File size: 28,189 Bytes
e75a247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
import numpy as np
import torch
#from torch_scatter import scatter_add, scatter_sum, scatter_mean

from src.dataset.functions_data import (
    get_ratios,
    find_mask_no_energy,
    find_cluster_id,
    get_particle_features,
    get_hit_features,
    calculate_distance_to_boundary,
    concatenate_Particles_GT,
    create_noise_label,
    EventJets,
    EventPFCands,
    EventCollection,
    Event,
    EventMetadataAndMET,
    concat_event_collection
)


def create_inputs_from_table(
    output, hits_only, prediction=False, hit_chis=False, pos_pxpy=False, is_Ks=False
):
    """Used by graph creation to get nodes and edge features

    Args:
        output (_type_): input from the root reading
        hits_only (_type_): reading only hits or also tracks
        prediction (bool, optional): if running in eval mode. Defaults to False.

    Returns:
        _type_: all information to construct a graph
    """
    graph_empty = False
    number_hits = np.int32(np.sum(output["pf_mask"][0]))
    number_part = np.int32(np.sum(output["pf_mask"][1]))
    
    (
        pos_xyz_hits,
        pos_pxpypz,
        p_hits,
        e_hits,
        hit_particle_link,
        pandora_cluster,
        pandora_cluster_energy,
        pfo_energy,
        pandora_mom,
        pandora_ref_point,
        pandora_pid, 
        unique_list_particles,
        cluster_id,
        hit_type_feature,
        pandora_pfo_link,
        daughters,
        hit_link_modified,
        connection_list,
        chi_squared_tracks,
    ) = get_hit_features(
        output,
        number_hits,
        prediction,
        number_part,
        hit_chis=hit_chis,
        pos_pxpy=pos_pxpy,
        is_Ks=is_Ks,
    )
    # features particles
    if torch.sum(torch.Tensor(unique_list_particles)>20000)>0:
        graph_empty = True
    else:
        y_data_graph = get_particle_features(
            unique_list_particles, output, prediction, connection_list
        )
        assert len(y_data_graph) == len(unique_list_particles)
        # remove particles that have no energy, no hits or only track hits
        if not is_Ks:
            mask_hits, mask_particles = find_mask_no_energy(
                cluster_id,
                hit_type_feature,
                e_hits,
                y_data_graph,
                daughters,
                prediction,
                is_Ks=is_Ks,
            )
            # create mapping from links to number of particles in the event
            cluster_id, unique_list_particles = find_cluster_id(hit_particle_link[~mask_hits])
            y_data_graph.mask(~mask_particles)
        else:
            mask_hits = torch.zeros_like(e_hits).bool().view(-1)
        if prediction:
            if is_Ks:
                result = [
                    y_data_graph,  # y_data_graph[~mask_particles],
                    p_hits[~mask_hits],
                    e_hits[~mask_hits],
                    cluster_id,
                    hit_particle_link[~mask_hits],
                    pos_xyz_hits[~mask_hits],
                    pos_pxpypz[~mask_hits],
                    pandora_cluster[~mask_hits],
                    pandora_cluster_energy[~mask_hits],
                    pandora_mom[~mask_hits],
                    pandora_ref_point[~mask_hits],
                    pandora_pid[~mask_hits],
                    pfo_energy[~mask_hits],
                    pandora_pfo_link[~mask_hits],
                    hit_type_feature[~mask_hits],
                    hit_link_modified[~mask_hits],
                    daughters[~mask_hits],
                ]
            else:
                result = [
                    y_data_graph,  # y_data_graph[~mask_particles],
                    p_hits[~mask_hits],
                    e_hits[~mask_hits],
                    cluster_id,
                    hit_particle_link[~mask_hits],
                    pos_xyz_hits[~mask_hits],
                    pos_pxpypz[~mask_hits],
                    pandora_cluster[~mask_hits],
                    pandora_cluster_energy[~mask_hits],
                    pandora_mom,
                    pandora_ref_point,
                    pandora_pid, 
                    pfo_energy[~mask_hits],
                    pandora_pfo_link[~mask_hits],
                    hit_type_feature[~mask_hits],
                    hit_link_modified[~mask_hits],
                ]
        else:
            result = [
                y_data_graph,  # y_data_graph[~mask_particles],
                p_hits[~mask_hits],
                e_hits[~mask_hits],
                cluster_id,
                hit_particle_link[~mask_hits],
                pos_xyz_hits[~mask_hits],
                pos_pxpypz[~mask_hits],
                pandora_cluster,
                pandora_cluster_energy,
                pandora_mom,
                pandora_ref_point,
                pandora_pid, 
                pfo_energy,
                pandora_pfo_link,
                hit_type_feature[~mask_hits],
                hit_link_modified[~mask_hits],
            ]
        if hit_chis:
            result.append(
                chi_squared_tracks[~mask_hits],
            )
        else:
            result.append(None)
        hit_type = hit_type_feature[~mask_hits]
        # if hits only remove tracks, otherwise leave tracks
        if hits_only:
            hit_mask = (hit_type == 0) | (hit_type == 1)
            hit_mask = ~hit_mask
            for i in range(1, len(result)):
                if result[i] is not None:
                    result[i] = result[i][hit_mask]
            hit_type_one_hot = torch.nn.functional.one_hot(
                hit_type_feature[~mask_hits][hit_mask] - 2, num_classes=2
            )

        else:
            # if we want the tracks keep only 1 track hit per charged particle.
            hit_mask = hit_type == 10
            hit_mask = ~hit_mask
            for i in range(1, len(result)):
                if result[i] is not None:
                    # if len(result[i].shape) == 2 and result[i].shape[0] == 3:
                    #     result[i] = result[i][:, hit_mask]
                    # else:
                    #     result[i] = result[i][hit_mask]
                    result[i] = result[i][hit_mask]
            hit_type_one_hot = torch.nn.functional.one_hot(
                hit_type_feature[~mask_hits][hit_mask], num_classes=5
            )
        result.append(hit_type_one_hot)
        result.append(connection_list)
        return result
    if graph_empty:
        return [None]

def remove_hittype0(graph):
    filt = graph.ndata["hit_type"] == 0
    # graph.ndata["hit_type"] -= 1
    return dgl.remove_nodes(graph, torch.where(filt)[0])

def store_track_at_vertex_at_track_at_calo(graph):
    # To make it compatible with clustering, remove the 0 hit type nodes and store them as pos_pxpypz_at_vertex
    tracks_at_calo = graph.ndata["hit_type"] == 1
    tracks_at_vertex = graph.ndata["hit_type"] == 0
    part = graph.ndata["particle_number"].long()
    assert (part[tracks_at_calo] == part[tracks_at_vertex]).all()
    graph.ndata["pos_pxpypz_at_vertex"] = torch.zeros_like(graph.ndata["pos_pxpypz"])
    graph.ndata["pos_pxpypz_at_vertex"][tracks_at_calo] = graph.ndata["pos_pxpypz"][tracks_at_vertex]
    return remove_hittype0(graph)

def create_jets_outputs_Delphes2(output): # for the v2 data loading config
    n_pf = int(output["n_PFCands"][0, 0])
    n_genp = int(output["NParticles"][0, 0])
    genp = output["GenParticles"][:, :n_genp]
    pfcands = output["PFCands"][:, :n_pf]
    if pfcands.shape[1] < n_pf:
        n_pf = pfcands.shape[1]
    pfcands = output["PFCands"][:, :n_pf]
    genp = genp.T
    pfcands=pfcands.T
    genp_status = genp[:, 6]
    genp_eta = genp[:, 0]
    genp_pt = genp[:, 2]
    filter_dq = genp_status == 23
    genp_pid = genp[:, 4]
    pfcands = EventPFCands(
        pt=pfcands[:, 2],
        eta=pfcands[:, 0],
        phi=pfcands[:, 1],
        mass=pfcands[:, 3],
        charge=pfcands[:, 4],
        pid=pfcands[:, 5],
        pf_cand_jet_idx=[-1]*len(pfcands)
    )
    filter_pfcands = (pfcands.pt > 0.5) & (torch.abs(pfcands.eta) < 2.4)
    pfcands.mask(filter_pfcands)
    filter_partons = (genp_status >= 51) & (genp_status <= 59) & (np.abs(genp_eta) < 2.4) & (genp_pt > 0.5)
    matrix_element_gen_particles = EventPFCands(
        genp[filter_dq, 2],
        genp[filter_dq, 0],
        genp[filter_dq, 1],
        genp[filter_dq, 3],
        np.sign(genp[filter_dq, 4]),
        genp[filter_dq, 5],
        pf_cand_jet_idx=-1 * np.ones_like(genp[filter_dq, 0]),
    )
    parton_level_particles = EventPFCands(
        genp[filter_partons, 2],
        genp[filter_partons, 0],
        genp[filter_partons, 1],
        genp[filter_partons, 3],
        np.sign(genp[filter_partons, 4]),
        genp[filter_partons, 5],
        pf_cand_jet_idx=-1 * np.ones_like(genp[filter_partons, 0]),
    )
    filter_final_gen_particles = (genp_status == 1) & (np.abs(genp_eta) < 2.4) & (genp_pt > 0.5)
    final_gen_particles = EventPFCands(
        genp[filter_final_gen_particles, 2],
        genp[filter_final_gen_particles, 0],
        genp[filter_final_gen_particles, 1],
        genp[filter_final_gen_particles, 3],
        np.sign(genp[filter_final_gen_particles, 4]),
        genp[filter_final_gen_particles, 5],
        pf_cand_jet_idx=-1 * np.ones_like(genp[filter_final_gen_particles, 0]),
    )
    if len(final_gen_particles) == 0:
        print("No gen particles in this event?")
        print(genp_status, len(genp_status))
        #print(genp_eta)

    return Event(pfcands=pfcands, matrix_element_gen_particles=matrix_element_gen_particles,
                 final_gen_particles=final_gen_particles, final_parton_level_particles=parton_level_particles)

def create_jets_outputs_Delphes(output):
    n_ch = int(output["n_CH"][0, 0])
    n_nh = int(output["n_NH"][0, 0])
    n_photons = int(output["n_photon"][0, 0])
    n_genp = int(output["NParticles"][0, 0])
    ch = output["CH"][:, :n_ch]
    nh = output["NH"][:, :n_nh]
    photons = output["EFlowPhoton"][:, :n_photons]
    genp = output["GenParticles"][:, :n_genp]
    if nh.shape[1] < n_nh:
        n_nh = nh.shape[1]
    if ch.shape[1] < n_ch:
        n_ch = ch.shape[1]
    if photons.shape[1] < n_photons:
        n_photons = photons.shape[1]
    nh_mass = [0.135] * n_nh # pion mass hypothesis
    nh_ET = nh[2, :]
    nh_pt = np.sqrt(nh_ET ** 2 - np.array(nh_mass)**2)
    # set nans to just et
    nh_pt[np.isnan(nh_pt)] = nh_ET[np.isnan(nh_pt)]
    nh_charge = [0] * n_nh
    nh_pid = [2112] * n_nh
    nh_jets = [-1] * n_nh
    ch_charge = ch[4, :]
    ch_pid = [211] * n_ch
    ch_jets = [-1] * n_ch
    photons_jets = [-1] * n_photons
    photons_mass = [0] * n_photons
    photons_charge = [0] * n_photons
    photons_pid = [22] * n_photons
    nh = nh.T
    ch = ch.T
    photons = photons.T
    genp = genp.T
    nh_data = EventPFCands(nh_ET, nh[:, 0], nh[:, 1], nh_mass, nh_charge, nh_pid, pf_cand_jet_idx=nh_jets)
    ch_data = EventPFCands(ch[:, 2], ch[:, 0], ch[:, 1], ch[:, 3], ch_charge, ch_pid, pf_cand_jet_idx=ch_jets)
    photon_data = EventPFCands(photons[:, 2], photons[:, 0], photons[:, 1], photons_mass, photons_charge,
                               photons_pid, pf_cand_jet_idx=photons_jets)
    pfcands = concat_event_collection([nh_data, ch_data, photon_data], nobatch=1)
    filter_pfcands = (pfcands.pt > 0.5) & (torch.abs(pfcands.eta) < 2.4)
    pfcands.mask(filter_pfcands)
    genp_status = genp[:, 6]
    genp_eta = genp[:, 0]
    genp_pt = genp[:, 2]
    filter_dq = genp_status == 23
    genp_pid = genp[:, 4]

    filter_partons = (genp_status >= 51) & (genp_status <= 59) & (np.abs(genp_eta) < 2.4) & (genp_pt > 0.5)
    matrix_element_gen_particles = EventPFCands(
        genp[filter_dq, 2],
        genp[filter_dq, 0],
        genp[filter_dq, 1],
        genp[filter_dq, 3],
        np.sign(genp[filter_dq, 4]),
        genp[filter_dq, 5],
        pf_cand_jet_idx=-1 * np.ones_like(genp[filter_dq, 0]),
    )
    parton_level_particles = EventPFCands(
        genp[filter_partons, 2],
        genp[filter_partons, 0],
        genp[filter_partons, 1],
        genp[filter_partons, 3],
        np.sign(genp[filter_partons, 4]),
        genp[filter_partons, 5],
        pf_cand_jet_idx=-1 * np.ones_like(genp[filter_partons, 0]),
    )
    filter_final_gen_particles = (genp_status == 1) & (np.abs(genp_eta) < 2.4) & (genp_pt > 0.5)
    final_gen_particles = EventPFCands(
        genp[filter_final_gen_particles, 2],
        genp[filter_final_gen_particles, 0],
        genp[filter_final_gen_particles, 1],
        genp[filter_final_gen_particles, 3],
        np.sign(genp[filter_final_gen_particles, 4]),
        genp[filter_final_gen_particles, 5],
        pf_cand_jet_idx=-1 * np.ones_like(genp[filter_final_gen_particles, 0]),
    )
    if len(final_gen_particles) == 0:
        print("No gen particles in this event?")
        print(genp_status, len(genp_status))
        #print(genp_eta)

    return Event(pfcands=pfcands, matrix_element_gen_particles=matrix_element_gen_particles,
                 final_gen_particles=final_gen_particles, final_parton_level_particles=parton_level_particles)

def create_jets_outputs(
    output,
    config=None,
):
    n_jets = int(output["n_jets"][0, 0])
    jets_data = output["jets"][:, :n_jets]
    n_genjets = int(output["n_genjets"][0, 0])
    genjets_data = output["genjets"][:, :n_genjets]
    n_pfcands = int(output["n_pfcands"][0, 0])
    n_fat_jets = int(output["n_fat_jets"][0, 0])
    fat_jets_data = output["fat_jets"][:, :n_fat_jets]
    #jets_data = EventJets(jets_data[:, 0], )
    return jets_data, genjets_data, fat_jets_data

def create_jets_outputs_new(
    output, separate_special_pfcands=False
):
    print(output)
    n_jets = int(output["n_jets"][0, 0])
    jets_data = output["jets"][:, :n_jets]
    n_genjets = int(output["n_genjets"][0, 0])
    genjets_data = output["genjets"][:, :n_genjets]
    n_pfcands = int(output["n_pfcands"][0, 0])
    pfcands_data = output["pfcands"][:, :n_pfcands]
    pfcands_jets_mapping = output["pfcands_jet_mapping"]
    output_MET = output["MET"]
    n_fat_jets = int(output["n_fat_jets"][0, 0])
    fat_jets_data = output["fat_jets"][:, :n_fat_jets]
    num_mapping = np.argmax(pfcands_jets_mapping[1]) + 1
    if n_jets == 0:
        num_mapping = 0

    n_electrons = int(output["n_electrons"][0, 0])
    electrons_data = output["electrons"][:, :n_electrons]
    n_muons = int(output["n_muons"][0, 0])
    muons_data = output["muons"][:, :n_muons]
    n_photons = int(output["n_photons"][0, 0])
    photons_data = output["photons"][:, :n_photons]
    matrix_element_gen_particles_data = output["matrix_element_gen_particles"]
    if "final_gen_particles" in output:
        # new config
        #n_final_gen_particles = int(output["n_final_gen_particles"][0, 0])
        final_gen_particles_data = output["final_gen_particles"]#[:, :n_final_gen_particles]
        final_parton_level_particles_data = output["final_parton_level_particles"]#[:, :n_final_gen_particles]

    pfcands_jets_mapping = pfcands_jets_mapping[:, :num_mapping]
    #n_offline_pfcands = int(output["n_offline_pfcands"][0, 0])
    #offline_pfcands_data = output["offline_pfcands"][:, :n_offline_pfcands]
    #offline_jets_mapping = output["offline_pfcands_jet_mapping"]
    #num_mapping_offline = np.argmax(offline_jets_mapping[1]) + 1
    #assert offline_jets_mapping[1].max() < n_offline_pfcands
    if len(pfcands_jets_mapping[1]):
        assert pfcands_jets_mapping[1].max() < n_pfcands
    #offline_jets_mapping = offline_jets_mapping[:, :num_mapping_offline]
    jets_data = jets_data.T
    genjets_data = genjets_data.T
    pfcands_data = pfcands_data.T
    fat_jets_data = fat_jets_data.T
    matrix_element_gen_particles_data = matrix_element_gen_particles_data.T
    matrix_element_gen_particles_data = EventPFCands(pt=matrix_element_gen_particles_data[:, 0],
                                                     eta=matrix_element_gen_particles_data[:, 1],
                                                     phi=matrix_element_gen_particles_data[:, 2],
                                                     mass=matrix_element_gen_particles_data[:, 3],
                                                     charge=np.sign(matrix_element_gen_particles_data[:, 4]),
                                                     pid=matrix_element_gen_particles_data[:, 4],
                                                     pf_cand_jet_idx=-1*np.ones_like(matrix_element_gen_particles_data[:, 0]))
    if "final_gen_particles" in output:
        final_gen_particles_data = final_gen_particles_data.T
        final_parton_level_particles_data = final_parton_level_particles_data.T
        n_fp = torch.argmin(torch.tensor(final_gen_particles_data[:, 0])).item()
        n_pp = torch.argmin(torch.tensor(final_parton_level_particles_data[:, 0])).item()
        final_gen_particles_data = EventPFCands(pt=final_gen_particles_data[:n_fp, 0],
                                                eta=final_gen_particles_data[:n_fp, 1],
                                                phi=final_gen_particles_data[:n_fp, 2],
                                                mass=final_gen_particles_data[:n_fp, 3],
                                                charge=np.sign(final_gen_particles_data[:n_fp, 4]),
                                                pid=final_gen_particles_data[:n_fp, 4],
                                                pf_cand_jet_idx=-1*np.ones_like(final_gen_particles_data[:n_fp, 0]))
        final_parton_level_particles_data = EventPFCands(pt=final_parton_level_particles_data[:n_pp, 0],
                                                        eta=final_parton_level_particles_data[:n_pp, 1],
                                                        phi=final_parton_level_particles_data[:n_pp, 2],
                                                        mass=final_parton_level_particles_data[:n_pp, 3],
                                                        charge=np.sign(final_parton_level_particles_data[:n_pp, 4]),
                                                        pid=final_parton_level_particles_data[:n_pp, 4],
                                                        pf_cand_jet_idx=-1*np.ones_like(final_parton_level_particles_data[:n_pp, 0]),
                                                        status=final_parton_level_particles_data[:n_pp, 5])
    #offline_pfcands_data = offline_pfcands_data.T
    electrons_data = electrons_data.T
    muons_data = muons_data.T
    photons_data = photons_data.T
    electrons_mass = np.ones_like(electrons_data[:, 0]) * 0.511
    muons_mass = np.ones_like(muons_data[:, 0]) * 105.7
    photons_mass = np.zeros_like(photons_data[:, 0])
    electrons_pid = np.ones_like(electrons_data[:, 0]) * 0
    muons_pid = np.ones_like(muons_data[:, 0]) * 1
    photons_pid = np.ones_like(photons_data[:, 0]) * 2
    photons_charge = np.zeros_like(photons_data[:, 0])
    electrons_data = np.column_stack((electrons_data[:, 0], electrons_data[:, 1], electrons_data[:, 2],
                                      electrons_mass, electrons_data[:, 3], electrons_pid))
    muons_data = np.column_stack((muons_data[:, 0], muons_data[:, 1], muons_data[:, 2],
                                    muons_mass, muons_data[:, 3], muons_pid))
    photons_data = np.column_stack((photons_data[:, 0], photons_data[:, 1], photons_data[:, 2],
                                    photons_mass, photons_charge, photons_pid))
    special_pfcands_data = np.concatenate((electrons_data, muons_data, photons_data), axis=0)
    special_pfcands_data = torch.tensor(special_pfcands_data)
    # is there
    jets_data = EventJets(
        jets_data[:, 0],
        jets_data[:, 1],
        jets_data[:, 2],
        jets_data[:, 3],
        #jets_data[:, 4]
    )
    genjets_data = EventJets(
        genjets_data[:, 0],
        genjets_data[:, 1],
        genjets_data[:, 2],
        genjets_data[:, 3],
    )
    fatjets_data = EventJets(
        fat_jets_data[:, 0],
        fat_jets_data[:, 1],
        fat_jets_data[:, 2],
        fat_jets_data[:, 3],
        #fat_jets_data[:, 4]
    )
    pfcands_jets_mapping = list(pfcands_jets_mapping)
    #offline_jets_mapping = list(offline_jets_mapping)
    pfcands_data = EventPFCands(*[pfcands_data[:, i] for i in range(6)] + pfcands_jets_mapping)
    special_pfcands_data = EventPFCands(*[special_pfcands_data[:, i] for i in range(6)], pf_cand_jet_idx=-1*torch.ones_like(special_pfcands_data[:, 0]))
    if not separate_special_pfcands:
        pfcands_data = concat_event_collection([pfcands_data, special_pfcands_data])
        special_pfcands_data = None
    MET_data = EventMetadataAndMET(pt=output_MET[0], phi=output_MET[1], scouting_trig=output_MET[2], offline_trig=output_MET[3], veto_trig=output_MET[4])
    #offline_pfcands_data = EventPFCands(*[offline_pfcands_data[:, i] for i in range(6)] + offline_jets_mapping, offline=True)
    kwargs = {}
    if "final_gen_particles" in output:
        kwargs["final_gen_particles"] = final_gen_particles_data
        kwargs["final_parton_level_particles"] = final_parton_level_particles_data
    return Event(jets=jets_data, genjets=genjets_data, pfcands=pfcands_data, MET=MET_data, fatjets=fatjets_data,
                 matrix_element_gen_particles=matrix_element_gen_particles_data, special_pfcands=special_pfcands_data,
                 **kwargs)
    #return {
    #    "jets": jets_data,
    #    "genjets": genjets_data,
    #    "pfcands": pfcands_data,
    #    # "offline_pfcands": offline_pfcands_data
    #}

def create_graph(
    output,
    config=None,
    n_noise=0,
):
    graph_empty = False
    hits_only = config.graph_config.get(
        "only_hits", False
    )  # Whether to only include hits in the graph
    # standardize_coords = config.graph_config.get("standardize_coords", False)
    extended_coords = config.graph_config.get("extended_coords", False)
    prediction = config.graph_config.get("prediction", False)
    hit_chis = config.graph_config.get("hit_chis_track", False)
    pos_pxpy = config.graph_config.get("pos_pxpy", False)
    is_Ks = config.graph_config.get("ks", False)
    noise_class = config.graph_config.get("noise", False)
    result = create_inputs_from_table(
        output,
        hits_only=hits_only,
        prediction=prediction,
        hit_chis=hit_chis,
        pos_pxpy=pos_pxpy,
        is_Ks=is_Ks,
    )
    if len(result) == 1:
        graph_empty = True
        g = 0
        y_data_graph = 0
    else:
        (
            y_data_graph,
            p_hits,
            e_hits,
            cluster_id,
            hit_particle_link,
            pos_xyz_hits,
            pos_pxpypz,
            pandora_cluster,
            pandora_cluster_energy,
            pandora_mom,
            pandora_ref_point,
            pandora_pid, 
            pandora_pfo_energy,
            pandora_pfo_link,
            hit_type,
            hit_link_modified,
            daughters, 
            chi_squared_tracks,
            hit_type_one_hot,
            connections_list
        ) = result
        if noise_class:
            mask_loopers, mask_particles = create_noise_label(
            e_hits, hit_particle_link, y_data_graph, cluster_id
            )
            hit_particle_link[mask_loopers] = -1
            y_data_graph.mask(mask_particles)
            cluster_id, unique_list_particles = find_cluster_id(hit_particle_link)
        graph_coordinates = pos_xyz_hits  # / 3330  # divide by detector size
        graph_empty = False
        g = dgl.graph(([], []))
        g.add_nodes(graph_coordinates.shape[0])
        if hits_only == False:
            hit_features_graph = torch.cat(
                (graph_coordinates, hit_type_one_hot, e_hits, p_hits), dim=1
            )  # dims = 8
        else:
            hit_features_graph = torch.cat(
                (graph_coordinates, hit_type_one_hot, e_hits, p_hits), dim=1
            )  # dims = 9

        g.ndata["h"] = hit_features_graph
        g.ndata["pos_hits_xyz"] = pos_xyz_hits
        g.ndata["pos_pxpypz"] = pos_pxpypz
        g = calculate_distance_to_boundary(g)
        g.ndata["hit_type"] = hit_type
        g.ndata[
            "e_hits"
        ] = e_hits  # if no tracks this is e and if there are tracks this fills the tracks e values with p
        if hit_chis:
            g.ndata["chi_squared_tracks"] = chi_squared_tracks
        g.ndata["particle_number"] = cluster_id
        g.ndata["hit_link_modified"] = hit_link_modified
        g.ndata["particle_number_nomap"] = hit_particle_link
        if prediction:
            g.ndata["pandora_cluster"] = pandora_cluster
            g.ndata["pandora_pfo"] = pandora_pfo_link
            g.ndata["pandora_cluster_energy"] = pandora_cluster_energy
            g.ndata["pandora_pfo_energy"] = pandora_pfo_energy
            if is_Ks:
                g.ndata["pandora_momentum"] = pandora_mom
                g.ndata["pandora_reference_point"] = pandora_ref_point
                g.ndata["daughters"] = daughters
                g.ndata["pandora_pid"] = pandora_pid
        y_data_graph.calculate_corrected_E(g, connections_list)
        # if is_Ks == True:
        #     if y_data_graph.pid.flatten().shape[0] == 4 and np.count_nonzero(y_data_graph.pid.flatten() == 22) == 4:
        #         graph_empty = False
        #     else:
        #         graph_empty = True
        #     if g.ndata["h"].shape[0] < 10 or (set(g.ndata["hit_type"].unique().tolist()) == set([0, 1]) and g.ndata["hit_type"][g.ndata["hit_type"] == 1].shape[0] < 10):
        #         graph_empty = True  # less than 10 hits
        # print("y len", len(y_data_graph))
        # if is_Ks == False:
        #     if len(y_data_graph) < 4:
        #         graph_empty = True

        if pos_xyz_hits.shape[0] < 10:
            graph_empty = True
    if graph_empty:
        return [g, y_data_graph], graph_empty
    # print("graph_empty",graph_empty)
    g = store_track_at_vertex_at_track_at_calo(g)
    if noise_class:
        g = make_bad_tracks_noise_tracks(g)
    return [g, y_data_graph], graph_empty


def graph_batch_func(list_graphs):
    """collator function for graph dataloader

    Args:
        list_graphs (list): list of graphs from the iterable dataset

    Returns:
        batch dgl: dgl batch of graphs
    """
    list_graphs_g = [el[0] for el in list_graphs]
    # list_y = add_batch_number(list_graphs)
    # ys = torch.cat(list_y, dim=0)
    # ys = torch.reshape(ys, [-1, list_y[0].shape[1]])
    ys = concatenate_Particles_GT(list_graphs)
    bg = dgl.batch(list_graphs_g)
    # reindex particle number
    return bg, ys

def make_bad_tracks_noise_tracks(g):
    # is_chardged =scatter_add((g.ndata["hit_type"]==1).view(-1), g.ndata["particle_number"].long())[1:]
    mask_hit_type_t1 = g.ndata["hit_type"]==2
    mask_hit_type_t2 = g.ndata["hit_type"]==1
    mask_all = mask_hit_type_t1
    # the other error could come from no hits in the ECAL for a cluster
    mean_pos_cluster = scatter_mean(g.ndata["pos_hits_xyz"][mask_all], g.ndata["particle_number"][mask_all].long().view(-1), dim=0)
   
    pos_track = g.ndata["pos_hits_xyz"][mask_hit_type_t2]
    particle_track = g.ndata["particle_number"][mask_hit_type_t2]
    if  torch.sum(g.ndata["particle_number"] == 0)==0:
        #then index 1 is at 0 
        mean_pos_cluster = mean_pos_cluster[1:,:]
        particle_track = particle_track-1
    # print(mean_pos_cluster.shape, torch.unique(g.ndata["particle_number"]).shape)
    # print("mean_pos_cluster", mean_pos_cluster.shape)
    # print("particle_track", particle_track)
    # print("pos_track", pos_track.shape)
    if mean_pos_cluster.shape[0] == torch.unique(g.ndata["particle_number"]).shape:
        distance_track_cluster = torch.norm(mean_pos_cluster[particle_track.long()]-pos_track,dim=1)/1000
        # print("distance_track_cluster", distance_track_cluster)
        bad_tracks = distance_track_cluster>0.21
        index_bad_tracks = mask_hit_type_t2.nonzero().view(-1)[bad_tracks]
        g.ndata["particle_number"][index_bad_tracks]= 0 
    return g