces a short range potential around high
beta points, acting like V_attractive.
Note this function has modifications w.r.t. the implementation in 2002.03605:
- The norms for V_repulsive are now Gaussian (instead of linear hinge)
- Noise_logits: If set to an array, it is the output of the noise classifier (whether a particle belongs to a jet or not)
"""
# remove dummy rows added for dataloader #TODO think of better way to do this
device = beta.device
if torch.isnan(beta).any():
print("There are nans in beta! L198", len(beta[torch.isnan(beta)]))
beta = torch.nan_to_num(beta, nan=0.0)
assert_no_nans(beta)
# ________________________________
# Calculate a bunch of needed counts and indices locally
# cluster_index: unique index over events
# E.g. cluster_index_per_event=[ 0, 0, 1, 2, 0, 0, 1], batch=[0, 0, 0, 0, 1, 1, 1]
# -> cluster_index=[ 0, 0, 1, 2, 3, 3, 4 ]
cluster_index, n_clusters_per_event = batch_cluster_indices(
cluster_index_per_event, batch
)
n_clusters = n_clusters_per_event.sum()
n_hits, cluster_space_dim = cluster_space_coords.size()
batch_size = batch.max().detach().cpu().item() + 1
n_hits_per_event = scatter_count(batch)
# Index of cluster -> event (n_clusters,)
batch_cluster = scatter_counts_to_indices(n_clusters_per_event)
# Per-hit boolean, indicating whether hit is sig or noise
is_noise = cluster_index_per_event == noise_cluster_index
is_sig = ~is_noise
n_hits_sig = is_sig.sum()
n_sig_hits_per_event = scatter_count(batch[is_sig])
# Per-cluster boolean, indicating whether cluster is an object or noise
is_object = scatter_max(is_sig.long(), cluster_index)[0].bool()
is_noise_cluster = ~is_object
# FIXME: This assumes noise_cluster_index == 0!!
# Not sure how to do this in a performant way in case noise_cluster_index != 0
if noise_cluster_index != 0:
raise NotImplementedError
object_index_per_event = cluster_index_per_event[is_sig] - 1
object_index, n_objects_per_event = batch_cluster_indices(
object_index_per_event, batch[is_sig]
)
n_hits_per_object = scatter_count(object_index)
# print("n_hits_per_object", n_hits_per_object)
batch_object = batch_cluster[is_object]
n_objects = is_object.sum()
assert object_index.size() == (n_hits_sig,)
assert is_object.size() == (n_clusters,)
assert torch.all(n_hits_per_object > 0)
assert object_index.max() + 1 == n_objects
# ________________________________
# L_V term
# Calculate q
if beta_type == "default":
if loss_type == "hgcalimplementation" or loss_type == "vrepweighted":
q = (beta.clip(0.0, 1 - 1e-4).arctanh() / 1.01) ** 2 + qmin
elif beta_stabilizing == "paper":
q = beta.arctanh() ** 2 + qmin
elif beta_stabilizing == "clip":
beta = beta.clip(0.0, 1 - 1e-4)
q = beta.arctanh() ** 2 + qmin
elif beta_stabilizing == "soft_q_scaling":
q = (beta.clip(0.0, 1 - 1e-4) / 1.002).arctanh() ** 2 + qmin
else:
raise ValueError(f"beta_stablizing mode {beta_stabilizing} is not known")
elif beta_type == "pt":
q = beta
elif beta_type == "pt+bc":
q = beta
#if beta_type in ["pt", "pt+bc"]:
# q[q<0.5] = 0.5 # cap the q
assert_no_nans(q)
assert q.device == device
assert q.size() == (n_hits,)
# Calculate q_alpha, the max q per object, and the indices of said maxima
# assert hit_energies.shape == q.shape
# q_alpha, index_alpha = scatter_max(hit_energies[is_sig], object_index)
q_alpha, index_alpha = scatter_max(q[is_sig], object_index)
assert q_alpha.size() == (n_objects,)
# Get the cluster space coordinates and betas for these maxima hits too
x_alpha = cluster_space_coords[is_sig][index_alpha]
#x_alpha_original = original_coords[is_sig][index_alpha]
if use_average_cc_pos > 0:
#! this is a func of beta and q so maybe we could also do it with only q
x_alpha_sum = scatter_add(
q[is_sig].view(-1, 1).repeat(1, 3) * cluster_space_coords[is_sig],
object_index,
dim=0,
) # * beta[is_sig].view(-1, 1).repeat(1, 3)
qbeta_alpha_sum = scatter_add(q[is_sig], object_index) + 1e-9 # * beta[is_sig]
div_fac = 1 / qbeta_alpha_sum
div_fac = torch.nan_to_num(div_fac, nan=0)
x_alpha_mean = torch.mul(x_alpha_sum, div_fac.view(-1, 1).repeat(1, 3))
x_alpha = use_average_cc_pos * x_alpha_mean + (1 - use_average_cc_pos) * x_alpha
if dis:
phi_sum = scatter_add(
beta[is_sig].view(-1) * distance_threshold[is_sig].view(-1),
object_index,
dim=0,
)
phi_alpha_sum = scatter_add(beta[is_sig].view(-1), object_index) + 1e-9
phi_alpha = phi_sum / phi_alpha_sum
beta_alpha = beta[is_sig][index_alpha]
assert x_alpha.size() == (n_objects, cluster_space_dim)
assert beta_alpha.size() == (n_objects,)
# Connectivity matrix from hit (row) -> cluster (column)
# Index to matrix, e.g.:
# [1, 3, 1, 0] --> [
# [0, 1, 0, 0],
# [0, 0, 0, 1],
# [0, 1, 0, 0],
# [1, 0, 0, 0]
# ]
M = torch.nn.functional.one_hot(cluster_index).long()
# Anti-connectivity matrix; be sure not to connect hits to clusters in different events!
M_inv = get_inter_event_norms_mask(batch, n_clusters_per_event) - M
# Throw away noise cluster columns; we never need them
M = M[:, is_object]
M_inv = M_inv[:, is_object]
assert M.size() == (n_hits, n_objects)
assert M_inv.size() == (n_hits, n_objects)
# Calculate all norms
# Warning: Should not be used without a mask!
# Contains norms between hits and objects from different events
# (n_hits, 1, cluster_space_dim) - (1, n_objects, cluster_space_dim)
# gives (n_hits, n_objects, cluster_space_dim)
norms = (cluster_space_coords.unsqueeze(1) - x_alpha.unsqueeze(0)).norm(dim=-1)
assert norms.size() == (n_hits, n_objects)
L_clusters = torch.tensor(0.0).to(device)
if frac_combinations != 0:
L_clusters = L_clusters_calc(
batch, cluster_space_coords, cluster_index, frac_combinations, q
)
# -------
# Attractive potential term
# First get all the relevant norms: We only want norms of signal hits
# w.r.t. the object they belong to, i.e. no noise hits and no noise clusters.
# First select all norms of all signal hits w.r.t. all objects, mask out later
if loss_type == "hgcalimplementation" or loss_type == "vrepweighted":
# if dis:
# N_k = torch.sum(M, dim=0) # number of hits per object
# norms = torch.sum(
# torch.square(cluster_space_coords.unsqueeze(1) - x_alpha.unsqueeze(0)),
# dim=-1,
# )
# norms_att = norms[is_sig]
# norms_att = norms_att / (2 * phi_alpha.unsqueeze(0) ** 2 + 1e-6)
# #! att func as in line 159 of object condensation
# norms_att = torch.log(
# torch.exp(torch.Tensor([1]).to(norms_att.device)) * norms_att + 1
# )
N_k = torch.sum(M, dim=0) # number of hits per object
if lorentz_norm:
diff = cluster_space_coords.unsqueeze(1) - x_alpha.unsqueeze(0)
norms = diff[:, :, 0]**2 - torch.sum(diff[:, :, 1:] ** 2, dim=-1)
norms = norms.abs() ## ??? Why is this needed? wrong convention?
#print("Norms", norms[:15])
else:
if spatial_part_only:
norms = torch.sum(
torch.square(cluster_space_coords[:, 1:4].unsqueeze(1) - x_alpha[:, 1:4].unsqueeze(0)),
dim=-1,
)
else:
norms = torch.sum(
torch.square(cluster_space_coords.unsqueeze(1) - x_alpha.unsqueeze(0)),
dim=-1,
) # Take the norm squared
norms_att = norms[is_sig]
#! att func as in line 159 of object condensation
norms_att = torch.log(
torch.exp(torch.Tensor([1]).to(norms_att.device)) * norms_att / 2 + 1
)
elif huberize_norm_for_V_attractive:
norms_att = norms[is_sig]
# Huberized version (linear but times 4)
# Be sure to not move 'off-diagonal' away from zero
# (i.e. norms of hits w.r.t. clusters they do _not_ belong to)
norms_att = huber(norms_att + 1e-5, 4.0)
else:
norms_att = norms[is_sig]
# Paper version is simply norms squared (no need for mask)
norms_att = norms_att**2
assert norms_att.size() == (n_hits_sig, n_objects)
# Now apply the mask to keep only norms of signal hits w.r.t. to the object
# they belong to
norms_att *= M[is_sig]
# Sum over hits, then sum per event, then divide by n_hits_per_event, then sum over events
if loss_type == "hgcalimplementation":
# Final potential term
# (n_sig_hits, 1) * (1, n_objects) * (n_sig_hits, n_objects)
# hit_type = (g.ndata["hit_type"][is_sig].view(-1)==3)*4+1 #weight 5 for hadronic hits, 1 for
# tracks = g.ndata["hit_type"][is_sig]==1
# hit_type[tracks] = 250
# total_sum_hits_types = scatter_add(hit_type.view(-1), object_index)
V_attractive = q[is_sig].unsqueeze(-1) * q_alpha.unsqueeze(0) * norms_att
assert V_attractive.size() == (n_hits_sig, n_objects)
#! each shower is account for separately
V_attractive = V_attractive.sum(dim=0) # K objects
#! divide by the number of accounted points
V_attractive = V_attractive.view(-1) / (N_k.view(-1) + 1e-3)
# V_attractive = V_attractive.view(-1) / (total_sum_hits_types.view(-1) + 1e-3)
# L_V_attractive = torch.mean(V_attractive)
## multiply by a weight that depends on the energy of the shower:
# print("e_hits", e_hits)
# print("weight_att", weight_att)
# L_V_attractive = torch.sum(V_attractive*weight_att)
L_V_attractive = torch.mean(V_attractive)
# L_V_attractive = L_V_attractive / torch.sum(weight_att)
L_V_attractive_2 = torch.sum(V_attractive)
elif loss_type == "vrepweighted":
if tracking:
# weight the vtx hits inside the shower
V_attractive = (
g.ndata["weights"][is_sig].unsqueeze(-1)
* q[is_sig].unsqueeze(-1)
* q_alpha.unsqueeze(0)
* norms_att
)
assert V_attractive.size() == (n_hits_sig, n_objects)
V_attractive = V_attractive.sum(dim=0) # K objects
L_V_attractive = torch.mean(V_attractive.view(-1))
else:
# # weight per hit per shower to compensate for ecal hcal unbalance in hadronic showers
# ecal_hits = scatter_add(
# 1 * (g.ndata["hit_type"][is_sig] == 2), object_index
# )
# hcal_hits = scatter_add(
# 1 * (g.ndata["hit_type"][is_sig] == 3), object_index
# )
# weights = torch.ones_like(g.ndata["hit_type"][is_sig])
# weight_ecal_per_object = 1.0 * ecal_hits.clone() + 1
# weight_hcal_per_object = 1.0 * ecal_hits.clone() + 1
# mask = (ecal_hits > 2) * (hcal_hits > 2)
# weight_ecal_per_object[mask] = (ecal_hits + hcal_hits)[mask] / (
# 2 * ecal_hits
# )[mask]
# weight_hcal_per_object[mask] = (ecal_hits + hcal_hits)[mask] / (
# 2 * hcal_hits
# )[mask]
# weights[g.ndata["hit_type"][is_sig] == 2] = weight_ecal_per_object[
# object_index
# ]
# weights[g.ndata["hit_type"][is_sig] == 3] = weight_hcal_per_object[
# object_index
# ]
# # weight with an energy log of the hits
# e_hits = g.ndata["e_hits"][is_sig].view(-1)
# p_hits = g.ndata["h"][:, -1][is_sig].view(-1)
# log_scale_s = torch.log(e_hits + p_hits) + 10
# e_sum_hits = scatter_add(log_scale_s, object_index)
# # need to take out the weight of alpha otherwise it won't add up to 1
# e_sum_hits = e_sum_hits - (log_scale_s[index_alpha])
# e_rel = (log_scale_s) / e_sum_hits[object_index]
# weight of the hit depending on the radial distance:
# this weight should help to seed
# weight_radial_distance = torch.exp(
# -g.ndata["radial_distance"][is_sig] / 100
# )
# weight_per_object = scatter_add(weight_radial_distance, object_index)
# weight_radial_distance = (
# weight_radial_distance / weight_per_object[object_index]
# )
V_attractive = (
q[is_sig].unsqueeze(-1) ## weight_radial_distance.unsqueeze(-1)
* q_alpha.unsqueeze(0)
* norms_att
)
# weight modified showers with a higher weight
modified_showers = scatter_max(g.ndata["hit_link_modified"], object_index)[
0
]
n_modified = torch.sum(modified_showers)
weight_modified = len(modified_showers) / (2 * n_modified)
weight_unmodified = len(modified_showers) / (
2 * (len(modified_showers) - n_modified)
)
modified_showers[modified_showers > 0] = weight_modified
modified_showers[modified_showers == 0] = weight_unmodified
assert V_attractive.size() == (n_hits_sig, n_objects)
V_attractive = V_attractive.sum(dim=0) # K objects
L_V_attractive = torch.sum(
modified_showers.view(-1) * V_attractive.view(-1)
) / len(modified_showers)
else:
# Final potential term
# (n_sig_hits, 1) * (1, n_objects) * (n_sig_hits, n_objects)
V_attractive = q[is_sig].unsqueeze(-1) * q_alpha.unsqueeze(0) * norms_att
assert V_attractive.size() == (n_hits_sig, n_objects)
#! in comparison this works per hit
V_attractive = (
scatter_add(V_attractive.sum(dim=0), batch_object) / n_hits_per_event
)
assert V_attractive.size() == (batch_size,)
L_V_attractive = V_attractive.sum()
# -------
# Repulsive potential term
# Get all the relevant norms: We want norms of any hit w.r.t. to
# objects they do *not* belong to, i.e. no noise clusters.
# We do however want to keep norms of noise hits w.r.t. objects
# Power-scale the norms: Gaussian scaling term instead of a cone
# Mask out the norms of hits w.r.t. the cluster they belong to
if loss_type == "hgcalimplementation" or loss_type == "vrepweighted":
if dis:
norms = norms / (2 * phi_alpha.unsqueeze(0) ** 2 + 1e-6)
norms_rep = torch.exp(-(norms)) * M_inv
norms_rep2 = torch.exp(-(norms) * 10) * M_inv
else:
norms_rep = torch.exp(-(norms) / 2) * M_inv
# norms_rep2 = torch.exp(-(norms) * 10) * M_inv
norms_rep2 = torch.exp(-(norms) * 10) * M_inv
else:
norms_rep = torch.exp(-4.0 * norms**2) * M_inv
# (n_sig_hits, 1) * (1, n_objects) * (n_sig_hits, n_objects)
V_repulsive = q.unsqueeze(1) * q_alpha.unsqueeze(0) * norms_rep
# No need to apply a V = max(0, V); by construction V>=0
assert V_repulsive.size() == (n_hits, n_objects)
# Sum over hits, then sum per event, then divide by n_hits_per_event, then sum up events
nope = n_objects_per_event - 1
nope[nope == 0] = 1
if loss_type == "hgcalimplementation" or loss_type == "vrepweighted":
#! sum each object repulsive terms
L_V_repulsive = V_repulsive.sum(dim=0) # size number of objects
number_of_repulsive_terms_per_object = torch.sum(M_inv, dim=0)
L_V_repulsive = L_V_repulsive.view(
-1
) / number_of_repulsive_terms_per_object.view(-1)
V_repulsive2 = q.unsqueeze(1) * q_alpha.unsqueeze(0) * norms_rep2
L_V_repulsive2 = V_repulsive2.sum(dim=0) # size number of objects
L_V_repulsive2 = L_V_repulsive2.view(-1)
L_V_attractive_2 = L_V_attractive_2.view(-1)
# if not tracking:
# #! add to terms function (divide by total number of showers per event)
# # L_V_repulsive = scatter_add(L_V_repulsive, object_index) / n_objects
# per_shower_weight = torch.exp(1 / (e_particles_pred_per_object + 0.4))
# soft_m = torch.nn.Softmax(dim=0)
# per_shower_weight = soft_m(per_shower_weight) * len(L_V_repulsive)
# L_V_repulsive = torch.mean(L_V_repulsive * per_shower_weight)
# else:
# if tracking:
# L_V_repulsive = torch.mean(L_V_repulsive * per_shower_weight)
# else:
if loss_type == "vrepweighted":
L_V_repulsive = torch.sum(
modified_showers.view(-1) * L_V_repulsive.view(-1)
) / len(modified_showers)
L_V_repulsive2 = torch.sum(
modified_showers.view(-1) * L_V_repulsive2.view(-1)
) / len(modified_showers)
else:
L_V_repulsive = torch.mean(L_V_repulsive)
L_V_repulsive2 = torch.mean(L_V_repulsive2)
else:
L_V_repulsive = (
scatter_add(V_repulsive.sum(dim=0), batch_object)
/ (n_hits_per_event * nope)
).sum()
L_V = (
attr_weight * L_V_attractive + repul_weight * L_V_repulsive
)
n_noise_hits_per_event = scatter_count(batch[is_noise])
n_noise_hits_per_event[n_noise_hits_per_event == 0] = 1
L_beta_noise = (
s_B
* (
(scatter_add(beta[is_noise], batch[is_noise])) / n_noise_hits_per_event
).sum()
)
if loss_type == "hgcalimplementation":
beta_per_object_c = scatter_add(beta[is_sig], object_index)
beta_alpha = beta[is_sig][index_alpha]
L_beta_sig = torch.mean(
1 - beta_alpha + 1 - torch.clip(beta_per_object_c, 0, 1)
)
L_beta_noise = L_beta_noise / 4
# ? note: the training that worked quite well was dividing this by the batch size (1/4)
elif loss_type == "vrepweighted":
# version one:
beta_per_object_c = scatter_add(beta[is_sig], object_index)
beta_alpha = beta[is_sig][index_alpha]
L_beta_sig = 1 - beta_alpha + 1 - torch.clip(beta_per_object_c, 0, 1)
L_beta_sig = torch.sum(L_beta_sig.view(-1) * modified_showers.view(-1))
L_beta_sig = L_beta_sig / len(modified_showers)
L_beta_noise = L_beta_noise / batch_size
# ? note: the training that worked quite well was dividing this by the batch size (1/4)
elif beta_term_option == "paper":
beta_alpha = beta[is_sig][index_alpha]
L_beta_sig = torch.sum( # maybe 0.5 for less aggressive loss
scatter_add((1 - beta_alpha), batch_object) / n_objects_per_event
)
# print("L_beta_sig", L_beta_sig / batch_size)
# beta_exp = beta[is_sig]
# beta_exp[index_alpha] = 0
# # L_exp = torch.mean(beta_exp)
# beta_exp = torch.exp(0.5 * beta_exp)
# L_exp = torch.mean(scatter_add(beta_exp, batch) / n_hits_per_event)
elif beta_term_option == "short-range-potential":
# First collect the norms: We only want norms of hits w.r.t. the object they
# belong to (like in V_attractive)
# Apply transformation first, and then apply mask to keep only the norms we want,
# then sum over hits, so the result is (n_objects,)
norms_beta_sig = (1.0 / (20.0 * norms[is_sig] ** 2 + 1.0) * M[is_sig]).sum(
dim=0
)
assert torch.all(norms_beta_sig >= 1.0) and torch.all(
norms_beta_sig <= n_hits_per_object
)
# Subtract from 1. to remove self interaction, divide by number of hits per object
norms_beta_sig = (1.0 - norms_beta_sig) / n_hits_per_object
assert torch.all(norms_beta_sig >= -1.0) and torch.all(norms_beta_sig <= 0.0)
norms_beta_sig *= beta_alpha
# Conclusion:
# lower beta --> higher loss (less negative)
# higher norms --> higher loss
# Sum over objects, divide by number of objects per event, then sum over events
L_beta_norms_term = (
scatter_add(norms_beta_sig, batch_object) / n_objects_per_event
).sum()
assert L_beta_norms_term >= -batch_size and L_beta_norms_term <= 0.0
# Logbeta term: Take -.2*torch.log(beta_alpha[is_object]+1e-9), sum it over objects,
# divide by n_objects_per_event, then sum over events (same pattern as above)
# lower beta --> higher loss
L_beta_logbeta_term = (
scatter_add(-0.2 * torch.log(beta_alpha + 1e-9), batch_object)
/ n_objects_per_event
).sum()
# Final L_beta term
L_beta_sig = L_beta_norms_term + L_beta_logbeta_term
else:
valid_options = ["paper", "short-range-potential"]
raise ValueError(
f'beta_term_option "{beta_term_option}" is not valid, choose from {valid_options}'
)
L_beta = L_beta_noise + L_beta_sig
if beta_type == "pt" or beta_type == "pt+bc":
L_beta = torch.tensor(0.)
L_beta_sig = torch.tensor(0.)
L_beta_noise = torch.tensor(0.)
#L_alpha_coordinates = torch.mean(torch.norm(x_alpha_original - x_alpha, p=2, dim=1))
x_original = original_coords / torch.norm(original_coords, p=2, dim=1).view(-1, 1)
x_virtual = cluster_space_coords / torch.norm(cluster_space_coords, p=2, dim=1).view(-1, 1)
loss_coord = torch.mean(torch.norm(x_original - x_virtual, p=2, dim=1)) # We just compare the direction
if beta_type == "pt+bc":
assert noise_logits is not None
y_true_noise = 1 - is_noise.float()
num_positives = torch.sum(y_true_noise).item()
num_negatives = len(y_true_noise) - num_positives
num_all = len(y_true_noise)
# Compute weights
pos_weight = num_all / num_positives if num_positives > 0 else 0
neg_weight = num_all / num_negatives if num_negatives > 0 else 0
weight = pos_weight * y_true_noise + neg_weight * (1 - y_true_noise)
L_bc = torch.nn.BCELoss(weight=weight)(
noise_logits, 1-is_noise.float()
)
#if torch.isnan(L_beta / batch_size):
# print("isnan!!!")
# print(L_beta, batch_size)
# print("L_beta_noise", L_beta_noise)
# print("L_beta_sig", L_beta_sig)
result = {
"loss_potential": L_V, # 0
"loss_beta": L_beta,
"loss_beta_sig": L_beta_sig, # signal part of the betas
"loss_beta_noise": L_beta_noise, # noise part of the betas
"loss_attractive": L_V_attractive,
"loss_repulsive": L_V_repulsive,
"loss_coord": loss_coord,
}
if beta_type == "pt+bc":
result["loss_noise_classification"] = L_bc
return result
def huber(d, delta):
"""
See: https://en.wikipedia.org/wiki/Huber_loss#Definition
Multiplied by 2 w.r.t Wikipedia version (aligning with Jan's definition)
"""
return torch.where(
torch.abs(d) <= delta, d**2, 2.0 * delta * (torch.abs(d) - delta)
)
def batch_cluster_indices(
cluster_id: torch.Tensor, batch: torch.Tensor
) -> Tuple[torch.LongTensor, torch.LongTensor]:
"""
Turns cluster indices per event to an index in the whole batch
Example:
cluster_id = torch.LongTensor([0, 0, 1, 1, 2, 0, 0, 1, 1, 1, 0, 0, 1])
batch = torch.LongTensor([0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2])
-->
offset = torch.LongTensor([0, 0, 0, 0, 0, 3, 3, 3, 3, 3, 5, 5, 5])
output = torch.LongTensor([0, 0, 1, 1, 2, 3, 3, 4, 4, 4, 5, 5, 6])
"""
device = cluster_id.device
assert cluster_id.device == batch.device
# Count the number of clusters per entry in the batch
n_clusters_per_event = scatter_max(cluster_id, batch, dim=-1)[0] + 1
# Offsets are then a cumulative sum
offset_values_nozero = n_clusters_per_event[:-1].cumsum(dim=-1)
# Prefix a zero
offset_values = torch.cat((torch.zeros(1, device=device), offset_values_nozero))
# Fill it per hit
offset = torch.gather(offset_values, 0, batch).long()
return offset + cluster_id, n_clusters_per_event
def get_clustering_np(
betas: np.array, X: np.array, tbeta: float = 0.1, td: float = 1.0
) -> np.array:
"""
Returns a clustering of hits -> cluster_index, based on the GravNet model
output (predicted betas and cluster space coordinates) and the clustering
parameters tbeta and td.
Takes numpy arrays as input.
"""
n_points = betas.shape[0]
select_condpoints = betas > tbeta
# Get indices passing the threshold
indices_condpoints = np.nonzero(select_condpoints)[0]
# Order them by decreasing beta value
indices_condpoints = indices_condpoints[np.argsort(-betas[select_condpoints])]
# Assign points to condensation points
# Only assign previously unassigned points (no overwriting)
# Points unassigned at the end are bkg (-1)
unassigned = np.arange(n_points)
clustering = -1 * np.ones(n_points, dtype=np.int32)
for index_condpoint in indices_condpoints:
d = np.linalg.norm(X[unassigned] - X[index_condpoint], axis=-1)
assigned_to_this_condpoint = unassigned[d < td]
clustering[assigned_to_this_condpoint] = index_condpoint
unassigned = unassigned[~(d < td)]
return clustering
def get_clustering(betas: torch.Tensor, X: torch.Tensor, tbeta=0.1, td=1.0):
"""
Returns a clustering of hits -> cluster_index, based on the GravNet model
output (predicted betas and cluster space coordinates) and the clustering
parameters tbeta and td.
Takes torch.Tensors as input.
"""
n_points = betas.size(0)
select_condpoints = betas > tbeta
# Get indices passing the threshold
indices_condpoints = select_condpoints.nonzero()
# Order them by decreasing beta value
indices_condpoints = indices_condpoints[(-betas[select_condpoints]).argsort()]
# Assign points to condensation points
# Only assign previously unassigned points (no overwriting)
# Points unassigned at the end are bkg (-1)
unassigned = torch.arange(n_points)
clustering = -1 * torch.ones(n_points, dtype=torch.long)
for index_condpoint in indices_condpoints:
d = torch.norm(X[unassigned] - X[index_condpoint][0], dim=-1)
assigned_to_this_condpoint = unassigned[d < td]
clustering[assigned_to_this_condpoint] = index_condpoint[0]
unassigned = unassigned[~(d < td)]
return clustering
def scatter_count(input: torch.Tensor):
"""
Returns ordered counts over an index array
Example:
>>> scatter_count(torch.Tensor([0, 0, 0, 1, 1, 2, 2])) # input
>>> [3, 2, 2]
Index assumptions work like in torch_scatter, so:
>>> scatter_count(torch.Tensor([1, 1, 1, 2, 2, 4, 4]))
>>> tensor([0, 3, 2, 0, 2])
"""
return scatter_add(torch.ones_like(input, dtype=torch.long), input.long())
def scatter_counts_to_indices(input: torch.LongTensor) -> torch.LongTensor:
"""
Converts counts to indices. This is the inverse operation of scatter_count
Example:
input: [3, 2, 2]
output: [0, 0, 0, 1, 1, 2, 2]
"""
return torch.repeat_interleave(
torch.arange(input.size(0), device=input.device), input
).long()
def get_inter_event_norms_mask(
batch: torch.LongTensor, nclusters_per_event: torch.LongTensor
):
"""
Creates mask of (nhits x nclusters) that is only 1 if hit i is in the same event as cluster j
Example:
cluster_id_per_event = torch.LongTensor([0, 0, 1, 1, 2, 0, 0, 1, 1, 1, 0, 0, 1])
batch = torch.LongTensor([0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2])
Should return:
torch.LongTensor([
[1, 1, 1, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 0, 0],
[0, 0, 0, 1, 1, 0, 0],
[0, 0, 0, 1, 1, 0, 0],
[0, 0, 0, 1, 1, 0, 0],
[0, 0, 0, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 1, 1],
[0, 0, 0, 0, 0, 1, 1],
[0, 0, 0, 0, 0, 1, 1],
])
"""
device = batch.device
# Following the example:
# Expand batch to the following (nhits x nevents) matrix (little hacky, boolean mask -> long):
# [[1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0],
# [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1]]
batch_expanded_as_ones = (
batch
== torch.arange(batch.max() + 1, dtype=torch.long, device=device).unsqueeze(-1)
).long()
# Then repeat_interleave it to expand it to nclusters rows, and transpose to get (nhits x nclusters)
return batch_expanded_as_ones.repeat_interleave(nclusters_per_event, dim=0).T
def isin(ar1, ar2):
"""To be replaced by torch.isin for newer releases of torch"""
return (ar1[..., None] == ar2).any(-1)
def reincrementalize(y: torch.Tensor, batch: torch.Tensor) -> torch.Tensor:
"""Re-indexes y so that missing clusters are no longer counted.
Example:
>>> y = torch.LongTensor([
0, 0, 0, 1, 1, 3, 3,
0, 0, 0, 0, 0, 2, 2, 3, 3,
0, 0, 1, 1
])
>>> batch = torch.LongTensor([
0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1,
2, 2, 2, 2,
])
>>> print(reincrementalize(y, batch))
tensor([0, 0, 0, 1, 1, 2, 2, 0, 0, 0, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1])
"""
y_offset, n_per_event = batch_cluster_indices(y, batch)
offset = y_offset - y
n_clusters = n_per_event.sum()
holes = (
(~isin(torch.arange(n_clusters, device=y.device), y_offset))
.nonzero()
.squeeze(-1)
)
n_per_event_without_holes = n_per_event.clone()
n_per_event_cumsum = n_per_event.cumsum(0)
for hole in holes.sort(descending=True).values:
y_offset[y_offset > hole] -= 1
i_event = (hole > n_per_event_cumsum).long().argmin()
n_per_event_without_holes[i_event] -= 1
offset_per_event = torch.zeros_like(n_per_event_without_holes)
offset_per_event[1:] = n_per_event_without_holes.cumsum(0)[:-1]
offset_without_holes = torch.gather(offset_per_event, 0, batch).long()
reincrementalized = y_offset - offset_without_holes
return reincrementalized
def L_clusters_calc(batch, cluster_space_coords, cluster_index, frac_combinations, q):
number_of_pairs = 0
for batch_id in batch.unique():
# do all possible pairs...
bmask = batch == batch_id
clust_space_filt = cluster_space_coords[bmask]
pos_pairs_all = []
neg_pairs_all = []
if len(cluster_index[bmask].unique()) <= 1:
continue
L_clusters = torch.tensor(0.0).to(q.device)
for cluster in cluster_index[bmask].unique():
coords_pos = clust_space_filt[cluster_index[bmask] == cluster]
coords_neg = clust_space_filt[cluster_index[bmask] != cluster]
if len(coords_neg) == 0:
continue
clust_idx = cluster_index[bmask] == cluster
# all_ones = torch.ones_like((clust_idx, clust_idx))
# pos_pairs = [[i, j] for i in range(len(coords_pos)) for j in range (len(coords_pos)) if i < j]
total_num = (len(coords_pos) ** 2) / 2
num = int(frac_combinations * total_num)
pos_pairs = []
for i in range(num):
pos_pairs.append(
[
np.random.randint(len(coords_pos)),
np.random.randint(len(coords_pos)),
]
)
neg_pairs = []
for i in range(len(pos_pairs)):
neg_pairs.append(
[
np.random.randint(len(coords_pos)),
np.random.randint(len(coords_neg)),
]
)
pos_pairs_all += pos_pairs
neg_pairs_all += neg_pairs
pos_pairs = torch.tensor(pos_pairs_all)
neg_pairs = torch.tensor(neg_pairs_all)
"""# do just a small sample of the pairs. ...
bmask = batch == batch_id
#L_clusters = 0 # Loss of randomly sampled distances between points inside and outside clusters
pos_idx, neg_idx = [], []
for cluster in cluster_index[bmask].unique():
clust_idx = (cluster_index == cluster)[bmask]
perm = torch.randperm(clust_idx.sum())
perm1 = torch.randperm((~clust_idx).sum())
perm2 = torch.randperm(clust_idx.sum())
#cutoff = clust_idx.sum()//2
pos_lst = clust_idx.nonzero()[perm]
neg_lst = (~clust_idx).nonzero()[perm1]
neg_lst_second = clust_idx.nonzero()[perm2]
if len(pos_lst) % 2:
pos_lst = pos_lst[:-1]
if len(neg_lst) % 2:
neg_lst = neg_lst[:-1]
len_cap = min(len(pos_lst), len(neg_lst), len(neg_lst_second))
if len_cap % 2:
len_cap -= 1
pos_lst = pos_lst[:len_cap]
neg_lst = neg_lst[:len_cap]
neg_lst_second = neg_lst_second[:len_cap]
pos_pairs = pos_lst.reshape(-1, 2)
neg_pairs = torch.cat([neg_lst, neg_lst_second], dim=1)
neg_pairs = neg_pairs[:pos_lst.shape[0]//2, :]
pos_idx.append(pos_pairs)
neg_idx.append(neg_pairs)
pos_idx = torch.cat(pos_idx)
neg_idx = torch.cat(neg_idx)"""
assert pos_pairs.shape == neg_pairs.shape
if len(pos_pairs) == 0:
continue
cluster_space_coords_filtered = cluster_space_coords[bmask]
qs_filtered = q[bmask]
pos_norms = (
cluster_space_coords_filtered[pos_pairs[:, 0]]
- cluster_space_coords_filtered[pos_pairs[:, 1]]
).norm(dim=-1)
neg_norms = (
cluster_space_coords_filtered[neg_pairs[:, 0]]
- cluster_space_coords_filtered[neg_pairs[:, 1]]
).norm(dim=-1)
q_pos = qs_filtered[pos_pairs[:, 0]]
q_neg = qs_filtered[neg_pairs[:, 0]]
q_s = torch.cat([q_pos, q_neg])
norms_pos = torch.cat([pos_norms, neg_norms])
ys = torch.cat([torch.ones_like(pos_norms), -torch.ones_like(neg_norms)])
L_clusters += torch.sum(
q_s * torch.nn.HingeEmbeddingLoss(reduce=None)(norms_pos, ys)
)
number_of_pairs += norms_pos.shape[0]
if number_of_pairs > 0:
L_clusters = L_clusters / number_of_pairs
return L_clusters
def calc_eta_phi(coords, return_stacked=True):
"""
Calculate eta and phi from cartesian coordinates
"""
x = coords[:, 0]
y = coords[:, 1]
z = coords[:, 2]
#eta, phi = torch.atan2(y, x), torch.asin(z / coords.norm(dim=1))
phi = torch.arctan2(y, x)
eta = torch.arctanh(z / torch.sqrt(x**2 + y**2 + z**2))
if not return_stacked:
return eta, phi
return torch.stack([eta, phi], dim=1)
def loss_func_aug(y_pred, y_pred_aug, batch, batch_aug, event, event_aug):
coords_pred = y_pred[:, :3]
coords_pred_aug = y_pred_aug[:, :3]
original_particle_mapping = batch_aug.original_particle_mapping
#print("N in batch:", event.pfcands.batch_number)
#print("N in batch aug:", event_aug.pfcands.batch_number)
to_add_to_batch = event.pfcands.batch_number[:-1]
aug_batch_num = event_aug.pfcands.batch_number
print("Original particle mapping: (before sum)", original_particle_mapping.tolist())
filt_idx = torch.where(original_particle_mapping != -1)[0].tolist()
for i in range(len(aug_batch_num)-1):
for item in filt_idx:
if item >= aug_batch_num[i] and item < aug_batch_num[i+1]:
assert original_particle_mapping[item] != -1, "Original particle mapping should not be -1"
assert to_add_to_batch[i] >= 0, "Batch number should be >= 0: " + str(to_add_to_batch[i])
original_particle_mapping[item] += to_add_to_batch[i] # Try this due to some indexing issues
#original_particle_mapping[aug_batch_num[i]:aug_batch_num[i+1]][filt] += to_add_to_batch[i]
#print("Original particle mapping:", original_particle_mapping[original_particle_mapping != -1])
#original_particle_mapping[original_particle_mapping != -1] += batch_idx[original_particle_mapping != -1]
if not original_particle_mapping.max() < len(coords_pred):
print("Coords shapes", coords_pred.shape, coords_pred_aug.shape)
print("Original particle mapping:", original_particle_mapping[original_particle_mapping != -1], original_particle_mapping.shape, original_particle_mapping[original_particle_mapping!=-1].max())
print("Batch number in event:", event.pfcands.batch_number)
print("Batch number in event aug:", event_aug.pfcands.batch_number)
print("Len batch", batch.input_vectors.shape, "len batch_aug", batch_aug.input_vectors.shape)
raise ValueError("Original particle mapping out of bounds")
assert original_particle_mapping.max() < len(coords_pred)
coords_pred_aug_target = coords_pred[original_particle_mapping[original_particle_mapping != -1]]
coords_pred_aug_output = coords_pred_aug[original_particle_mapping != -1]
print("Output:", coords_pred_aug_output[:5], "Target:", coords_pred_aug_target[:5])
loss = torch.nn.MSELoss()(coords_pred_aug_output, coords_pred_aug_target)
return loss
def object_condensation_loss(
batch, # input event
pred,
labels,
batch_numbers,
q_min=3.0,
frac_clustering_loss=0.1,
attr_weight=1.0,
repul_weight=1.0,
fill_loss_weight=1.0,
use_average_cc_pos=0.0,
loss_type="hgcalimplementation",
clust_space_norm="none",
dis=False,
coord_weight=0.0,
beta_type="default",
lorentz_norm=False,
spatial_part_only=False,
loss_quark_distance=False,
oc_scalars=False,
loss_obj_score=False
):
"""
:param batch: Model input
:param pred: Model output, containing regressed coordinates + betas
:param clust_space_dim: Number of dimensions in the cluster space
:return:
"""
_, S = pred.shape
noise_logits = None
if beta_type == "default":
clust_space_dim = S - 1
bj = torch.sigmoid(torch.reshape(pred[:, clust_space_dim], [-1, 1])) # betas
elif beta_type == "pt":
bj = batch.pt
clust_space_dim = S
elif beta_type == "pt+bc":
bj = batch.pt
clust_space_dim = S - 1
noise_logits = pred[:, clust_space_dim]
original_coords = batch.input_vectors
if oc_scalars:
original_coords = original_coords[:, 1:4]
if dis:
distance_threshold = torch.reshape(pred[:, -1], [-1, 1])
else:
distance_threshold = 0
xj = pred[:, :clust_space_dim] # Coordinates in clustering space
#xj = calc_eta_phi(xj)
if clust_space_norm == "twonorm":
xj = torch.nn.functional.normalize(xj, dim=1)
elif clust_space_norm == "tanh":
xj = torch.tanh(xj)
elif clust_space_norm == "none":
pass
else:
raise NotImplementedError
if not loss_quark_distance:
clustering_index_l = labels
if loss_obj_score:
clustering_index_l = labels.labels+1
a = calc_LV_Lbeta(
original_coords,
batch,
distance_threshold,
beta=bj.view(-1),
cluster_space_coords=xj, # Predicted by model
cluster_index_per_event=clustering_index_l.view(
-1
).long(), # Truth hit->cluster index
batch=batch_numbers.long(),
qmin=q_min,
attr_weight=attr_weight,
repul_weight=repul_weight,
use_average_cc_pos=use_average_cc_pos,
loss_type=loss_type,
dis=dis,
beta_type=beta_type,
noise_logits=noise_logits,
lorentz_norm=lorentz_norm,
spatial_part_only=spatial_part_only
)
loss = a["loss_potential"] + a["loss_beta"]
if coord_weight > 0:
loss += a["loss_coord"] * coord_weight
else:
# quark distance loss
target_coords = labels.labels_coordinates[labels.labels[labels.labels != -1]]
if lorentz_norm:
diff = xj[labels.labels != -1] - labels.labels_coordinates[labels.labels != -1]
norms = diff[:, :, 0]**2 - torch.sum(diff[:, :, 1:] ** 2, dim=-1)
norms = norms.abs()
else:
if spatial_part_only:
x_coords = xj[labels.labels != -1, 1:4]
x_true = target_coords[:, 1:4]
else:
x_coords = xj[labels.labels != -1]
x_true = target_coords
#norms = torch.norm(x_coords - x_true, p=2, dim=1)
# cosine similarity
norms = 2 - (torch.nn.functional.cosine_similarity(x_coords, x_true[:, 1:4], dim=1) + 1)
a = {"norms_loss": torch.mean(norms)}
loss = a["norms_loss"]
if beta_type == "pt+bc":
# TODO: polish this, it's another loss that should be computed outside calc_LV_Lbeta
assert noise_logits is not None
is_noise = labels.labels == -1
y_true_noise = 1 - is_noise.float()
num_positives = torch.sum(y_true_noise).item()
num_negatives = len(y_true_noise) - num_positives
num_all = len(y_true_noise)
# Compute weights
pos_weight = num_all / num_positives if num_positives > 0 else 0
neg_weight = num_all / num_negatives if num_negatives > 0 else 0
weight = pos_weight * y_true_noise + neg_weight * (1 - y_true_noise)
L_bc = torch.nn.BCELoss(weight=weight)(
noise_logits, 1 - is_noise.float()
)
a["loss_noise_classification"] = L_bc
if beta_type == "pt+bc":
loss += a["loss_noise_classification"]
return loss, a
|