Spaces:
Sleeping
Sleeping
File size: 28,189 Bytes
e75a247 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 |
import numpy as np
import torch
#from torch_scatter import scatter_add, scatter_sum, scatter_mean
from src.dataset.functions_data import (
get_ratios,
find_mask_no_energy,
find_cluster_id,
get_particle_features,
get_hit_features,
calculate_distance_to_boundary,
concatenate_Particles_GT,
create_noise_label,
EventJets,
EventPFCands,
EventCollection,
Event,
EventMetadataAndMET,
concat_event_collection
)
def create_inputs_from_table(
output, hits_only, prediction=False, hit_chis=False, pos_pxpy=False, is_Ks=False
):
"""Used by graph creation to get nodes and edge features
Args:
output (_type_): input from the root reading
hits_only (_type_): reading only hits or also tracks
prediction (bool, optional): if running in eval mode. Defaults to False.
Returns:
_type_: all information to construct a graph
"""
graph_empty = False
number_hits = np.int32(np.sum(output["pf_mask"][0]))
number_part = np.int32(np.sum(output["pf_mask"][1]))
(
pos_xyz_hits,
pos_pxpypz,
p_hits,
e_hits,
hit_particle_link,
pandora_cluster,
pandora_cluster_energy,
pfo_energy,
pandora_mom,
pandora_ref_point,
pandora_pid,
unique_list_particles,
cluster_id,
hit_type_feature,
pandora_pfo_link,
daughters,
hit_link_modified,
connection_list,
chi_squared_tracks,
) = get_hit_features(
output,
number_hits,
prediction,
number_part,
hit_chis=hit_chis,
pos_pxpy=pos_pxpy,
is_Ks=is_Ks,
)
# features particles
if torch.sum(torch.Tensor(unique_list_particles)>20000)>0:
graph_empty = True
else:
y_data_graph = get_particle_features(
unique_list_particles, output, prediction, connection_list
)
assert len(y_data_graph) == len(unique_list_particles)
# remove particles that have no energy, no hits or only track hits
if not is_Ks:
mask_hits, mask_particles = find_mask_no_energy(
cluster_id,
hit_type_feature,
e_hits,
y_data_graph,
daughters,
prediction,
is_Ks=is_Ks,
)
# create mapping from links to number of particles in the event
cluster_id, unique_list_particles = find_cluster_id(hit_particle_link[~mask_hits])
y_data_graph.mask(~mask_particles)
else:
mask_hits = torch.zeros_like(e_hits).bool().view(-1)
if prediction:
if is_Ks:
result = [
y_data_graph, # y_data_graph[~mask_particles],
p_hits[~mask_hits],
e_hits[~mask_hits],
cluster_id,
hit_particle_link[~mask_hits],
pos_xyz_hits[~mask_hits],
pos_pxpypz[~mask_hits],
pandora_cluster[~mask_hits],
pandora_cluster_energy[~mask_hits],
pandora_mom[~mask_hits],
pandora_ref_point[~mask_hits],
pandora_pid[~mask_hits],
pfo_energy[~mask_hits],
pandora_pfo_link[~mask_hits],
hit_type_feature[~mask_hits],
hit_link_modified[~mask_hits],
daughters[~mask_hits],
]
else:
result = [
y_data_graph, # y_data_graph[~mask_particles],
p_hits[~mask_hits],
e_hits[~mask_hits],
cluster_id,
hit_particle_link[~mask_hits],
pos_xyz_hits[~mask_hits],
pos_pxpypz[~mask_hits],
pandora_cluster[~mask_hits],
pandora_cluster_energy[~mask_hits],
pandora_mom,
pandora_ref_point,
pandora_pid,
pfo_energy[~mask_hits],
pandora_pfo_link[~mask_hits],
hit_type_feature[~mask_hits],
hit_link_modified[~mask_hits],
]
else:
result = [
y_data_graph, # y_data_graph[~mask_particles],
p_hits[~mask_hits],
e_hits[~mask_hits],
cluster_id,
hit_particle_link[~mask_hits],
pos_xyz_hits[~mask_hits],
pos_pxpypz[~mask_hits],
pandora_cluster,
pandora_cluster_energy,
pandora_mom,
pandora_ref_point,
pandora_pid,
pfo_energy,
pandora_pfo_link,
hit_type_feature[~mask_hits],
hit_link_modified[~mask_hits],
]
if hit_chis:
result.append(
chi_squared_tracks[~mask_hits],
)
else:
result.append(None)
hit_type = hit_type_feature[~mask_hits]
# if hits only remove tracks, otherwise leave tracks
if hits_only:
hit_mask = (hit_type == 0) | (hit_type == 1)
hit_mask = ~hit_mask
for i in range(1, len(result)):
if result[i] is not None:
result[i] = result[i][hit_mask]
hit_type_one_hot = torch.nn.functional.one_hot(
hit_type_feature[~mask_hits][hit_mask] - 2, num_classes=2
)
else:
# if we want the tracks keep only 1 track hit per charged particle.
hit_mask = hit_type == 10
hit_mask = ~hit_mask
for i in range(1, len(result)):
if result[i] is not None:
# if len(result[i].shape) == 2 and result[i].shape[0] == 3:
# result[i] = result[i][:, hit_mask]
# else:
# result[i] = result[i][hit_mask]
result[i] = result[i][hit_mask]
hit_type_one_hot = torch.nn.functional.one_hot(
hit_type_feature[~mask_hits][hit_mask], num_classes=5
)
result.append(hit_type_one_hot)
result.append(connection_list)
return result
if graph_empty:
return [None]
def remove_hittype0(graph):
filt = graph.ndata["hit_type"] == 0
# graph.ndata["hit_type"] -= 1
return dgl.remove_nodes(graph, torch.where(filt)[0])
def store_track_at_vertex_at_track_at_calo(graph):
# To make it compatible with clustering, remove the 0 hit type nodes and store them as pos_pxpypz_at_vertex
tracks_at_calo = graph.ndata["hit_type"] == 1
tracks_at_vertex = graph.ndata["hit_type"] == 0
part = graph.ndata["particle_number"].long()
assert (part[tracks_at_calo] == part[tracks_at_vertex]).all()
graph.ndata["pos_pxpypz_at_vertex"] = torch.zeros_like(graph.ndata["pos_pxpypz"])
graph.ndata["pos_pxpypz_at_vertex"][tracks_at_calo] = graph.ndata["pos_pxpypz"][tracks_at_vertex]
return remove_hittype0(graph)
def create_jets_outputs_Delphes2(output): # for the v2 data loading config
n_pf = int(output["n_PFCands"][0, 0])
n_genp = int(output["NParticles"][0, 0])
genp = output["GenParticles"][:, :n_genp]
pfcands = output["PFCands"][:, :n_pf]
if pfcands.shape[1] < n_pf:
n_pf = pfcands.shape[1]
pfcands = output["PFCands"][:, :n_pf]
genp = genp.T
pfcands=pfcands.T
genp_status = genp[:, 6]
genp_eta = genp[:, 0]
genp_pt = genp[:, 2]
filter_dq = genp_status == 23
genp_pid = genp[:, 4]
pfcands = EventPFCands(
pt=pfcands[:, 2],
eta=pfcands[:, 0],
phi=pfcands[:, 1],
mass=pfcands[:, 3],
charge=pfcands[:, 4],
pid=pfcands[:, 5],
pf_cand_jet_idx=[-1]*len(pfcands)
)
filter_pfcands = (pfcands.pt > 0.5) & (torch.abs(pfcands.eta) < 2.4)
pfcands.mask(filter_pfcands)
filter_partons = (genp_status >= 51) & (genp_status <= 59) & (np.abs(genp_eta) < 2.4) & (genp_pt > 0.5)
matrix_element_gen_particles = EventPFCands(
genp[filter_dq, 2],
genp[filter_dq, 0],
genp[filter_dq, 1],
genp[filter_dq, 3],
np.sign(genp[filter_dq, 4]),
genp[filter_dq, 5],
pf_cand_jet_idx=-1 * np.ones_like(genp[filter_dq, 0]),
)
parton_level_particles = EventPFCands(
genp[filter_partons, 2],
genp[filter_partons, 0],
genp[filter_partons, 1],
genp[filter_partons, 3],
np.sign(genp[filter_partons, 4]),
genp[filter_partons, 5],
pf_cand_jet_idx=-1 * np.ones_like(genp[filter_partons, 0]),
)
filter_final_gen_particles = (genp_status == 1) & (np.abs(genp_eta) < 2.4) & (genp_pt > 0.5)
final_gen_particles = EventPFCands(
genp[filter_final_gen_particles, 2],
genp[filter_final_gen_particles, 0],
genp[filter_final_gen_particles, 1],
genp[filter_final_gen_particles, 3],
np.sign(genp[filter_final_gen_particles, 4]),
genp[filter_final_gen_particles, 5],
pf_cand_jet_idx=-1 * np.ones_like(genp[filter_final_gen_particles, 0]),
)
if len(final_gen_particles) == 0:
print("No gen particles in this event?")
print(genp_status, len(genp_status))
#print(genp_eta)
return Event(pfcands=pfcands, matrix_element_gen_particles=matrix_element_gen_particles,
final_gen_particles=final_gen_particles, final_parton_level_particles=parton_level_particles)
def create_jets_outputs_Delphes(output):
n_ch = int(output["n_CH"][0, 0])
n_nh = int(output["n_NH"][0, 0])
n_photons = int(output["n_photon"][0, 0])
n_genp = int(output["NParticles"][0, 0])
ch = output["CH"][:, :n_ch]
nh = output["NH"][:, :n_nh]
photons = output["EFlowPhoton"][:, :n_photons]
genp = output["GenParticles"][:, :n_genp]
if nh.shape[1] < n_nh:
n_nh = nh.shape[1]
if ch.shape[1] < n_ch:
n_ch = ch.shape[1]
if photons.shape[1] < n_photons:
n_photons = photons.shape[1]
nh_mass = [0.135] * n_nh # pion mass hypothesis
nh_ET = nh[2, :]
nh_pt = np.sqrt(nh_ET ** 2 - np.array(nh_mass)**2)
# set nans to just et
nh_pt[np.isnan(nh_pt)] = nh_ET[np.isnan(nh_pt)]
nh_charge = [0] * n_nh
nh_pid = [2112] * n_nh
nh_jets = [-1] * n_nh
ch_charge = ch[4, :]
ch_pid = [211] * n_ch
ch_jets = [-1] * n_ch
photons_jets = [-1] * n_photons
photons_mass = [0] * n_photons
photons_charge = [0] * n_photons
photons_pid = [22] * n_photons
nh = nh.T
ch = ch.T
photons = photons.T
genp = genp.T
nh_data = EventPFCands(nh_ET, nh[:, 0], nh[:, 1], nh_mass, nh_charge, nh_pid, pf_cand_jet_idx=nh_jets)
ch_data = EventPFCands(ch[:, 2], ch[:, 0], ch[:, 1], ch[:, 3], ch_charge, ch_pid, pf_cand_jet_idx=ch_jets)
photon_data = EventPFCands(photons[:, 2], photons[:, 0], photons[:, 1], photons_mass, photons_charge,
photons_pid, pf_cand_jet_idx=photons_jets)
pfcands = concat_event_collection([nh_data, ch_data, photon_data], nobatch=1)
filter_pfcands = (pfcands.pt > 0.5) & (torch.abs(pfcands.eta) < 2.4)
pfcands.mask(filter_pfcands)
genp_status = genp[:, 6]
genp_eta = genp[:, 0]
genp_pt = genp[:, 2]
filter_dq = genp_status == 23
genp_pid = genp[:, 4]
filter_partons = (genp_status >= 51) & (genp_status <= 59) & (np.abs(genp_eta) < 2.4) & (genp_pt > 0.5)
matrix_element_gen_particles = EventPFCands(
genp[filter_dq, 2],
genp[filter_dq, 0],
genp[filter_dq, 1],
genp[filter_dq, 3],
np.sign(genp[filter_dq, 4]),
genp[filter_dq, 5],
pf_cand_jet_idx=-1 * np.ones_like(genp[filter_dq, 0]),
)
parton_level_particles = EventPFCands(
genp[filter_partons, 2],
genp[filter_partons, 0],
genp[filter_partons, 1],
genp[filter_partons, 3],
np.sign(genp[filter_partons, 4]),
genp[filter_partons, 5],
pf_cand_jet_idx=-1 * np.ones_like(genp[filter_partons, 0]),
)
filter_final_gen_particles = (genp_status == 1) & (np.abs(genp_eta) < 2.4) & (genp_pt > 0.5)
final_gen_particles = EventPFCands(
genp[filter_final_gen_particles, 2],
genp[filter_final_gen_particles, 0],
genp[filter_final_gen_particles, 1],
genp[filter_final_gen_particles, 3],
np.sign(genp[filter_final_gen_particles, 4]),
genp[filter_final_gen_particles, 5],
pf_cand_jet_idx=-1 * np.ones_like(genp[filter_final_gen_particles, 0]),
)
if len(final_gen_particles) == 0:
print("No gen particles in this event?")
print(genp_status, len(genp_status))
#print(genp_eta)
return Event(pfcands=pfcands, matrix_element_gen_particles=matrix_element_gen_particles,
final_gen_particles=final_gen_particles, final_parton_level_particles=parton_level_particles)
def create_jets_outputs(
output,
config=None,
):
n_jets = int(output["n_jets"][0, 0])
jets_data = output["jets"][:, :n_jets]
n_genjets = int(output["n_genjets"][0, 0])
genjets_data = output["genjets"][:, :n_genjets]
n_pfcands = int(output["n_pfcands"][0, 0])
n_fat_jets = int(output["n_fat_jets"][0, 0])
fat_jets_data = output["fat_jets"][:, :n_fat_jets]
#jets_data = EventJets(jets_data[:, 0], )
return jets_data, genjets_data, fat_jets_data
def create_jets_outputs_new(
output, separate_special_pfcands=False
):
print(output)
n_jets = int(output["n_jets"][0, 0])
jets_data = output["jets"][:, :n_jets]
n_genjets = int(output["n_genjets"][0, 0])
genjets_data = output["genjets"][:, :n_genjets]
n_pfcands = int(output["n_pfcands"][0, 0])
pfcands_data = output["pfcands"][:, :n_pfcands]
pfcands_jets_mapping = output["pfcands_jet_mapping"]
output_MET = output["MET"]
n_fat_jets = int(output["n_fat_jets"][0, 0])
fat_jets_data = output["fat_jets"][:, :n_fat_jets]
num_mapping = np.argmax(pfcands_jets_mapping[1]) + 1
if n_jets == 0:
num_mapping = 0
n_electrons = int(output["n_electrons"][0, 0])
electrons_data = output["electrons"][:, :n_electrons]
n_muons = int(output["n_muons"][0, 0])
muons_data = output["muons"][:, :n_muons]
n_photons = int(output["n_photons"][0, 0])
photons_data = output["photons"][:, :n_photons]
matrix_element_gen_particles_data = output["matrix_element_gen_particles"]
if "final_gen_particles" in output:
# new config
#n_final_gen_particles = int(output["n_final_gen_particles"][0, 0])
final_gen_particles_data = output["final_gen_particles"]#[:, :n_final_gen_particles]
final_parton_level_particles_data = output["final_parton_level_particles"]#[:, :n_final_gen_particles]
pfcands_jets_mapping = pfcands_jets_mapping[:, :num_mapping]
#n_offline_pfcands = int(output["n_offline_pfcands"][0, 0])
#offline_pfcands_data = output["offline_pfcands"][:, :n_offline_pfcands]
#offline_jets_mapping = output["offline_pfcands_jet_mapping"]
#num_mapping_offline = np.argmax(offline_jets_mapping[1]) + 1
#assert offline_jets_mapping[1].max() < n_offline_pfcands
if len(pfcands_jets_mapping[1]):
assert pfcands_jets_mapping[1].max() < n_pfcands
#offline_jets_mapping = offline_jets_mapping[:, :num_mapping_offline]
jets_data = jets_data.T
genjets_data = genjets_data.T
pfcands_data = pfcands_data.T
fat_jets_data = fat_jets_data.T
matrix_element_gen_particles_data = matrix_element_gen_particles_data.T
matrix_element_gen_particles_data = EventPFCands(pt=matrix_element_gen_particles_data[:, 0],
eta=matrix_element_gen_particles_data[:, 1],
phi=matrix_element_gen_particles_data[:, 2],
mass=matrix_element_gen_particles_data[:, 3],
charge=np.sign(matrix_element_gen_particles_data[:, 4]),
pid=matrix_element_gen_particles_data[:, 4],
pf_cand_jet_idx=-1*np.ones_like(matrix_element_gen_particles_data[:, 0]))
if "final_gen_particles" in output:
final_gen_particles_data = final_gen_particles_data.T
final_parton_level_particles_data = final_parton_level_particles_data.T
n_fp = torch.argmin(torch.tensor(final_gen_particles_data[:, 0])).item()
n_pp = torch.argmin(torch.tensor(final_parton_level_particles_data[:, 0])).item()
final_gen_particles_data = EventPFCands(pt=final_gen_particles_data[:n_fp, 0],
eta=final_gen_particles_data[:n_fp, 1],
phi=final_gen_particles_data[:n_fp, 2],
mass=final_gen_particles_data[:n_fp, 3],
charge=np.sign(final_gen_particles_data[:n_fp, 4]),
pid=final_gen_particles_data[:n_fp, 4],
pf_cand_jet_idx=-1*np.ones_like(final_gen_particles_data[:n_fp, 0]))
final_parton_level_particles_data = EventPFCands(pt=final_parton_level_particles_data[:n_pp, 0],
eta=final_parton_level_particles_data[:n_pp, 1],
phi=final_parton_level_particles_data[:n_pp, 2],
mass=final_parton_level_particles_data[:n_pp, 3],
charge=np.sign(final_parton_level_particles_data[:n_pp, 4]),
pid=final_parton_level_particles_data[:n_pp, 4],
pf_cand_jet_idx=-1*np.ones_like(final_parton_level_particles_data[:n_pp, 0]),
status=final_parton_level_particles_data[:n_pp, 5])
#offline_pfcands_data = offline_pfcands_data.T
electrons_data = electrons_data.T
muons_data = muons_data.T
photons_data = photons_data.T
electrons_mass = np.ones_like(electrons_data[:, 0]) * 0.511
muons_mass = np.ones_like(muons_data[:, 0]) * 105.7
photons_mass = np.zeros_like(photons_data[:, 0])
electrons_pid = np.ones_like(electrons_data[:, 0]) * 0
muons_pid = np.ones_like(muons_data[:, 0]) * 1
photons_pid = np.ones_like(photons_data[:, 0]) * 2
photons_charge = np.zeros_like(photons_data[:, 0])
electrons_data = np.column_stack((electrons_data[:, 0], electrons_data[:, 1], electrons_data[:, 2],
electrons_mass, electrons_data[:, 3], electrons_pid))
muons_data = np.column_stack((muons_data[:, 0], muons_data[:, 1], muons_data[:, 2],
muons_mass, muons_data[:, 3], muons_pid))
photons_data = np.column_stack((photons_data[:, 0], photons_data[:, 1], photons_data[:, 2],
photons_mass, photons_charge, photons_pid))
special_pfcands_data = np.concatenate((electrons_data, muons_data, photons_data), axis=0)
special_pfcands_data = torch.tensor(special_pfcands_data)
# is there
jets_data = EventJets(
jets_data[:, 0],
jets_data[:, 1],
jets_data[:, 2],
jets_data[:, 3],
#jets_data[:, 4]
)
genjets_data = EventJets(
genjets_data[:, 0],
genjets_data[:, 1],
genjets_data[:, 2],
genjets_data[:, 3],
)
fatjets_data = EventJets(
fat_jets_data[:, 0],
fat_jets_data[:, 1],
fat_jets_data[:, 2],
fat_jets_data[:, 3],
#fat_jets_data[:, 4]
)
pfcands_jets_mapping = list(pfcands_jets_mapping)
#offline_jets_mapping = list(offline_jets_mapping)
pfcands_data = EventPFCands(*[pfcands_data[:, i] for i in range(6)] + pfcands_jets_mapping)
special_pfcands_data = EventPFCands(*[special_pfcands_data[:, i] for i in range(6)], pf_cand_jet_idx=-1*torch.ones_like(special_pfcands_data[:, 0]))
if not separate_special_pfcands:
pfcands_data = concat_event_collection([pfcands_data, special_pfcands_data])
special_pfcands_data = None
MET_data = EventMetadataAndMET(pt=output_MET[0], phi=output_MET[1], scouting_trig=output_MET[2], offline_trig=output_MET[3], veto_trig=output_MET[4])
#offline_pfcands_data = EventPFCands(*[offline_pfcands_data[:, i] for i in range(6)] + offline_jets_mapping, offline=True)
kwargs = {}
if "final_gen_particles" in output:
kwargs["final_gen_particles"] = final_gen_particles_data
kwargs["final_parton_level_particles"] = final_parton_level_particles_data
return Event(jets=jets_data, genjets=genjets_data, pfcands=pfcands_data, MET=MET_data, fatjets=fatjets_data,
matrix_element_gen_particles=matrix_element_gen_particles_data, special_pfcands=special_pfcands_data,
**kwargs)
#return {
# "jets": jets_data,
# "genjets": genjets_data,
# "pfcands": pfcands_data,
# # "offline_pfcands": offline_pfcands_data
#}
def create_graph(
output,
config=None,
n_noise=0,
):
graph_empty = False
hits_only = config.graph_config.get(
"only_hits", False
) # Whether to only include hits in the graph
# standardize_coords = config.graph_config.get("standardize_coords", False)
extended_coords = config.graph_config.get("extended_coords", False)
prediction = config.graph_config.get("prediction", False)
hit_chis = config.graph_config.get("hit_chis_track", False)
pos_pxpy = config.graph_config.get("pos_pxpy", False)
is_Ks = config.graph_config.get("ks", False)
noise_class = config.graph_config.get("noise", False)
result = create_inputs_from_table(
output,
hits_only=hits_only,
prediction=prediction,
hit_chis=hit_chis,
pos_pxpy=pos_pxpy,
is_Ks=is_Ks,
)
if len(result) == 1:
graph_empty = True
g = 0
y_data_graph = 0
else:
(
y_data_graph,
p_hits,
e_hits,
cluster_id,
hit_particle_link,
pos_xyz_hits,
pos_pxpypz,
pandora_cluster,
pandora_cluster_energy,
pandora_mom,
pandora_ref_point,
pandora_pid,
pandora_pfo_energy,
pandora_pfo_link,
hit_type,
hit_link_modified,
daughters,
chi_squared_tracks,
hit_type_one_hot,
connections_list
) = result
if noise_class:
mask_loopers, mask_particles = create_noise_label(
e_hits, hit_particle_link, y_data_graph, cluster_id
)
hit_particle_link[mask_loopers] = -1
y_data_graph.mask(mask_particles)
cluster_id, unique_list_particles = find_cluster_id(hit_particle_link)
graph_coordinates = pos_xyz_hits # / 3330 # divide by detector size
graph_empty = False
g = dgl.graph(([], []))
g.add_nodes(graph_coordinates.shape[0])
if hits_only == False:
hit_features_graph = torch.cat(
(graph_coordinates, hit_type_one_hot, e_hits, p_hits), dim=1
) # dims = 8
else:
hit_features_graph = torch.cat(
(graph_coordinates, hit_type_one_hot, e_hits, p_hits), dim=1
) # dims = 9
g.ndata["h"] = hit_features_graph
g.ndata["pos_hits_xyz"] = pos_xyz_hits
g.ndata["pos_pxpypz"] = pos_pxpypz
g = calculate_distance_to_boundary(g)
g.ndata["hit_type"] = hit_type
g.ndata[
"e_hits"
] = e_hits # if no tracks this is e and if there are tracks this fills the tracks e values with p
if hit_chis:
g.ndata["chi_squared_tracks"] = chi_squared_tracks
g.ndata["particle_number"] = cluster_id
g.ndata["hit_link_modified"] = hit_link_modified
g.ndata["particle_number_nomap"] = hit_particle_link
if prediction:
g.ndata["pandora_cluster"] = pandora_cluster
g.ndata["pandora_pfo"] = pandora_pfo_link
g.ndata["pandora_cluster_energy"] = pandora_cluster_energy
g.ndata["pandora_pfo_energy"] = pandora_pfo_energy
if is_Ks:
g.ndata["pandora_momentum"] = pandora_mom
g.ndata["pandora_reference_point"] = pandora_ref_point
g.ndata["daughters"] = daughters
g.ndata["pandora_pid"] = pandora_pid
y_data_graph.calculate_corrected_E(g, connections_list)
# if is_Ks == True:
# if y_data_graph.pid.flatten().shape[0] == 4 and np.count_nonzero(y_data_graph.pid.flatten() == 22) == 4:
# graph_empty = False
# else:
# graph_empty = True
# if g.ndata["h"].shape[0] < 10 or (set(g.ndata["hit_type"].unique().tolist()) == set([0, 1]) and g.ndata["hit_type"][g.ndata["hit_type"] == 1].shape[0] < 10):
# graph_empty = True # less than 10 hits
# print("y len", len(y_data_graph))
# if is_Ks == False:
# if len(y_data_graph) < 4:
# graph_empty = True
if pos_xyz_hits.shape[0] < 10:
graph_empty = True
if graph_empty:
return [g, y_data_graph], graph_empty
# print("graph_empty",graph_empty)
g = store_track_at_vertex_at_track_at_calo(g)
if noise_class:
g = make_bad_tracks_noise_tracks(g)
return [g, y_data_graph], graph_empty
def graph_batch_func(list_graphs):
"""collator function for graph dataloader
Args:
list_graphs (list): list of graphs from the iterable dataset
Returns:
batch dgl: dgl batch of graphs
"""
list_graphs_g = [el[0] for el in list_graphs]
# list_y = add_batch_number(list_graphs)
# ys = torch.cat(list_y, dim=0)
# ys = torch.reshape(ys, [-1, list_y[0].shape[1]])
ys = concatenate_Particles_GT(list_graphs)
bg = dgl.batch(list_graphs_g)
# reindex particle number
return bg, ys
def make_bad_tracks_noise_tracks(g):
# is_chardged =scatter_add((g.ndata["hit_type"]==1).view(-1), g.ndata["particle_number"].long())[1:]
mask_hit_type_t1 = g.ndata["hit_type"]==2
mask_hit_type_t2 = g.ndata["hit_type"]==1
mask_all = mask_hit_type_t1
# the other error could come from no hits in the ECAL for a cluster
mean_pos_cluster = scatter_mean(g.ndata["pos_hits_xyz"][mask_all], g.ndata["particle_number"][mask_all].long().view(-1), dim=0)
pos_track = g.ndata["pos_hits_xyz"][mask_hit_type_t2]
particle_track = g.ndata["particle_number"][mask_hit_type_t2]
if torch.sum(g.ndata["particle_number"] == 0)==0:
#then index 1 is at 0
mean_pos_cluster = mean_pos_cluster[1:,:]
particle_track = particle_track-1
# print(mean_pos_cluster.shape, torch.unique(g.ndata["particle_number"]).shape)
# print("mean_pos_cluster", mean_pos_cluster.shape)
# print("particle_track", particle_track)
# print("pos_track", pos_track.shape)
if mean_pos_cluster.shape[0] == torch.unique(g.ndata["particle_number"]).shape:
distance_track_cluster = torch.norm(mean_pos_cluster[particle_track.long()]-pos_track,dim=1)/1000
# print("distance_track_cluster", distance_track_cluster)
bad_tracks = distance_track_cluster>0.21
index_bad_tracks = mask_hit_type_t2.nonzero().view(-1)[bad_tracks]
g.ndata["particle_number"][index_bad_tracks]= 0
return g |