File size: 37,871 Bytes
e75a247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
import os
from tqdm import tqdm
import argparse
import numpy as np
import pandas as pd
import pickle
import torch
import time
from src.utils.utils import CPU_Unpickler
from src.dataset.get_dataset import get_iter
from src.plotting.eval_matrix import matrix_plot
from src.utils.paths import get_path
from pathlib import Path
import matplotlib.pyplot as plt
from src.dataset.dataset import EventDataset

# This script attempts to open dataset files and prints the number of events in each one.
R = 0.8

parser = argparse.ArgumentParser()

parser.add_argument("--input", type=str, required=True)
parser.add_argument("--dataset-cap", type=int, default=-1)
parser.add_argument("--output", type=str, default="")
parser.add_argument("--augment-soft-particles", "-aug-soft", action="store_true")
parser.add_argument("--plot-only", action="store_true")
parser.add_argument("--jets-object", type=str, default="fatjets")
parser.add_argument("--eval-dir", type=str, default="")
parser.add_argument("--clustering-suffix", type=str, default="") # default: 1020, also want to try 1010 or others...?
parser.add_argument("--pt-jet-cutoff", type=float, default=100.0)

parser.add_argument("--high-eta-only", action="store_true") # eta > 1.5 quarks only
parser.add_argument("--low-eta-only", action="store_true") # eta < 1.5 quarks only



parser.add_argument("--parton-level", "-pl", action="store_true") # To be used together with 'fastjet_jets'
parser.add_argument("--gen-level", "-gl", action="store_true")


args = parser.parse_args()
path = get_path(args.input, "preprocessed_data")

import wandb
api = wandb.Api()

def get_run_by_name(name):
    runs = api.runs(
        path="fcc_ml/svj_clustering",
        filters={"display_name": {"$eq": name.strip()}}
    )
    runs = api.runs(
        path="fcc_ml/svj_clustering",
        filters={"display_name": {"$eq": name.strip()}}
    )

    if runs.length != 1:
        return None
    return runs[0]


def resolve_preproc_data_path(path):
    rel_path = path.split("/preprocessed_data/")[-1]
    return get_path(rel_path, "preprocessed_data")


if args.eval_dir:
    eval_dir = get_path(args.eval_dir, "results", fallback=True)
    dataset_path_to_eval_file = {}
    top_folder_name = eval_dir.split("/")[-1]
    config = get_run_by_name(top_folder_name).config
    for file in os.listdir(eval_dir):
        if file.startswith("eval_") and file.endswith(".pkl"):
            file_number = file.split("_")[1].split(".")[0]
            clustering_file = "clustering_{}.pkl".format(file_number)
            if args.clustering_suffix:
                clustering_file = "clustering_{}_{}.pkl".format(args.clustering_suffix, file_number)
            f = CPU_Unpickler(open(os.path.join(eval_dir, file), "rb")).load()
            clustering_file = os.path.join(eval_dir, clustering_file)
            if "model_cluster" in f and not args.clustering_suffix:
                clustering_file = None
            dataset_path_to_eval_file[resolve_preproc_data_path(f["filename"])] = [os.path.join(eval_dir, file), clustering_file]
    print(dataset_path_to_eval_file)

if args.output == "":
    args.output = args.input

output_path = os.path.join(get_path(args.output, "results"), "count_matched_quarks")
Path(output_path).mkdir(parents=True, exist_ok=True)

def get_bc_scores_for_jets(event):
    scores = event.pfcands.bc_scores_pfcands
    clusters = event.pfcands.bc_labels_pfcands
    selected_clusters_idx = torch.where(event.model_jets.pt > 100)[0]
    result = []
    for c in selected_clusters_idx:
        result.append(scores[clusters == c.item()])
    return result

def calculate_m(objects, mt=False):
    # set a mask returning only the two highest pt jets
    mask = objects.pt.argsort(descending=True)[:2]
    total_E = objects.E[mask].sum()
    total_pxyz = objects.pxyz[mask].sum(dim=0)
    if mt:
        return np.sqrt(total_E**2 - total_pxyz[0]**2 - total_pxyz[1]**2).item()
    return np.sqrt(total_E**2 - total_pxyz[2]**2 - total_pxyz[1]**2 - total_pxyz[0]**2).item()

thresholds = np.linspace(0.1, 1, 20)
# also add 100 points between 0 and 0.1 at the beginning
thresholds = np.concatenate([np.linspace(0, 0.1, 100), thresholds])

def get_mc_gt_per_event(event):
    # get the monte carlo GT pt for the event. This is pt of the particles closer than 0.8 to each of the dark quarks
    result = []
    dq = [event.matrix_element_gen_particles.eta, event.matrix_element_gen_particles.phi]
    for i in range(len(dq[0])):
        dq_coords = [dq[0][i], dq[1][i]]
        cone_filter = torch.sqrt((event.pfcands.eta - dq_coords[0])**2 + (event.pfcands.phi - dq_coords[1])**2) < 0.8
        #cone_filter_special = torch.sqrt(
        #    (event.special_pfcands.eta - dq_coords[0]) ** 2 + (event.special_pfcands.phi - dq_coords[1]) ** 2) < R
        eta_cone, phi_cone, pt_cone = event.pfcands.eta[cone_filter], event.pfcands.phi[cone_filter], event.pfcands.pt[cone_filter]
        px_cone = torch.sum(pt_cone * np.cos(phi_cone))
        py_cone = torch.sum(pt_cone * np.sin(phi_cone))
        pz_cone = torch.sum(pt_cone * np.sinh(eta_cone))
        pt_cone = torch.sqrt(px_cone**2 + py_cone**2)
        result.append(pt_cone.item())
    return result

if not args.plot_only:
    n_matched_quarks = {}
    unmatched_quarks = {}
    n_fake_jets = {} # Number of jets that have not been matched to a quark
    bc_scores_matched = {}
    bc_scores_unmatched = {}
    precision_and_recall = {} # Array of [n_relevant_retrieved, all_retrieved, all_relevant], or in our language, [n_matched_dark_quarks, n_jets, n_dark_quarks]
    precision_and_recall_fastjets = {}
    pr_obj_score_thresholds = {} # same as precision_and_recall, except it gives a dictionary instead of the array, and the keys are the thresholds for objectness score
    mass_resolution = {} # Contains {'m_true': [], 'm_pred': [], 'mt_true': [], 'mt_pred': []} # mt = transverse mass, m = invariant mass
    matched_jet_properties = {} # contains {'pt_gen_particle': [], 'pt_mc_truth': [], 'pt_pred': [], 'eta_gen_particle': [], 'eta_mc_truth': [], 'eta_pred': [], 'phi_gen_particle': [], 'phi_mc_truth': [], 'phi_pred': []}
    matched_jet_properties_fastjets = {}
    is_dq_matched_per_event = {}
    dq_pt_per_event = {}
    gt_pt_per_event = {}
    gt_props_per_event = {"eta": {}, "phi": {}}
    print("LISTING DIRECTORY", path, ":", os.listdir(path))
    for subdataset in os.listdir(path):
        print("-----", subdataset, "-----")
        current_path = os.path.join(path, subdataset)
        model_clusters_file = None
        model_output_file = None
        if subdataset not in precision_and_recall:
            precision_and_recall[subdataset] = [0, 0, 0]
            precision_and_recall_fastjets[subdataset] = {}
            matched_jet_properties_fastjets[subdataset] = {}
            is_dq_matched_per_event[subdataset] = []
            dq_pt_per_event[subdataset] = []
            gt_pt_per_event[subdataset] = []
            if args.jets_object == "fastjet_jets":
                is_dq_matched_per_event[subdataset] = {}
                dq_pt_per_event[subdataset] = {}
                gt_pt_per_event[subdataset] = {}
                for key in gt_props_per_event:
                    if subdataset not in gt_props_per_event[key]:
                        gt_props_per_event[key][subdataset] = {}
            else:
                for key in gt_props_per_event:
                    if subdataset not in gt_props_per_event[key]:
                        gt_props_per_event[key][subdataset] = []
            pr_obj_score_thresholds[subdataset] = {}
            for i in range(len(thresholds)):
                pr_obj_score_thresholds[subdataset][i] = [0, 0, 0]
        if subdataset not in mass_resolution:
            mass_resolution[subdataset] = {'m_true': [], 'm_pred': [], 'mt_true': [], 'mt_pred': [], 'n_jets': []}
        if args.eval_dir:
            if current_path not in dataset_path_to_eval_file:
                print("Skipping", current_path)
                print(dataset_path_to_eval_file)
                continue
            model_clusters_file = dataset_path_to_eval_file[current_path][1]
            model_output_file = dataset_path_to_eval_file[current_path][0]
        #dataset = get_iter(current_path, model_clusters_file=model_clusters_file, model_output_file=model_output_file,
        #                   include_model_jets_unfiltered=True)
        fastjet_R = None
        if args.jets_object == "fastjet_jets":
            fastjet_R = np.array([0.8])
            config = {"parton_level": args.parton_level, "gen_level": args.gen_level}
        print("Config:", config)
        dataset = EventDataset.from_directory(current_path, model_clusters_file=model_clusters_file,
                                    model_output_file=model_output_file,
                                    include_model_jets_unfiltered=True, fastjet_R=fastjet_R,
                                    parton_level=config.get("parton_level", False), gen_level=config.get("gen_level", False),
                                    aug_soft=args.augment_soft_particles, seed=1000000, pt_jet_cutoff=args.pt_jet_cutoff)
        n = 0
        for x in tqdm(range(len(dataset))):
            data = dataset[x]
            if data is None:
                print("Skipping", x)
                continue
            #try:
            #    data = dataset[x]
            #except:
            #    print("Exception")
            #    break # skip this event
            jets_object = data.__dict__[args.jets_object]
            n += 1
            if args.dataset_cap != -1 and n > args.dataset_cap:
                break
            if args.high_eta_only and torch.max(torch.abs(data.matrix_element_gen_particles.eta)) < 1.5:
                continue
            if args.low_eta_only and torch.max(torch.abs(data.matrix_element_gen_particles.eta)) > 1.5:
                continue
            if not args.jets_object == "fastjet_jets":
                jets = [jets_object.eta, jets_object.phi]
                dq = [data.matrix_element_gen_particles.eta, data.matrix_element_gen_particles.phi]
                # calculate deltaR between each jet and each quark
                distance_matrix = np.zeros((len(jets_object), len(data.matrix_element_gen_particles)))
                for i in range(len(jets_object)):
                    for j in range(len(data.matrix_element_gen_particles)):
                        deta = jets[0][i] - dq[0][j]
                        dphi = abs(jets[1][i] - dq[1][j])
                        if dphi > np.pi:
                            dphi -= 2 * np.pi #- dphi
                        distance_matrix[i, j] = np.sqrt(deta**2 + dphi**2)
                # row-wise argmin
                distance_matrix = distance_matrix.T
                #min_distance = np.min(distance_matrix, axis=1)
                n_jets = len(jets_object)
                precision_and_recall[subdataset][1] += n_jets
                precision_and_recall[subdataset][2] += len(data.matrix_element_gen_particles)
                if "obj_score" in jets_object.__dict__:
                    print("Also evaluating using objectness score")
                    for i in range(len(thresholds)):
                        filt = torch.sigmoid(jets_object.obj_score) >= thresholds[i]
                        pr_obj_score_thresholds[subdataset][i][1] += torch.sum(filt).item()
                        pr_obj_score_thresholds[subdataset][i][2] += len(data.matrix_element_gen_particles)
                mass_resolution[subdataset]['m_true'].append(calculate_m(data.matrix_element_gen_particles))
                mass_resolution[subdataset]['m_pred'].append(calculate_m(jets_object))
                mass_resolution[subdataset]['mt_true'].append(calculate_m(data.matrix_element_gen_particles, mt=True))
                mass_resolution[subdataset]['mt_pred'].append(calculate_m(jets_object, mt=True))
                mass_resolution[subdataset]['n_jets'].append(n_jets)
                if len(jets_object):
                    if subdataset not in matched_jet_properties:
                        matched_jet_properties[subdataset] = {'pt_gen_particle': [], 'pt_mc_truth': [], 'pt_pred': [],
                                                              'eta_gen_particle': [], 'eta_pred': [],
                                                              'phi_gen_particle': [], 'phi_pred': []}
                    quark_to_jet = np.min(distance_matrix, axis=1)
                    quark_to_jet_idx = np.argmin(distance_matrix, axis=1)
                    quark_to_jet[quark_to_jet > R] = -1
                    n_matched_quarks[subdataset] = n_matched_quarks.get(subdataset, []) + [np.sum(quark_to_jet != -1)]
                    n_fake_jets[subdataset] = n_fake_jets.get(subdataset, []) + [n_jets - np.sum(quark_to_jet != -1)]
                    f = quark_to_jet != -1
                    matched_jet_properties[subdataset]["pt_gen_particle"] += data.matrix_element_gen_particles.pt[f].tolist()
                    matched_jet_properties[subdataset]["pt_pred"] += jets_object.pt[quark_to_jet_idx[f]].tolist()
                    matched_jet_properties[subdataset]["eta_gen_particle"] += data.matrix_element_gen_particles.eta[f].tolist()
                    matched_jet_properties[subdataset]["eta_pred"] += jets_object.eta[quark_to_jet_idx[f]].tolist()
                    matched_jet_properties[subdataset]["phi_gen_particle"] += data.matrix_element_gen_particles.phi[f].tolist()
                    matched_jet_properties[subdataset]["phi_pred"] += jets_object.phi[quark_to_jet_idx[f]].tolist()
                    precision_and_recall[subdataset][0] += np.sum(quark_to_jet != -1)

                    if "obj_score" in jets_object.__dict__:
                        for i in range(len(thresholds)):
                            filt = torch.sigmoid(jets_object.obj_score) >= thresholds[i]
                            dist_matrix_filt = distance_matrix[:, filt.numpy()]
                            if filt.sum() == 0:
                                continue
                            quark_to_jet_filt = np.min(dist_matrix_filt, axis=1)
                            quark_to_jet_filt[quark_to_jet_filt > R] = -1
                            pr_obj_score_thresholds[subdataset][i][0] += np.sum(quark_to_jet_filt != -1)
                    filt = quark_to_jet == -1
                    #if args.jets_object == "model_jets":
                        #matched_jet_idx = sorted(np.argmin(distance_matrix, axis=1)[quark_to_jet != -1])
                        #unmatched_jet_idx = sorted(list(set(list(range(n_jets))) - set(matched_jet_idx)))
                        #scores = get_bc_scores_for_jets(data)
                        #for i in matched_jet_idx:
                        #    bc_scores_matched[subdataset] = bc_scores_matched.get(subdataset, []) + [torch.mean(scores[i]).item()]
                        #for i in unmatched_jet_idx:
                        #    bc_scores_unmatched[subdataset] = bc_scores_unmatched.get(subdataset, []) + [torch.mean(scores[i]).item()]
                else:
                    n_matched_quarks[subdataset] = n_matched_quarks.get(subdataset, []) + [0]
                    n_fake_jets[subdataset] = n_fake_jets.get(subdataset, []) + [n_jets]
                    filt = torch.ones(len(data.matrix_element_gen_particles)).bool()
                    quark_to_jet = torch.ones(len(data.matrix_element_gen_particles)).long() * -1
                is_dq_matched_per_event[subdataset].append(quark_to_jet.tolist())
                dq_pt_per_event[subdataset].append(data.matrix_element_gen_particles.pt.tolist())
                gt_pt_per_event[subdataset].append(get_mc_gt_per_event(data))
                gt_props_per_event["eta"][subdataset].append(data.matrix_element_gen_particles.eta.tolist())
                gt_props_per_event["phi"][subdataset].append(data.matrix_element_gen_particles.phi.tolist())
                if subdataset not in unmatched_quarks:
                    unmatched_quarks[subdataset] = {"pt": [], "eta": [], "phi": [], "pt_all": [], "frac_evt_E_matched": [], "frac_evt_E_unmatched": []}
                unmatched_quarks[subdataset]["pt"] += data.matrix_element_gen_particles.pt[filt].tolist()
                unmatched_quarks[subdataset]["pt_all"] += data.matrix_element_gen_particles.pt.tolist()
                unmatched_quarks[subdataset]["eta"] += data.matrix_element_gen_particles.eta[filt].tolist()
                unmatched_quarks[subdataset]["phi"] += data.matrix_element_gen_particles.phi[filt].tolist()
                visible_E_event = torch.sum(data.pfcands.E) #+ torch.sum(data.special_pfcands.E)
                matched_quarks = np.where(quark_to_jet != -1)[0]
                for i in range(len(data.matrix_element_gen_particles)):
                    dq_coords = [dq[0][i], dq[1][i]]
                    cone_filter = torch.sqrt((data.pfcands.eta - dq_coords[0])**2 + (data.pfcands.phi - dq_coords[1])**2) < R
                    #cone_filter_special = torch.sqrt(
                    #    (data.special_pfcands.eta - dq_coords[0]) ** 2 + (data.special_pfcands.phi - dq_coords[1]) ** 2) < R
                    E_in_cone = data.pfcands.E[cone_filter].sum()# + data.special_pfcands.E[cone_filter_special].sum()
                    if i in matched_quarks:
                        unmatched_quarks[subdataset]["frac_evt_E_matched"].append(E_in_cone / visible_E_event)
                    else:
                        unmatched_quarks[subdataset]["frac_evt_E_unmatched"].append(E_in_cone / visible_E_event)
                #print("Number of matched quarks:", np.sum(quark_to_jet != -1))
            else:
                for key in jets_object:
                    jets = [jets_object[key].eta, jets_object[key].phi]
                    dq = [data.matrix_element_gen_particles.eta, data.matrix_element_gen_particles.phi]
                    # calculate deltaR between each jet and each quark
                    distance_matrix = np.zeros((len(jets_object[key]), len(data.matrix_element_gen_particles)))
                    for i in range(len(jets_object[key])):
                        for j in range(len(data.matrix_element_gen_particles)):
                            deta = jets[0][i] - dq[0][j]
                            dphi = abs(jets[1][i] - dq[1][j])
                            if dphi > np.pi:
                                dphi -= 2 * np.pi
                            #elif dphi < -np.pi:
                            #    dphi += 2 * np.pi
                            assert abs(dphi) <= np.pi, "dphi is not in [-pi, pi] range: {}".format(dphi)
                            distance_matrix[i, j] = np.sqrt(deta ** 2 + dphi ** 2)
                    # Row-wise argmin
                    distance_matrix = distance_matrix.T
                    # min_distance = np.min(distance_matrix, axis=1)
                    n_jets = len(jets_object[key])
                    if key not in precision_and_recall_fastjets[subdataset]:
                        precision_and_recall_fastjets[subdataset][key] = [0, 0, 0]
                    if key not in matched_jet_properties_fastjets[subdataset]:
                        is_dq_matched_per_event[subdataset][key] = []
                        dq_pt_per_event[subdataset][key] = []
                        gt_pt_per_event[subdataset][key] = []
                        for prop in gt_props_per_event:
                            if key not in gt_props_per_event[prop][subdataset]:
                                gt_props_per_event[prop][subdataset][key] = []
                        matched_jet_properties_fastjets[subdataset][key] = {"pt_gen_particle": [], "pt_pred": [],
                                                                            "eta_gen_particle": [], "eta_pred": [],
                                                                            "phi_gen_particle": [], "phi_pred": []}
                    precision_and_recall_fastjets[subdataset][key][1] += n_jets
                    precision_and_recall_fastjets[subdataset][key][2] += len(data.matrix_element_gen_particles)
                    if len(jets_object[key]):
                        quark_to_jet = np.min(distance_matrix, axis=1)
                        quark_to_jet_idx = np.argmin(distance_matrix, axis=1)
                        quark_to_jet[quark_to_jet > R] = -1
                        precision_and_recall_fastjets[subdataset][key][0] += np.sum(quark_to_jet != -1)
                        f = quark_to_jet != -1
                        matched_jet_properties_fastjets[subdataset][key]["pt_gen_particle"] += data.matrix_element_gen_particles.pt[f].tolist()
                        matched_jet_properties_fastjets[subdataset][key]["pt_pred"] += jets_object[key].pt[quark_to_jet_idx[f]].tolist()
                        matched_jet_properties_fastjets[subdataset][key]["eta_gen_particle"] += data.matrix_element_gen_particles.eta[f].tolist()
                        matched_jet_properties_fastjets[subdataset][key]["eta_pred"] += jets_object[key].eta[quark_to_jet_idx[f]].tolist()
                        matched_jet_properties_fastjets[subdataset][key]["phi_gen_particle"] += data.matrix_element_gen_particles.phi[f].tolist()
                        matched_jet_properties_fastjets[subdataset][key]["phi_pred"] += jets_object[key].phi[quark_to_jet_idx[f]].tolist()
                    else:
                        quark_to_jet = torch.ones(len(data.matrix_element_gen_particles)).long() * -1
                    is_dq_matched_per_event[subdataset][key].append(quark_to_jet.tolist())
                    dq_pt_per_event[subdataset][key].append(data.matrix_element_gen_particles.pt.tolist())
                    gt_pt_per_event[subdataset][key].append(get_mc_gt_per_event(data))
                    gt_props_per_event["eta"][subdataset][key].append(data.matrix_element_gen_particles.eta.tolist())
                    gt_props_per_event["phi"][subdataset][key].append(data.matrix_element_gen_particles.phi.tolist())
    avg_n_matched_quarks = {}
    avg_n_fake_jets = {}
    for key in n_matched_quarks:
        avg_n_matched_quarks[key] = np.mean(n_matched_quarks[key])
        avg_n_fake_jets[key] = np.mean(n_fake_jets[key])
    def get_properties(name):
        if "qcd" in name.lower():
            print("QCD file! Not using mMed, mDark, rinv")
            return 0, 0, 0
        # get mediator mass, dark quark mass, r_inv from the filename
        parts = name.strip().strip("/").split("/")[-1].split("_")
        try:
            mMed = int(parts[1].split("-")[1])
            mDark = int(parts[2].split("-")[1])
            rinv = float(parts[3].split("-")[1])
        except:
            # another convention
            mMed = int(parts[2].split("-")[1])
            mDark = int(parts[3].split("-")[1])
            rinv = float(parts[4].split("-")[1])
        return mMed, mDark, rinv
    result = {}
    result_unmatched = {}
    result_fakes = {}
    result_bc = {}
    result_PR = {}
    result_PR_AKX = {}
    result_PR_thresholds = {}
    result_m = {}
    result_jet_properties = {}
    result_jet_properties_AKX = {}
    result_quark_to_jet ={}
    result_pt_mc_gt = {}
    result_pt_dq = {}
    result_props_dq = {"eta": {}, "phi": {}}
    if args.jets_object != "fastjet_jets":
        for key in avg_n_matched_quarks:
            mMed, mDark, rinv = get_properties(key)
            if mMed not in result:
                result[mMed] = {}
                result_unmatched[mMed] = {}
                result_fakes[mMed] = {}
                result_bc[mMed] = {}
                result_PR[mMed] = {}
                result_PR_AKX[mMed] = {}
                result_PR_thresholds[mMed] = {}
                result_m[mMed] = {}
                result_jet_properties[mMed] = {}
                result_jet_properties_AKX[mMed] = {}
                result_quark_to_jet[mMed] = {}
                result_pt_mc_gt[mMed] = {}
                result_pt_dq[mMed] = {}
                for prop in gt_props_per_event:
                    if mMed not in result_props_dq[prop]:
                        result_props_dq[prop][mMed] = {}
            if mDark not in result[mMed]:
                result[mMed][mDark] = {}
                result_unmatched[mMed][mDark] = {}
                result_fakes[mMed][mDark] = {}
                result_bc[mMed][mDark] = {}
                result_PR[mMed][mDark] = {}
                result_PR_thresholds[mMed][mDark] = {}
                result_PR_AKX[mMed][mDark] = {}
                result_m[mMed][mDark] = {}
                result_jet_properties[mMed][mDark] = {}
                result_jet_properties_AKX[mMed][mDark] = {}
                result_quark_to_jet[mMed][mDark] = {}
                result_pt_mc_gt[mMed][mDark] = {}
                result_pt_dq[mMed][mDark] = {}
                for prop in gt_props_per_event:
                    if mDark not in result_props_dq[prop][mMed]:
                        result_props_dq[prop][mMed][mDark] = {}
            result[mMed][mDark][rinv] = avg_n_matched_quarks[key]
            result_unmatched[mMed][mDark][rinv] = unmatched_quarks[key]
            result_fakes[mMed][mDark][rinv] = avg_n_fake_jets[key]
            result_jet_properties[mMed][mDark][rinv] = matched_jet_properties[key]
            result_quark_to_jet[mMed][mDark][rinv] = is_dq_matched_per_event[key]
            result_pt_mc_gt[mMed][mDark][rinv] = gt_pt_per_event[key]
            result_pt_dq[mMed][mDark][rinv] = dq_pt_per_event[key]
            for prop in gt_props_per_event:
                result_props_dq[prop][mMed][mDark][rinv] = gt_props_per_event[prop][key]
            #result_bc[mMed][mDark][rinv] = {
            #    "matched": bc_scores_matched[key],
            #    "unmatched": bc_scores_unmatched[key]
            #}
            result_PR_thresholds[mMed][mDark][rinv] = pr_obj_score_thresholds[key]
            if  precision_and_recall[key][1] == 0 or precision_and_recall[key][2] == 0:
                result_PR[mMed][mDark][rinv] = [0, 0]
                print(mMed, mDark, rinv)
                print("PR zero", key, precision_and_recall[key])
            else:
                result_PR[mMed][mDark][rinv] = [precision_and_recall[key][0] / precision_and_recall[key][1], precision_and_recall[key][0] / precision_and_recall[key][2]]
            result_m[mMed][mDark][rinv] = {key: np.array(val) for key, val in mass_resolution[key].items()}
            if args.jets_object == "fastjet_jets":
                r = precision_and_recall_fastjets[key]
                if rinv not in result_PR_AKX[mMed][mDark]:
                    result_PR_AKX[mMed][mDark][rinv] = {}
                for k in r:
                    if r[k][1] == 0 or r[k][2] == 0:
                        result_PR_AKX[mMed][mDark][rinv][k] = [0, 0]
                    else:
                        result_PR_AKX[mMed][mDark][rinv][k] = [r[k][0] / r[k][1], r[k][0] / r[k][2]]
    else:
        for key in precision_and_recall_fastjets: # key=radius of AK
            mMed, mDark, rinv = get_properties(key)
            if mMed not in result_PR_AKX:
                result_PR_AKX[mMed] = {}
                result_jet_properties_AKX[mMed] = {}
                result_quark_to_jet[mMed] = {}
                result_pt_mc_gt[mMed] = {}
                result_pt_dq[mMed] = {}
                for prop in result_props_dq:
                    result_props_dq[prop][mMed] = {}
            if mDark not in result_PR_AKX[mMed]:
                result_PR_AKX[mMed][mDark] = {}
                result_jet_properties_AKX[mMed][mDark] = {}
                result_quark_to_jet[mMed][mDark] = {}
                result_pt_mc_gt[mMed][mDark] = {}
                result_pt_dq[mMed][mDark] = {}
                for prop in result_props_dq:
                    result_props_dq[prop][mMed][mDark] = {}
            r = precision_and_recall_fastjets[key]
            if rinv not in result_PR_AKX[mMed][mDark]:
                result_PR_AKX[mMed][mDark][rinv] = {}
                result_jet_properties_AKX[mMed][mDark][rinv] = {}
                result_quark_to_jet[mMed][mDark][rinv] = {}
                result_pt_mc_gt[mMed][mDark][rinv] = {}
                result_pt_dq[mMed][mDark][rinv] = {}
                for prop in result_props_dq:
                    result_props_dq[prop][mMed][mDark][rinv] = {}
            for k in r:
                result_quark_to_jet[mMed][mDark][rinv][k] = is_dq_matched_per_event[key][k]
                result_pt_mc_gt[mMed][mDark][rinv][k] = gt_pt_per_event[key][k]
                result_pt_dq[mMed][mDark][rinv][k] = dq_pt_per_event[key][k]
                for prop in result_props_dq:
                    result_props_dq[prop][mMed][mDark][rinv][k] = gt_props_per_event[prop][key][k]
                result_jet_properties_AKX[mMed][mDark][rinv][k] = matched_jet_properties_fastjets[key][k]
                if r[k][1] == 0 or r[k][2] == 0:
                    result_PR_AKX[mMed][mDark][rinv][k] = [0, 0]
                else:
                    result_PR_AKX[mMed][mDark][rinv][k] = [r[k][0] / r[k][1], r[k][0] / r[k][2]]
    pickle.dump(result_quark_to_jet, open(os.path.join(output_path, "result_quark_to_jet.pkl"), "wb"))
    pickle.dump(result_pt_mc_gt, open(os.path.join(output_path, "result_pt_mc_gt.pkl"), "wb"))
    pickle.dump(result_pt_dq, open(os.path.join(output_path, "result_pt_dq.pkl"), "wb"))
    pickle.dump(result, open(os.path.join(output_path, "result.pkl"), "wb"))
    pickle.dump(result_unmatched, open(os.path.join(output_path, "result_unmatched.pkl"), "wb"))
    pickle.dump(result_fakes, open(os.path.join(output_path, "result_fakes.pkl"), "wb"))
    pickle.dump(result_bc, open(os.path.join(output_path, "result_bc.pkl"), "wb"))
    pickle.dump(result_props_dq, open(os.path.join(output_path, "result_props_dq.pkl"), "wb"))
    if args.jets_object == "fastjet_jets":
        pickle.dump(result_PR_AKX, open(os.path.join(output_path, "result_PR_AKX.pkl"), "wb"))
        pickle.dump(result_jet_properties_AKX, open(os.path.join(output_path, "result_jet_properties_AKX.pkl"), "wb"))
    pickle.dump(result_PR, open(os.path.join(output_path, "result_PR.pkl"), "wb"))
    pickle.dump(result_PR_thresholds, open(os.path.join(output_path, "result_PR_thresholds.pkl"), "wb"))
    pickle.dump(result_m, open(os.path.join(output_path, "result_m.pkl"), "wb"))
    pickle.dump(result_jet_properties, open(os.path.join(output_path, "result_jet_properties.pkl"), "wb"))

    with open(os.path.join(output_path, "eval_done.txt"), "w") as f:
        f.write("True")
    # Write the number of events to n_events.txt
    with open(os.path.join(output_path, "n_events.txt"), "w") as f:
        f.write(str(n))

if args.plot_only:
    result = pickle.load(open(os.path.join(output_path, "result.pkl"), "rb"))
    result_unmatched = pickle.load(open(os.path.join(output_path, "result_unmatched.pkl"), "rb"))
    result_fakes = pickle.load(open(os.path.join(output_path, "result_fakes.pkl"), "rb"))
    result_bc = pickle.load(open(os.path.join(output_path, "result_bc.pkl"), "rb"))
    result_PR = pickle.load(open(os.path.join(output_path, "result_PR.pkl"), "rb"))
    result_PR_thresholds = pickle.load(open(os.path.join(output_path, "result_PR_thresholds.pkl"), "rb"))

if args.jets_object == "fastjet_jets":
    print("Only computing fastjet jets - exiting now, the metrics have been saved to disk")
    import sys
    sys.exit(0)

fig, ax = plt.subplots(3, 1, figsize=(4, 12))

def get_plots_for_params(mMed, mDark, rInv):
    precisions = []
    recalls = []
    f1_scores = []
    for i in range(len(thresholds)):
        if result_PR_thresholds[mMed][mDark][rInv][i][1] == 0:
            precisions.append(0)
        else:
            precisions.append(result_PR_thresholds[mMed][mDark][rInv][i][0] / result_PR_thresholds[mMed][mDark][rInv][i][1])
        if result_PR_thresholds[mMed][mDark][rInv][i][2] == 0:
            recalls.append(0)
        else:
            recalls.append(result_PR_thresholds[mMed][mDark][rInv][i][0] / result_PR_thresholds[mMed][mDark][rInv][i][2])
    for i in range(len(thresholds)):
        if precisions[i] + recalls[i] == 0:
            f1_scores.append(0)
        else:
            f1_scores.append(2*precisions[i]*recalls[i] / (precisions[i] + recalls[i]))
    return precisions, recalls, f1_scores


def plot_for_params(a, b, c):
    precisions, recalls, f1_scores = get_plots_for_params(a, b, c)
    ax[0].plot(thresholds, precisions, ".--", label=f"mMed={a},rInv={c}")
    ax[1].plot(thresholds, recalls, ".--", label=f"mMed={a},rInv={c}")
    ax[2].plot(thresholds, f1_scores, ".--", label=f"mMed={a},rInv={c}")

if "qcd" in args.input.lower():
    print("QCD dataset - not plotting thresholds")
    import sys
    sys.exit(0)

plot_for_params(900, 20, 0.3)
plot_for_params(700, 20, 0.7)
#plot_for_params(3000, 20, 0.3)
plot_for_params(900, 20, 0.7)
plot_for_params(1000, 20, 0.3)
ax[0].grid()
ax[1].grid()
ax[2].grid()
ax[0].set_ylabel("Precision")
ax[1].set_ylabel("Recall")
ax[2].set_ylabel("F1 score")
ax[0].legend()
ax[1].legend()
ax[2].legend()
ax[0].set_xscale("log")
ax[1].set_xscale("log")
ax[2].set_xscale("log")
fig.tight_layout()
fig.savefig(os.path.join(output_path, "pr_thresholds.pdf"))


matrix_plot(result, "Blues", "Avg. matched dark quarks / event").savefig(os.path.join(output_path, "avg_matched_dark_quarks.pdf"))
matrix_plot(result_fakes, "Greens", "Avg. unmatched jets / event").savefig(os.path.join(output_path, "avg_unmatched_jets.pdf"))
matrix_plot(result_PR, "Reds", "Precision (N matched dark quarks / N predicted jets)", metric_comp_func = lambda r: r[0]).savefig(os.path.join(output_path, "precision.pdf"))
matrix_plot(result_PR, "Reds", "Recall (N matched dark quarks / N dark quarks)", metric_comp_func = lambda r: r[1]).savefig(os.path.join(output_path, "recall.pdf"))
matrix_plot(result_PR, "Purples", "F_1 score", metric_comp_func = lambda r: 2 * r[0] * r[1] / (r[0] + r[1])).savefig(os.path.join(output_path, "f1_score.pdf"))

dark_masses = [20]
mediator_masses = sorted(list(result.keys()))
r_invs = sorted(list(set([rinv for mMed in result for mDark in result[mMed] for rinv in result[mMed][mDark]])))

fig, ax = plt.subplots(len(r_invs), len(mediator_masses), figsize=(3*len(mediator_masses), 3 * len(r_invs)))
for i in range(len(r_invs)):
    for j in range(len(mediator_masses)):
        data = result_unmatched[mediator_masses[j]][dark_masses[0]][r_invs[i]]["pt"]
        ax[i, j].hist(data, bins=50, histtype="step", label="Unmatched")
        ax[i, j].hist(result_unmatched[mediator_masses[j]][dark_masses[0]][r_invs[i]]["pt_all"], bins=50, histtype="step", label="All")
        ax[i, j].set_title(f"mMed = {mediator_masses[j]}, rinv = {r_invs[i]}")
        ax[i, j].set_xlabel("pt")
        ax[i, j].legend()
fig.tight_layout()
fig.savefig(os.path.join(output_path, "unmatched_dark_quarks_pt.pdf"))

fig, ax = plt.subplots(len(r_invs), len(mediator_masses), figsize=(3*len(mediator_masses), 3 * len(r_invs)))
for i in range(len(r_invs)):
    for j in range(len(mediator_masses)):
        data_x = result_unmatched[mediator_masses[j]][dark_masses[0]][r_invs[i]]["eta"]
        data_y = result_unmatched[mediator_masses[j]][dark_masses[0]][r_invs[i]]["phi"]
        # 2d histogram
        ax[i, j].hist2d(data_x, data_y, bins=10, cmap="Blues")
        ax[i, j].set_title(f"mMed = {mediator_masses[j]}, rinv = {r_invs[i]}")
        ax[i, j].set_xlabel("unmatched dark quark eta")
        ax[i, j].set_ylabel("unmatched dark quark phi")

fig.tight_layout()
fig.savefig(os.path.join(output_path, "unmatched_dark_quarks_eta_phi.pdf"))


fig, ax = plt.subplots(len(r_invs), len(mediator_masses), figsize=(3*len(mediator_masses), 3 * len(r_invs)))
for i in range(len(r_invs)):
    for j in range(len(mediator_masses)):
        data = result_unmatched[mediator_masses[j]][dark_masses[0]][r_invs[i]]["frac_evt_E_matched"]
        data_unmatched = result_unmatched[mediator_masses[j]][dark_masses[0]][r_invs[i]]["frac_evt_E_unmatched"]
        bins = np.linspace(0, 1, 100)
        ax[i, j].hist(data_unmatched, bins=bins, histtype="step", label="Unmatched")
        ax[i, j].hist(data, bins=bins, histtype="step", label="Matched")
        ax[i, j].set_title(f"mMed = {mediator_masses[j]}, rinv = {r_invs[i]}")
        ax[i, j].set_xlabel("E (R<0.8) / event E")
        ax[i, j].legend()
fig.tight_layout()
fig.savefig(os.path.join(output_path, "frac_E_in_cone.pdf"))

fig, ax = plt.subplots(len(r_invs), len(mediator_masses), figsize=(3*len(mediator_masses), 3 * len(r_invs)))
for i in range(len(r_invs)):
    for j in range(len(mediator_masses)):
        data = result_unmatched[mediator_masses[j]][dark_masses[0]][r_invs[i]]["frac_evt_E_matched"]
        data_unmatched = result_unmatched[mediator_masses[j]][dark_masses[0]][r_invs[i]]["frac_evt_E_unmatched"]
        bins = np.linspace(0, 1, 100)
        ax[i, j].hist(data_unmatched, bins=bins, histtype="step", label="Unmatched dark quark", density=True)
        ax[i, j].hist(data, bins=bins, histtype="step", label="Matched dark quark", density=True)
        ax[i, j].set_title(f"mMed = {mediator_masses[j]}, rinv = {r_invs[i]}")
        ax[i, j].set_xlabel("E (R<0.8) / event E")
        ax[i, j].legend()
fig.tight_layout()
fig.savefig(os.path.join(output_path, "frac_E_in_cone_density.pdf"))

'''
fig, ax = plt.subplots(figsize=(5, 5))
unmatched = result_bc[900][20][0.3]["unmatched"]
matched = result_bc[900][20][0.3]["matched"]
bins = np.linspace(0, 1, 100)
ax.hist(unmatched, bins=bins, histtype="step", label="Unmatched jet")
ax.hist(matched, bins=bins, histtype="step", label="Matched jet")
ax.set_title("mMed = 900, mDark = 20, rinv = 0.3")
ax.set_xlabel("BC score")
ax.set_ylabel("count")
ax.set_yscale("log")
ax.legend()
fig.tight_layout()
fig.savefig(os.path.join(output_path, "avg_scores_matched_vs_unmatched_jet.pdf"))
'''