File size: 20,633 Bytes
e75a247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
import numpy as np
import torch
from torch_scatter import scatter_add, scatter_sum
from sklearn.preprocessing import StandardScaler
from torch_scatter import scatter_sum


def get_ratios(e_hits, part_idx, y):
    """Obtain the percentage of energy of the particle present in the hits

    Args:
        e_hits (_type_): _description_
        part_idx (_type_): _description_
        y (_type_): _description_

    Returns:
        _type_: _description_
    """
    energy_from_showers = scatter_sum(e_hits, part_idx.long(), dim=0)
    # y_energy = y[:, 3]
    y_energy = y.E
    energy_from_showers = energy_from_showers[1:]
    assert len(energy_from_showers) > 0
    return (energy_from_showers.flatten() / y_energy).tolist()


def get_number_hits(e_hits, part_idx):
    number_of_hits = scatter_sum(torch.ones_like(e_hits), part_idx.long(), dim=0)
    return (number_of_hits[1:].flatten()).tolist()


def get_number_of_daughters(hit_type_feature, hit_particle_link, daughters):
    a = hit_particle_link
    b = daughters
    a_u = torch.unique(a)
    number_of_p = torch.zeros_like(a_u)
    for p, i in enumerate(a_u):
        mask2 = a == i
        number_of_p[p] = torch.sum(torch.unique(b[mask2]) != -1)
    return number_of_p


def find_mask_no_energy(
    hit_particle_link,
    hit_type_a,
    hit_energies,
    y,
    daughters,
    predict=False,
    is_Ks=False,
):
    """This function remove particles with tracks only and remove particles with low fractions
    # Remove 2212 going to multiple particles without tracks for now
    # remove particles below energy cut
    # remove particles that decayed in the tracker
    # remove particles with two tracks (due to bad tracking)
    # remove particles with daughters for the moment

    Args:
        hit_particle_link (_type_): _description_
        hit_type_a (_type_): _description_
        hit_energies (_type_): _description_
        y (_type_): _description_

    Returns:
        _type_: _description_
    """

    number_of_daughters = get_number_of_daughters(
        hit_type_a, hit_particle_link, daughters
    )
    list_p = np.unique(hit_particle_link)
    list_remove = []
    part_frac = torch.tensor(get_ratios(hit_energies, hit_particle_link, y))
    number_of_hits = get_number_hits(hit_energies, hit_particle_link)
    if predict:
        energy_cut = 0.1
        filt1 = (torch.where(part_frac >= energy_cut)[0] + 1).long().tolist()
    else:
        energy_cut = 0.01
        filt1 = (torch.where(part_frac >= energy_cut)[0] + 1).long().tolist()
    number_of_tracks = scatter_add(1 * (hit_type_a == 1), hit_particle_link.long())[1:]
    if is_Ks == False:
        for index, p in enumerate(list_p):
            mask = hit_particle_link == p
            hit_types = np.unique(hit_type_a[mask])

            if predict:
                if (
                    np.array_equal(hit_types, [0, 1])
                    or int(p) not in filt1
                    or (number_of_hits[index] < 2)
                    or (y.decayed_in_tracker[index] == 1)
                    or number_of_tracks[index] == 2
                    or number_of_daughters[index] > 1
                ):
                    list_remove.append(p)
            else:
                if (
                    np.array_equal(hit_types, [0, 1])
                    or int(p) not in filt1
                    or (number_of_hits[index] < 2)
                    or number_of_tracks[index] == 2
                    or number_of_daughters[index] > 1
                ):
                    list_remove.append(p)
    if len(list_remove) > 0:
        mask = torch.tensor(np.full((len(hit_particle_link)), False, dtype=bool))
        for p in list_remove:
            mask1 = hit_particle_link == p
            mask = mask1 + mask

    else:
        mask = np.full((len(hit_particle_link)), False, dtype=bool)

    if len(list_remove) > 0:
        mask_particles = np.full((len(list_p)), False, dtype=bool)
        for p in list_remove:
            mask_particles1 = list_p == p
            mask_particles = mask_particles1 + mask_particles

    else:
        mask_particles = np.full((len(list_p)), False, dtype=bool)
    return mask, mask_particles


class CachedIndexList:
    def __init__(self, lst):
        self.lst = lst
        self.cache = {}

    def index(self, value):
        if value in self.cache:
            return self.cache[value]
        else:
            idx = self.lst.index(value)
            self.cache[value] = idx
            return idx


def find_cluster_id(hit_particle_link):
    unique_list_particles = list(np.unique(hit_particle_link))
    if np.sum(np.array(unique_list_particles) == -1) > 0:
        unique_list_particles = torch.tensor(unique_list_particles)

        non_noise_idx = torch.where(torch.tensor(unique_list_particles) != -1)[0]
        noise_idx = torch.where(torch.tensor(unique_list_particles) == -1)[0]
        non_noise_particles = torch.tensor(unique_list_particles)[non_noise_idx]
        c_non_noise_particles = CachedIndexList(non_noise_particles.tolist())
        cluster_id = map(
            lambda x: c_non_noise_particles.index(x), hit_particle_link.tolist()
        )
        cluster_id = torch.Tensor(list(cluster_id)) + 1
        unique_list_particles[non_noise_idx] = cluster_id
        unique_list_particles[noise_idx] = 0
    else:
        c_unique_list_particles = CachedIndexList(unique_list_particles)
        cluster_id = map(
            lambda x: c_unique_list_particles.index(x), hit_particle_link.tolist()
        )
        cluster_id = torch.Tensor(list(cluster_id)) + 1
        # unique_list_particles1 = torch.unique(hit_particle_link)
        # cluster_id = torch.searchsorted(
        #     unique_list_particles1, hit_particle_link, right=False
        # )
        # cluster_id = cluster_id + 1  
    return cluster_id, unique_list_particles


def scatter_count(input: torch.Tensor):
    return scatter_add(torch.ones_like(input, dtype=torch.long), input.long())


def get_particle_features(unique_list_particles, output, prediction, connection_list):
    unique_list_particles = torch.Tensor(unique_list_particles).to(torch.int64)
    if prediction:
        number_particle_features = 12 - 2
    else:
        number_particle_features = 9 - 2
    if output["pf_features"].shape[0] == 18:
        number_particle_features += 8  # add vertex information
    features_particles = torch.permute(
        torch.tensor(
            output["pf_features"][
                2:number_particle_features, list(unique_list_particles)
            ]
        ),
        (1, 0),
    )  #
    # particle_coord are just features 10, 11, 12
    if features_particles.shape[1] == 16: # Using config with part_pxyz and part_vertex_xyz
        #print("Using config with part_pxyz and part_vertex_xyz")
        particle_coord = features_particles[:, 10:13]
        vertex_coord = features_particles[:, 13:16]
        # normalize particle coords
        particle_coord = particle_coord# / np.linalg.norm(particle_coord, axis=1).reshape(-1, 1)  # DO NOT NORMALIZE
        #particle_coord, spherical_to_cartesian(
        #    features_particles[:, 1],
        #    features_particles[:, 0],  # theta and phi are mixed!!!
        #    features_particles[:, 2],
        #    normalized=True,
        #)
    else:
        particle_coord = spherical_to_cartesian(
            features_particles[:, 1],
            features_particles[:, 0],  # theta and phi are mixed!!!
            features_particles[:, 2],
            normalized=True,
        )
        vertex_coord = torch.zeros_like(particle_coord)
    y_mass = features_particles[:, 3].view(-1).unsqueeze(1)
    y_mom = features_particles[:, 2].view(-1).unsqueeze(1)
    y_energy = torch.sqrt(y_mass**2 + y_mom**2)
    y_pid = features_particles[:, 4].view(-1).unsqueeze(1)
    if prediction:
        y_data_graph = Particles_GT(
            particle_coord,
            y_energy,
            y_mom,
            y_mass,
            y_pid,
            features_particles[:, 5].view(-1).unsqueeze(1),
            features_particles[:, 6].view(-1).unsqueeze(1),
            unique_list_particles=unique_list_particles,
            vertex=vertex_coord,
        )
    else:
        y_data_graph = Particles_GT(
            particle_coord,
            y_energy,
            y_mom,
            y_mass,
            y_pid,
            unique_list_particles=unique_list_particles,
            vertex=vertex_coord,
        )
    return y_data_graph


def modify_index_link_for_gamma_e(
    hit_type_feature, hit_particle_link, daughters, output, number_part, is_Ks=False
):
    """Split all particles that have daughters, mostly for brems and conversions but also for protons and neutrons

    Returns:
        hit_particle_link: new link
        hit_link_modified: bool for modified hits
    """
    hit_link_modified = torch.zeros_like(hit_particle_link).to(hit_particle_link.device)
    mask = hit_type_feature > 1
    a = hit_particle_link[mask]
    b = daughters[mask]
    a_u = torch.unique(a)
    number_of_p = torch.zeros_like(a_u)
    connections_list = []
    for p, i in enumerate(a_u):
        mask2 = a == i
        list_of_daugthers = torch.unique(b[mask2])
        number_of_p[p] = len(list_of_daugthers)
        if (number_of_p[p] > 1) and (torch.sum(list_of_daugthers == i) > 0):
            connections_list.append([i, torch.unique(b[mask2])])

    pid_particles = torch.tensor(output["pf_features"][6, 0:number_part])
    electron_photon_mask = (torch.abs(pid_particles[a_u.long()]) == 11) + (
        pid_particles[a_u.long()] == 22
    )
    electron_photon_mask = (
        electron_photon_mask * number_of_p > 1
    )  # electron_photon_mask *
    if is_Ks:
        index_change = a_u  # [electron_photon_mask]
    else:
        index_change = a_u[electron_photon_mask]
    for i in index_change:
        mask_n = mask * (hit_particle_link == i)
        hit_particle_link[mask_n] = daughters[mask_n]
        hit_link_modified[mask_n] = 1
    return hit_particle_link, hit_link_modified, connections_list


def get_hit_features(
    output, number_hits, prediction, number_part, hit_chis, pos_pxpy, is_Ks=False
):
    hit_particle_link = torch.tensor(output["pf_vectoronly"][0, 0:number_hits])
    if prediction:
        indx_daugthers = 3
    else:
        indx_daugthers = 3
    daughters = torch.tensor(output["pf_vectoronly"][indx_daugthers, 0:number_hits])
    if prediction:
        pandora_cluster = torch.tensor(output["pf_vectoronly"][1, 0:number_hits])
        pandora_pfo_link = torch.tensor(output["pf_vectoronly"][2, 0:number_hits])
        if is_Ks:
            pandora_mom = torch.permute(
                torch.tensor(output["pf_points_pfo"][0:3, 0:number_hits]), (1, 0)
            )
            pandora_ref_point = torch.permute(
                torch.tensor(output["pf_points_pfo"][3:, 0:number_hits]), (1, 0)
            )
        else:
            pandora_mom = None
            pandora_ref_point = None
        if is_Ks:
            pandora_cluster_energy = torch.tensor(
                output["pf_features"][9, 0:number_hits]
            )
            pfo_energy = torch.tensor(output["pf_features"][10, 0:number_hits])
            chi_squared_tracks = torch.tensor(output["pf_features"][11, 0:number_hits])
        elif hit_chis:
            pandora_cluster_energy = torch.tensor(
                output["pf_features"][-3, 0:number_hits]
            )
            pfo_energy = torch.tensor(output["pf_features"][-2, 0:number_hits])
            chi_squared_tracks = torch.tensor(output["pf_features"][-1, 0:number_hits])
        else:
            pandora_cluster_energy = torch.tensor(
                output["pf_features"][-2, 0:number_hits]
            )
            pfo_energy = torch.tensor(output["pf_features"][-1, 0:number_hits])
            chi_squared_tracks = None

    else:
        pandora_cluster = None
        pandora_pfo_link = None
        pandora_cluster_energy = None
        pfo_energy = None
        chi_squared_tracks = None
        pandora_mom = None
        pandora_ref_point = None
    # hit type
    hit_type_feature = torch.permute(
        torch.tensor(output["pf_vectors"][:, 0:number_hits]), (1, 0)
    )[:, 0].to(torch.int64)
    hit_link_modified = torch.zeros_like(hit_particle_link)
    connection_list = []
    (
        hit_particle_link,
        hit_link_modified,
        connection_list,
    ) = modify_index_link_for_gamma_e(
        hit_type_feature, hit_particle_link, daughters, output, number_part, is_Ks
    )
    cluster_id, unique_list_particles = find_cluster_id(hit_particle_link)
    # position, e, p
    pos_xyz_hits = torch.permute(
        torch.tensor(output["pf_points"][0:3, 0:number_hits]), (1, 0)
    )
    pf_features_hits = torch.permute(
        torch.tensor(output["pf_features"][0:2, 0:number_hits]), (1, 0)
    )  # removed theta, phi
    p_hits = pf_features_hits[:, 0].unsqueeze(1)
    p_hits[p_hits == -1] = 0  # correct p  of Hcal hits to be 0
    e_hits = pf_features_hits[:, 1].unsqueeze(1)
    e_hits[e_hits == -1] = 0  # correct the energy of the tracks to be 0
    if pos_pxpy:
        pos_pxpypz = torch.permute(
            torch.tensor(output["pf_points"][3:, 0:number_hits]), (1, 0)
        )
    else:
        pos_pxpypz = pos_xyz_hits
    # pos_pxpypz = pos_theta_phi
    return (
        pos_xyz_hits,
        pos_pxpypz,
        p_hits,
        e_hits,
        hit_particle_link,
        pandora_cluster,
        pandora_cluster_energy,
        pfo_energy,
        pandora_mom,
        pandora_ref_point,
        unique_list_particles,
        cluster_id,
        hit_type_feature,
        pandora_pfo_link,
        daughters,
        hit_link_modified,
        connection_list,
        chi_squared_tracks,
    )


# def theta_phi_to_pxpypz(pos_theta_phi, pt):
#     px = (pt.view(-1) * torch.cos(pos_theta_phi[:, 0])).view(-1, 1)
#     py = (pt.view(-1) * torch.sin(pos_theta_phi[:, 0])).view(-1, 1)
#     pz = (pt.view(-1) * torch.cos(pos_theta_phi[:, 1])).view(-1, 1)
#     pxpypz = torch.cat(
#         (pos_theta_phi[:, 0].view(-1, 1), pos_theta_phi[:, 1].view(-1, 1), pz), dim=1
#     )
#     return pxpypz


def standardize_coordinates(coord_cart_hits):
    if len(coord_cart_hits) == 0:
        return coord_cart_hits, None
    std_scaler = StandardScaler()
    coord_cart_hits = std_scaler.fit_transform(coord_cart_hits)
    return torch.tensor(coord_cart_hits).float(), std_scaler


def create_dif_interactions(i, j, pos, number_p):
    x_interactions = pos
    x_interactions = torch.reshape(x_interactions, [number_p, 1, 2])
    x_interactions = x_interactions.repeat(1, number_p, 1)
    xi = x_interactions[i, j, :]
    xj = x_interactions[j, i, :]
    x_interactions_m = xi - xj
    return x_interactions_m


def spherical_to_cartesian(phi, theta, r, normalized=False):
    if normalized:
        r = torch.ones_like(phi)
    x = r * torch.sin(theta) * torch.cos(phi)
    y = r * torch.sin(theta) * torch.sin(phi)
    z = r * torch.cos(theta)
    return torch.cat((x.unsqueeze(1), y.unsqueeze(1), z.unsqueeze(1)), dim=1)


def calculate_distance_to_boundary(g):
    r = 2150
    r_in_endcap = 2307
    mask_endcap = (torch.abs(g.ndata["pos_hits_xyz"][:, 2]) - r_in_endcap) > 0
    mask_barrer = ~mask_endcap
    weight = torch.ones_like(g.ndata["pos_hits_xyz"][:, 0])
    C = g.ndata["pos_hits_xyz"]
    A = torch.Tensor([0, 0, 1]).to(C.device)
    P = (
        r
        * 1
        / (torch.norm(torch.cross(A.view(1, -1), C, dim=-1), dim=1)).unsqueeze(1)
        * C
    )
    P1 = torch.abs(r_in_endcap / g.ndata["pos_hits_xyz"][:, 2].unsqueeze(1)) * C
    weight[mask_barrer] = torch.norm(P - C, dim=1)[mask_barrer]
    weight[mask_endcap] = torch.norm(P1[mask_endcap] - C[mask_endcap], dim=1)
    g.ndata["radial_distance"] = weight
    weight_ = torch.exp(-(weight / 1000))
    g.ndata["radial_distance_exp"] = weight_
    return g


class Particles_GT:
    def __init__(
        self,
        coordinates,
        energy,
        momentum,
        mass,
        pid,
        decayed_in_calo=None,
        decayed_in_tracker=None,
        batch_number=None,
        unique_list_particles=None,
        energy_corrected=None,
        vertex=None,
    ):
        self.coord = coordinates
        self.E = energy
        self.E_corrected = energy
        if energy_corrected is not None:
            self.E_corrected = energy_corrected
        if len(coordinates) != len(energy):
            print("!!!!!!!!!!!!!!!!!!!")
            raise Exception
        self.m = momentum
        self.mass = mass
        self.pid = pid
        self.vertex = vertex
        if unique_list_particles is not None:
            self.unique_list_particles = unique_list_particles
        if decayed_in_calo is not None:
            self.decayed_in_calo = decayed_in_calo
        if decayed_in_tracker is not None:
            self.decayed_in_tracker = decayed_in_tracker
        if batch_number is not None:
            self.batch_number = batch_number

    def __len__(self):
        return len(self.E)

    def mask(self, mask):
        for k in self.__dict__:
            if getattr(self, k) is not None:
                if type(getattr(self, k)) == list:
                    if getattr(self, k)[0] is not None:
                        setattr(self, k, getattr(self, k)[mask])
                else:
                    setattr(self, k, getattr(self, k)[mask])

    def copy(self):
        obj = type(self).__new__(self.__class__)
        obj.__dict__.update(self.__dict__)
        return obj

    def calculate_corrected_E(self, g, connections_list):
        for element in connections_list:
            # checked there is track
            parent_particle = element[0]
            mask_i = g.ndata["particle_number_nomap"] == parent_particle
            track_number = torch.sum(g.ndata["hit_type"][mask_i] == 1)
            if track_number > 0:
                # find index in list
                index_parent = torch.argmax(
                    1 * (self.unique_list_particles == parent_particle)
                )
                energy_daugthers = 0
                for daugther in element[1]:
                    if daugther != parent_particle:
                        if torch.sum(self.unique_list_particles == daugther) > 0:
                            index_daugthers = torch.argmax(
                                1 * (self.unique_list_particles == daugther)
                            )
                            energy_daugthers = (
                                self.E[index_daugthers] + energy_daugthers
                            )
                self.E_corrected[index_parent] = (
                    self.E_corrected[index_parent] - energy_daugthers
                )
                self.coord[index_parent] *= (1 - energy_daugthers / torch.norm(self.coord[index_parent]))

def concatenate_Particles_GT(list_of_Particles_GT):
    list_coord = [p[1].coord for p in list_of_Particles_GT]
    list_vertex = [p[1].vertex for p in list_of_Particles_GT]
    list_coord = torch.cat(list_coord, dim=0)
    list_E = [p[1].E for p in list_of_Particles_GT]
    list_E = torch.cat(list_E, dim=0)
    list_E_corr = [p[1].E_corrected for p in list_of_Particles_GT]
    list_E_corr = torch.cat(list_E_corr, dim=0)
    list_m = [p[1].m for p in list_of_Particles_GT]
    list_m = torch.cat(list_m, dim=0)
    list_mass = [p[1].mass for p in list_of_Particles_GT]
    list_mass = torch.cat(list_mass, dim=0)
    list_pid = [p[1].pid for p in list_of_Particles_GT]
    list_pid = torch.cat(list_pid, dim=0)
    if list_vertex[0] is not None:
        list_vertex = torch.cat(list_vertex, dim=0)
    if hasattr(list_of_Particles_GT[0], "decayed_in_calo"):
        list_dec_calo = [p[1].decayed_in_calo for p in list_of_Particles_GT]
        list_dec_track = [p[1].decayed_in_tracker for p in list_of_Particles_GT]
        list_dec_calo = torch.cat(list_dec_calo, dim=0)
        list_dec_track = torch.cat(list_dec_track, dim=0)
    else:
        list_dec_calo = None
        list_dec_track = None
    batch_number = add_batch_number(list_of_Particles_GT)
    return Particles_GT(
        list_coord,
        list_E,
        list_m,
        list_mass,
        list_pid,
        list_dec_calo,
        list_dec_track,
        batch_number,
        energy_corrected=list_E_corr,
        vertex=list_vertex,
    )


def add_batch_number(list_graphs):
    list_y = []
    for i, el in enumerate(list_graphs):
        y = el[1]
        batch_id = torch.ones(y.E.shape[0], 1) * i
        list_y.append(batch_id)
    list_y = torch.cat(list_y, dim=0)
    return list_y