File size: 3,084 Bytes
e75a247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import glob
import numpy as np
import os
import shutil
from src.logger.logger import _logger


def to_filelist(args, mode="train"):
    if mode == "train":
        flist = args.data_train
    elif mode == "val":
        flist = args.data_val
    elif mode == "test":
        flist = args.data_test
    else:
        raise NotImplementedError("Invalid mode %s" % mode)
    print(flist)
    # keyword-based: 'a:/path/to/a b:/path/to/b'
    file_dict = {}
    for f in flist:
        if ":" in f:
            name, fp = f.split(":")
        else:
            name, fp = "_", f
        files = glob.glob(fp)
        if name in file_dict:
            file_dict[name] += files
        else:
            file_dict[name] = files
    # sort files
    for name, files in file_dict.items():
        file_dict[name] = sorted(files)

    if args.local_rank is not None:
        if mode == "train":
            local_world_size = int(os.environ["LOCAL_WORLD_SIZE"])
            new_file_dict = {}
            for name, files in file_dict.items():
                new_files = files[args.local_rank :: local_world_size]
                assert len(new_files) > 0
                np.random.shuffle(new_files)
                new_file_dict[name] = new_files
            file_dict = new_file_dict

    if args.copy_inputs:
        import tempfile

        tmpdir = tempfile.mkdtemp()
        if os.path.exists(tmpdir):
            shutil.rmtree(tmpdir)
        new_file_dict = {name: [] for name in file_dict}
        for name, files in file_dict.items():
            for src in files:
                dest = os.path.join(tmpdir, src.lstrip("/"))
                if not os.path.exists(os.path.dirname(dest)):
                    os.makedirs(os.path.dirname(dest), exist_ok=True)
                shutil.copy2(src, dest)
                _logger.info("Copied file %s to %s" % (src, dest))
                new_file_dict[name].append(dest)
            if len(files) != len(new_file_dict[name]):
                _logger.error(
                    "Only %d/%d files copied for %s file group %s",
                    len(new_file_dict[name]),
                    len(files),
                    mode,
                    name,
                )
        file_dict = new_file_dict

    filelist = sum(file_dict.values(), [])
    assert len(filelist) == len(set(filelist))
    return file_dict, filelist


def clear_empty_paths(dir):
    # clear the dirs in this folder that are empty (i.e. don't have any files or folders in them)
    for f in os.listdir(dir):
        if not os.path.isdir(os.path.join(dir, f)):
            continue
        if not os.listdir(os.path.join(dir, f)):
            shutil.rmtree(os.path.join(dir, f))
            _logger.info("Removed empty path %s" % f)

import io
import torch
import pickle

class CPU_Unpickler(pickle.Unpickler):
    def find_class(self, module, name):
        if module == 'torch.storage' and name == '_load_from_bytes':
            return lambda b: torch.load(io.BytesIO(b), map_location='cpu')
        else:
            return super().find_class(module, name)