Spaces:
Sleeping
Sleeping
File size: 1,945 Bytes
e75a247 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
import numpy as np
import matplotlib.pyplot as plt
def score_histogram(scores_true, scores_pred, ax=None, sz=10):
make_fig = ax is None
if make_fig:
fig, ax = plt.subplots(1, 1, figsize=(sz, sz))
bins = np.linspace(0, 1, 100)
pos_scores = scores_pred[scores_true == 1]
neg_scores = scores_pred[scores_true == 0]
ax.hist(pos_scores, bins=bins, histtype="step", label="Jet", color=(0, 0.5, 0))
ax.hist(neg_scores, bins=bins, histtype="step", label="Noise", color=(0.6, 0.6, 0.6))
ax.set_yscale("log")
ax.set_xlabel("Classifier score")
ax.legend()
ax.grid(1)
if make_fig:
fig.tight_layout()
return fig
from sklearn.metrics import confusion_matrix
def confusion_matrix_plot(ytrue, ypred, ax):
cm = confusion_matrix(ytrue.int(), ypred.int())
ax.imshow(cm, cmap="Blues")
ax.set_xlabel("Predicted label")
ax.set_ylabel("True label")
ax.set_xticks([0, 1])
ax.set_yticks([0, 1])
ax.set_xticklabels(["Noise", "Jet"])
ax.set_yticklabels(["Noise", "Jet"])
for i in range(2):
for j in range(2):
ax.text(j, i, cm[i, j], ha="center", va="center", color="black")
def per_pt_score_histogram(y_true, y_pred, pt):
pt_bins = [[0, 1], [1, 10], [10, 1000]]
sz = 4
fig, ax = plt.subplots(len(pt_bins), 1, figsize=(sz, sz*len(pt_bins)))
for i, (pt_min, pt_max) in enumerate(pt_bins):
mask = (pt > pt_min) & (pt < pt_max)
score_histogram(y_true[mask], y_pred[mask], ax=ax[i])
ax[i].set_title(f"pt $\in$ ({pt_min}, {pt_max})")
fig.tight_layout()
return fig
def plot_roc_curve(y_true, y_pred):
from sklearn.metrics import roc_curve
fpr, tpr, _ = roc_curve(y_true, y_pred)
fig, ax = plt.subplots(1, 1, figsize=(5, 5))
ax.plot(fpr, tpr)
ax.set_xlabel("False positive rate")
ax.set_ylabel("True positive rate")
ax.set_title("ROC curve")
ax.grid(1)
return fig
|