File size: 57,928 Bytes
e75a247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
import torch
import torch.nn as nn
from torch import Tensor
from torch_scatter import scatter_min, scatter_max, scatter_mean, scatter_add

from src.layers.GravNetConv import GravNetConv

from typing import Tuple, Union, List
import dgl


onehot_particles_arr = [
    -2212.0,
    -211.0,
    -14.0,
    -13.0,
    -11.0,
    11.0,
    12.0,
    13.0,
    14.0,
    22.0,
    111.0,
    130.0,
    211.0,
    2112.0,
    2212.0,
    1000010048.0,
    1000020032.0,
    1000040064.0,
    1000050112.0,
    1000060096.0,
    1000080128.0,
]
onehot_particles_arr = [int(x) for x in onehot_particles_arr]
pid_dict = {i + 1: onehot_particles_arr[i] for i in range(len(onehot_particles_arr))}
pid_dict[0] = "other"


def safe_index(arr, index):
    # One-hot index (or zero if it's not in the array)
    if index not in arr:
        return 0
    else:
        return arr.index(index) + 1


def assert_no_nans(x):
    """
    Raises AssertionError if there is a nan in the tensor
    """
    if torch.isnan(x).any():
        print(x)
    assert not torch.isnan(x).any()


# FIXME: Use a logger instead of this
DEBUG = False


def debug(*args, **kwargs):
    if DEBUG:
        print(*args, **kwargs)


def calc_energy_pred(
    batch,
    g,
    cluster_index_per_event,
    is_sig,
    q,
    beta,
    energy_correction,
    pid_results,
    hit_mom,
):
    td = 0.7
    batch_number = torch.max(batch) + 1
    energies = []
    pid_outputs = []
    momenta = []
    for i in range(0, batch_number):
        mask_batch = batch == i
        X = g.ndata["pos_hits_xyz"][mask_batch]
        cluster_index_i = cluster_index_per_event[mask_batch] - 1
        is_sig_i = is_sig[mask_batch]

        q_i = q[mask_batch]
        betas = beta[mask_batch]
        q_alpha_i, index_alpha_i = scatter_max(q_i[is_sig_i], cluster_index_i)
        n_points = betas.size(0)
        unassigned = torch.arange(n_points).to(betas.device)
        clustering = -1 * torch.ones(n_points, dtype=torch.long)
        counter = 0
        # index_alpha_i -= 1
        for index_condpoint in index_alpha_i:
            d = torch.norm(X[unassigned] - X[index_condpoint], dim=-1)
            assigned_to_this_condpoint = unassigned[d < td]
            clustering[assigned_to_this_condpoint] = counter
            unassigned = unassigned[~(d < td)]
            counter = counter + 1
        counter = 0
        for index_condpoint in index_alpha_i:
            clustering[index_condpoint] = counter
            counter = counter + 1
        if torch.sum(clustering == -1) > 0:
            clustering_ = clustering + 1
        else:
            clustering_ = clustering
        clus_values = np.unique(clustering)
        e_c = g.ndata["e_hits"][mask_batch][is_sig_i].view(-1) * energy_correction[
            mask_batch
        ][is_sig_i].view(-1)
        mom_c = hit_mom[mask_batch][is_sig_i].view(-1)
        # pid_results_i = pid_results[mask_batch][is_sig_i][index_alpha_i]
        pid_results_i = scatter_add(
            pid_results[mask_batch][is_sig_i],
            clustering_.long().to(pid_results.device),
            dim=0,
        )
        #  aggregated "PID embeddings"
        e_objects = scatter_add(e_c, clustering_.long().to(e_c.device))
        mom_objects = scatter_add(mom_c, clustering_.long().to(mom_c.device))
        e_objects = e_objects[clus_values != -1]
        pid_results_i = pid_results_i[clus_values != -1]
        mom_objects = mom_objects[clus_values != -1]
        energies.append(e_objects)
        pid_outputs.append(pid_results_i)
        momenta.append(mom_objects)
    return (
        torch.cat(energies, dim=0),
        torch.cat(pid_outputs, dim=0),
        torch.cat(momenta, dim=0),
    )


def calc_pred_pid(batch, g, cluster_index_per_event, is_sig, q, beta, pred_pid):
    outputs = []
    batch_number = torch.max(batch) + 1
    for i in range(0, batch_number):
        mask_batch = batch == i
        is_sig_i = is_sig[mask_batch]
        pid = pred_pid[mask_batch][is_sig_i].view(-1)
        outputs.append(pid)
    return torch.cat(outputs, dim=0)


def calc_LV_Lbeta(
    original_coords,
    g,
    y,
    distance_threshold,
    energy_correction,
    momentum: torch.Tensor,
    beta: torch.Tensor,
    cluster_space_coords: torch.Tensor,  # Predicted by model
    cluster_index_per_event: torch.Tensor,  # Truth hit->cluster index
    batch: torch.Tensor,
    predicted_pid: torch.Tensor,  # predicted PID embeddings - will be aggregated by summing up the clusters and applying the post_pid_pool_module MLP afterwards
    post_pid_pool_module: None,  # MLP to apply to the pooled embeddings to get the PID predictions torch.nn.Module
    # From here on just parameters
    qmin: float = 0.1,
    s_B: float = 1.0,
    noise_cluster_index: int = 0,  # cluster_index entries with this value are noise/noise
    beta_stabilizing="soft_q_scaling",
    huberize_norm_for_V_attractive=False,
    beta_term_option="paper",
    return_components=False,
    return_regression_resolution=False,
    clust_space_dim=3,
    frac_combinations=0,  # fraction of the all possible pairs to be used for the clustering loss
    attr_weight=1.0,
    repul_weight=1.0,
    fill_loss_weight=0.0,
    use_average_cc_pos=0.0,
    hgcal_implementation=False,
    hit_energies=None,
    tracking=False,
    dis = False
) -> Union[Tuple[torch.Tensor, torch.Tensor], dict]:
    """
    Calculates the L_V and L_beta object condensation losses.
    Concepts:
    - A hit belongs to exactly one cluster (cluster_index_per_event is (n_hits,)),
      and to exactly one event (batch is (n_hits,))
    - A cluster index of `noise_cluster_index` means the cluster is a noise cluster.
      There is typically one noise cluster per event. Any hit in a noise cluster
      is a 'noise hit'. A hit in an object is called a 'signal hit' for lack of a
      better term.
    - An 'object' is a cluster that is *not* a noise cluster.
    beta_stabilizing: Choices are ['paper', 'clip', 'soft_q_scaling']:
        paper: beta is sigmoid(model_output), q = beta.arctanh()**2 + qmin
        clip:  beta is clipped to 1-1e-4, q = beta.arctanh()**2 + qmin
        soft_q_scaling: beta is sigmoid(model_output), q = (clip(beta)/1.002).arctanh()**2 + qmin
    huberize_norm_for_V_attractive: Huberizes the norms when used in the attractive potential
    beta_term_option: Choices are ['paper', 'short-range-potential']:
        Choosing 'short-range-potential' introduces a short range potential around high
        beta points, acting like V_attractive.
    Note this function has modifications w.r.t. the implementation in 2002.03605:
    - The norms for V_repulsive are now Gaussian (instead of linear hinge)
    """
    # remove dummy rows added for dataloader #TODO think of better way to do this
    device = beta.device
    if torch.isnan(beta).any():
        print("There are nans in beta! L198", len(beta[torch.isnan(beta)]))

    beta = torch.nan_to_num(beta, nan=0.0)
    assert_no_nans(beta)
    # ________________________________

    # Calculate a bunch of needed counts and indices locally

    # cluster_index: unique index over events
    # E.g. cluster_index_per_event=[ 0, 0, 1, 2, 0, 0, 1], batch=[0, 0, 0, 0, 1, 1, 1]
    #      -> cluster_index=[ 0, 0, 1, 2, 3, 3, 4 ]
    cluster_index, n_clusters_per_event = batch_cluster_indices(
        cluster_index_per_event, batch
    )
    n_clusters = n_clusters_per_event.sum()
    n_hits, cluster_space_dim = cluster_space_coords.size()
    batch_size = batch.max() + 1
    n_hits_per_event = scatter_count(batch)

    # Index of cluster -> event (n_clusters,)
    batch_cluster = scatter_counts_to_indices(n_clusters_per_event)

    # Per-hit boolean, indicating whether hit is sig or noise
    is_noise = cluster_index_per_event == noise_cluster_index
    is_sig = ~is_noise
    n_hits_sig = is_sig.sum()
    n_sig_hits_per_event = scatter_count(batch[is_sig])

    # Per-cluster boolean, indicating whether cluster is an object or noise
    is_object = scatter_max(is_sig.long(), cluster_index)[0].bool()
    is_noise_cluster = ~is_object

    # FIXME: This assumes noise_cluster_index == 0!!
    # Not sure how to do this in a performant way in case noise_cluster_index != 0
    if noise_cluster_index != 0:
        raise NotImplementedError
    object_index_per_event = cluster_index_per_event[is_sig] - 1
    object_index, n_objects_per_event = batch_cluster_indices(
        object_index_per_event, batch[is_sig]
    )
    n_hits_per_object = scatter_count(object_index)
    # print("n_hits_per_object", n_hits_per_object)
    batch_object = batch_cluster[is_object]
    n_objects = is_object.sum()

    assert object_index.size() == (n_hits_sig,)
    assert is_object.size() == (n_clusters,)
    assert torch.all(n_hits_per_object > 0)
    assert object_index.max() + 1 == n_objects

    # ________________________________
    # L_V term

    # Calculate q
    if hgcal_implementation:
        q = (beta.arctanh() / 1.01) ** 2 + qmin
    elif beta_stabilizing == "paper":
        q = beta.arctanh() ** 2 + qmin
    elif beta_stabilizing == "clip":
        beta = beta.clip(0.0, 1 - 1e-4)
        q = beta.arctanh() ** 2 + qmin
    elif beta_stabilizing == "soft_q_scaling":
        q = (beta.clip(0.0, 1 - 1e-4) / 1.002).arctanh() ** 2 + qmin
    else:
        raise ValueError(f"beta_stablizing mode {beta_stabilizing} is not known")
    assert_no_nans(q)
    assert q.device == device
    assert q.size() == (n_hits,)

    # Calculate q_alpha, the max q per object, and the indices of said maxima
    # assert hit_energies.shape == q.shape
    # q_alpha, index_alpha = scatter_max(hit_energies[is_sig], object_index)
    q_alpha, index_alpha = scatter_max(q[is_sig], object_index)
    assert q_alpha.size() == (n_objects,)

    # Get the cluster space coordinates and betas for these maxima hits too
    x_alpha = cluster_space_coords[is_sig][index_alpha]
    x_alpha_original = original_coords[is_sig][index_alpha]
    if use_average_cc_pos > 0:
        #! this is a func of beta and q so maybe we could also do it with only q
        x_alpha_sum = scatter_add(
            q[is_sig].view(-1, 1).repeat(1, 3) * cluster_space_coords[is_sig],
            object_index,
            dim=0,
        )  # * beta[is_sig].view(-1, 1).repeat(1, 3)
        qbeta_alpha_sum = scatter_add(q[is_sig], object_index) + 1e-9  # * beta[is_sig]
        div_fac = 1 / qbeta_alpha_sum
        div_fac = torch.nan_to_num(div_fac, nan=0)
        x_alpha_mean = torch.mul(x_alpha_sum, div_fac.view(-1, 1).repeat(1, 3))
        x_alpha = use_average_cc_pos * x_alpha_mean + (1 - use_average_cc_pos) * x_alpha
    if dis:
        phi_sum = scatter_add(
            beta[is_sig].view(-1) * distance_threshold[is_sig].view(-1),
            object_index,
            dim=0,
        ) 
        phi_alpha_sum = scatter_add(beta[is_sig].view(-1), object_index) + 1e-9
        phi_alpha = phi_sum/phi_alpha_sum 

    beta_alpha = beta[is_sig][index_alpha]
    assert x_alpha.size() == (n_objects, cluster_space_dim)
    assert beta_alpha.size() == (n_objects,)

    if not tracking:
        positions_particles_pred = g.ndata["pos_hits_xyz"][is_sig][index_alpha]
        positions_particles_pred = (
            positions_particles_pred + distance_threshold[is_sig][index_alpha]
        )

        # e_particles_pred = g.ndata["e_hits"][is_sig][index_alpha]
        # e_particles_pred = e_particles_pred * energy_correction[is_sig][index_alpha]
        # particles pred updated to follow end-to-end paper approach, sum the particles in the object and multiply by the correction factor of alpha (the cluster center)
        # e_particles_pred = (scatter_add(g.ndata["e_hits"][is_sig].view(-1), object_index)*energy_correction[is_sig][index_alpha].view(-1)).view(-1,1)
        e_particles_pred, pid_particles_pred, mom_particles_pred = calc_energy_pred(
            batch,
            g,
            cluster_index_per_event,
            is_sig,
            q,
            beta,
            energy_correction,
            predicted_pid,
            momentum,
        )

    if fill_loss_weight > 0:
        fill_loss = fill_loss_weight * LLFillSpace()(cluster_space_coords, batch)
    else:
        fill_loss = 0
    # pid_particles_pred = post_pid_pool_module(
    #     pid_particles_pred
    # )  # Project the pooled PID embeddings to the final "one hot encoding" space
    # pid_particles_pred = calc_pred_pid(
    #    batch, g, cluster_index_per_event, is_sig, q, beta, predicted_pid
    # )
    if not tracking:
        x_particles = y[:, 0:3]
        e_particles = y[:, 3]
        mom_particles_true = y[:, 4]
        mass_particles_true = y[:, 5]
        # particles_mask = y[:, 6]
        mom_particles_true = mom_particles_true.to(device)
        mass_particles_pred = e_particles_pred**2 - mom_particles_pred**2
        mass_particles_true = mass_particles_true.to(device)
        mass_particles_pred[mass_particles_pred < 0] = 0.0
        mass_particles_pred = torch.sqrt(mass_particles_pred)
        loss_mass = torch.nn.MSELoss()(
            mass_particles_true, mass_particles_pred
        )  # only logging this, not using it in the loss func
        pid_id_particles = y[:, 6].unsqueeze(1).long()
        pid_particles_true = torch.zeros((pid_id_particles.shape[0], 22))
        part_idx_onehot = [
            safe_index(onehot_particles_arr, i)
            for i in pid_id_particles.flatten().tolist()
        ]
        pid_particles_true[
            torch.arange(pid_id_particles.shape[0]), part_idx_onehot
        ] = 1.0

        # if return_regression_resolution:
        #     e_particles_pred = e_particles_pred.detach().flatten()
        #     e_particles = e_particles.detach().flatten()
        #     positions_particles_pred = positions_particles_pred.detach().flatten()
        #     x_particles = x_particles.detach().flatten()
        #     mom_particles_pred = mom_particles_pred.detach().flatten().to("cpu")
        #     mom_particles_true = mom_particles_true.detach().flatten().to("cpu")
        #     return (
        #         {
        #             "momentum_res": (
        #                 (mom_particles_pred - mom_particles_true) / mom_particles_true
        #             ).tolist(),
        #             "e_res": ((e_particles_pred - e_particles) / e_particles).tolist(),
        #             "pos_res": (
        #                 (positions_particles_pred - x_particles) / x_particles
        #             ).tolist(),
        #         },
        #         pid_particles_true,
        #         pid_particles_pred,
        #     )

        e_particles_pred_per_object = scatter_add(
            g.ndata["e_hits"][is_sig].view(-1), object_index
        )  # *energy_correction[is_sig][index_alpha].view(-1)).view(-1,1)
        e_particle_pred_per_particle = e_particles_pred_per_object[
            object_index
        ] * energy_correction.view(-1)
        e_true = y[:, 3].clone()
        e_true = e_true.to(e_particles_pred_per_object.device)
        e_true_particle = e_true[object_index]
        L_i = (e_particle_pred_per_particle - e_true_particle) ** 2 / e_true_particle
        B_i = (beta[is_sig].arctanh() / 1.01) ** 2 + 1e-3
        loss_E = torch.sum(L_i * B_i) / torch.sum(B_i)

        # loss_E = torch.mean(
        #     torch.square(
        #         (e_particles_pred.to(device) - e_particles.to(device))
        #         / e_particles.to(device)
        #     )
        # )
        loss_momentum = torch.mean(
            torch.square(
                (mom_particles_pred.to(device) - mom_particles_true.to(device))
                / mom_particles_true.to(device)
            )
        )
        # loss_ce = torch.nn.BCELoss()
        loss_mse = torch.nn.MSELoss()
        loss_x = loss_mse(positions_particles_pred.to(device), x_particles.to(device))
    # loss_x = 0. # TEMPORARILY, there is some issue with X loss and it goes to \infty
    # loss_particle_ids = loss_ce(
    #     pid_particles_pred.to(device), pid_particles_true.to(device)
    # )
    # pid_true = pid_particles_true.argmax(dim=1).detach().tolist()
    # pid_pred = pid_particles_pred.argmax(dim=1).detach().tolist()
    # pid_true = [pid_dict[i.long().item()] for i in pid_true]
    # pid_pred = [pid_dict[i.long().item()] for i in pid_pred]
    # Connectivity matrix from hit (row) -> cluster (column)
    # Index to matrix, e.g.:
    # [1, 3, 1, 0] --> [
    #     [0, 1, 0, 0],
    #     [0, 0, 0, 1],
    #     [0, 1, 0, 0],
    #     [1, 0, 0, 0]
    #     ]
    M = torch.nn.functional.one_hot(cluster_index).long()

    # Anti-connectivity matrix; be sure not to connect hits to clusters in different events!
    M_inv = get_inter_event_norms_mask(batch, n_clusters_per_event) - M

    # Throw away noise cluster columns; we never need them
    M = M[:, is_object]
    M_inv = M_inv[:, is_object]
    assert M.size() == (n_hits, n_objects)
    assert M_inv.size() == (n_hits, n_objects)

    # Calculate all norms
    # Warning: Should not be used without a mask!
    # Contains norms between hits and objects from different events
    # (n_hits, 1, cluster_space_dim) - (1, n_objects, cluster_space_dim)
    #   gives (n_hits, n_objects, cluster_space_dim)
    norms = (cluster_space_coords.unsqueeze(1) - x_alpha.unsqueeze(0)).norm(dim=-1)
    assert norms.size() == (n_hits, n_objects)
    L_clusters = torch.tensor(0.0).to(device)
    if frac_combinations != 0:
        L_clusters = L_clusters_calc(
            batch, cluster_space_coords, cluster_index, frac_combinations, q
        )

    # -------
    # Attractive potential term

    # First get all the relevant norms: We only want norms of signal hits
    # w.r.t. the object they belong to, i.e. no noise hits and no noise clusters.
    # First select all norms of all signal hits w.r.t. all objects, mask out later

    if hgcal_implementation:
        N_k = torch.sum(M, dim=0)  # number of hits per object
        norms = torch.sum(
            torch.square(cluster_space_coords.unsqueeze(1) - x_alpha.unsqueeze(0)),
            dim=-1,
        )
        norms_att = norms[is_sig]
        #! att func as in line 159 of object condensation
        norms_att = torch.log(
            torch.exp(torch.Tensor([1]).to(norms_att.device)) * norms_att / 2 + 1
        )
        # Power-scale the norms
    elif huberize_norm_for_V_attractive:
        norms_att = norms[is_sig]
        # Huberized version (linear but times 4)
        # Be sure to not move 'off-diagonal' away from zero
        # (i.e. norms of hits w.r.t. clusters they do _not_ belong to)
        norms_att = huber(norms_att + 1e-5, 4.0)
    else:
        norms_att = norms[is_sig]
        # Paper version is simply norms squared (no need for mask)
        norms_att = norms_att**2
    assert norms_att.size() == (n_hits_sig, n_objects)

    # Now apply the mask to keep only norms of signal hits w.r.t. to the object
    # they belong to
    norms_att *= M[is_sig]

    # Final potential term
    # (n_sig_hits, 1) * (1, n_objects) * (n_sig_hits, n_objects)
    V_attractive = q[is_sig].unsqueeze(-1) * q_alpha.unsqueeze(0) * norms_att
    assert V_attractive.size() == (n_hits_sig, n_objects)

    # Sum over hits, then sum per event, then divide by n_hits_per_event, then sum over events
    if hgcal_implementation:
        #! each shower is account for separately
        V_attractive = V_attractive.sum(dim=0)  # K objects
        #! divide by the number of accounted points
        V_attractive = V_attractive.view(-1) / (
            N_k.view(-1) + 1e-3
        )  # every object is accounted for equally
        # if not tracking:
        #     #! add to terms function (divide by total number of showers per event)
        #     # L_V_attractive = scatter_add(V_attractive, object_index) / n_objects
        #     # L_V_attractive = torch.mean(
        #     #     V_attractive
        #     # )  # V_attractive size n_objects, so per shower metric
        #     per_shower_weight = torch.exp(1 / (e_particles_pred_per_object + 0.4))
        #     soft_m = torch.nn.Softmax(dim=0)
        #     per_shower_weight = soft_m(per_shower_weight) * len(V_attractive)
        #     L_V_attractive = torch.mean(V_attractive * per_shower_weight)
        # else:
        # weight classes by bin
        # if tracking:
        #     e_true = y[:, 5].clone()
        #     # e_true_particle = e_true[object_index]
        #     label = 1 * (e_true > 4)
        #     V = label.size(0)
        #     n_classes = 2
        #     label_count = torch.bincount(label)
        #     label_count = label_count[label_count.nonzero()].squeeze()
        #     cluster_sizes = torch.zeros(n_classes).long().to(label_count.device)
        #     cluster_sizes[torch.unique(label)] = label_count
        #     weight = (V - cluster_sizes).float() / V
        #     weight *= (cluster_sizes > 0).float()
        #     per_shower_weight = weight[label]
        #     soft_m = torch.nn.Softmax(dim=0)
        #     per_shower_weight = soft_m(per_shower_weight) * len(V_attractive)
        #     L_V_attractive = torch.mean(V_attractive * per_shower_weight)
        # else:
        L_V_attractive = torch.mean(V_attractive)
    else:
        #! in comparison this works per hit
        V_attractive = (
            scatter_add(V_attractive.sum(dim=0), batch_object) / n_hits_per_event
        )
        assert V_attractive.size() == (batch_size,)
        L_V_attractive = V_attractive.sum()

    # -------
    # Repulsive potential term

    # Get all the relevant norms: We want norms of any hit w.r.t. to
    # objects they do *not* belong to, i.e. no noise clusters.
    # We do however want to keep norms of noise hits w.r.t. objects
    # Power-scale the norms: Gaussian scaling term instead of a cone
    # Mask out the norms of hits w.r.t. the cluster they belong to
    if hgcal_implementation:
        norms_rep = torch.exp(-(norms) / 2) * M_inv
        norms_rep2 = torch.exp(-(norms) * 5) * M_inv
    else:
        norms_rep = torch.exp(-4.0 * norms**2) * M_inv

    # (n_sig_hits, 1) * (1, n_objects) * (n_sig_hits, n_objects)
    V_repulsive = q.unsqueeze(1) * q_alpha.unsqueeze(0) * norms_rep
    V_repulsive2 = q.unsqueeze(1) * q_alpha.unsqueeze(0) * norms_rep2
    # No need to apply a V = max(0, V); by construction V>=0
    assert V_repulsive.size() == (n_hits, n_objects)

    # Sum over hits, then sum per event, then divide by n_hits_per_event, then sum up events
    nope = n_objects_per_event - 1
    nope[nope == 0] = 1
    if hgcal_implementation:
        #! sum each object repulsive terms
        L_V_repulsive = V_repulsive.sum(dim=0)  # size number of objects
        number_of_repulsive_terms_per_object = torch.sum(M_inv, dim=0)
        L_V_repulsive = L_V_repulsive.view(
            -1
        ) / number_of_repulsive_terms_per_object.view(-1)
        L_V_repulsive2 = V_repulsive2.sum(dim=0)  # size number of objects

        L_V_repulsive2 = L_V_repulsive2.view(-1)

        # if not tracking:
        #     #! add to terms function (divide by total number of showers per event)
        #     # L_V_repulsive = scatter_add(L_V_repulsive, object_index) / n_objects
        #     per_shower_weight = torch.exp(1 / (e_particles_pred_per_object + 0.4))
        #     soft_m = torch.nn.Softmax(dim=0)
        #     per_shower_weight = soft_m(per_shower_weight) * len(L_V_repulsive)
        #     L_V_repulsive = torch.mean(L_V_repulsive * per_shower_weight)
        # else:
        # if tracking:
        #     L_V_repulsive = torch.mean(L_V_repulsive * per_shower_weight)
        # else:
        L_V_repulsive = torch.mean(L_V_repulsive)
        L_V_repulsive2 = torch.mean(L_V_repulsive)
    else:
        L_V_repulsive = (
            scatter_add(V_repulsive.sum(dim=0), batch_object)
            / (n_hits_per_event * nope)
        ).sum()
    L_V = (
        attr_weight * L_V_attractive
        # + repul_weight * L_V_repulsive
        + L_V_repulsive2
        # + L_clusters
        # + fill_loss
    )
    if L_clusters != 0:
        print(
            "L-clusters is",
            100 * (L_clusters / L_V).detach().cpu().item(),
            "% of L_V. L_clusters value:",
            L_clusters.detach().cpu().item(),
        )
    # else:
    #     print("L-clusters is ZERO")
    # ________________________________
    # L_beta term

    # -------
    # L_beta noise term

    n_noise_hits_per_event = scatter_count(batch[is_noise])
    n_noise_hits_per_event[n_noise_hits_per_event == 0] = 1
    L_beta_noise = (
        s_B
        * (
            (scatter_add(beta[is_noise], batch[is_noise])) / n_noise_hits_per_event
        ).sum()
    )
    # print("L_beta_noise", L_beta_noise / batch_size)
    # -------
    # L_beta signal term
    if hgcal_implementation:
        # version one:
        beta_per_object_c = scatter_add(beta[is_sig], object_index)
        beta_alpha = beta[is_sig][index_alpha]
        L_beta_sig = torch.mean(
            1 - beta_alpha + 1 - torch.clip(beta_per_object_c, 0, 1)
        )
        # this is also per object so not dividing by batch size

        # version 2 with the LSE approximation for the max
        # eps = 1e-3
        # beta_per_object = scatter_add(torch.exp(beta[is_sig] / eps), object_index)
        # beta_pen = 1 - eps * torch.log(beta_per_object)
        # beta_per_object_c = scatter_add(beta[is_sig], object_index)
        # beta_pen = beta_pen + 1 - torch.clip(beta_per_object_c, 0, 1)
        # L_beta_sig = beta_pen.sum() / len(beta_pen)
        # L_beta_sig = L_beta_sig / 4
        L_beta_noise = L_beta_noise / batch_size
        # ? note: the training that worked quite well was dividing this by the batch size (1/4)

    elif beta_term_option == "paper":
        beta_alpha = beta[is_sig][index_alpha]
        L_beta_sig = torch.sum(  # maybe 0.5 for less aggressive loss
            scatter_add((1 - beta_alpha), batch_object) / n_objects_per_event
        )
        # print("L_beta_sig", L_beta_sig / batch_size)
        # beta_exp = beta[is_sig]
        # beta_exp[index_alpha] = 0
        # # L_exp = torch.mean(beta_exp)
        # beta_exp = torch.exp(0.5 * beta_exp)
        # L_exp = torch.mean(scatter_add(beta_exp, batch) / n_hits_per_event)

    elif beta_term_option == "short-range-potential":

        # First collect the norms: We only want norms of hits w.r.t. the object they
        # belong to (like in V_attractive)
        # Apply transformation first, and then apply mask to keep only the norms we want,
        # then sum over hits, so the result is (n_objects,)
        norms_beta_sig = (1.0 / (20.0 * norms[is_sig] ** 2 + 1.0) * M[is_sig]).sum(
            dim=0
        )
        assert torch.all(norms_beta_sig >= 1.0) and torch.all(
            norms_beta_sig <= n_hits_per_object
        )
        # Subtract from 1. to remove self interaction, divide by number of hits per object
        norms_beta_sig = (1.0 - norms_beta_sig) / n_hits_per_object
        assert torch.all(norms_beta_sig >= -1.0) and torch.all(norms_beta_sig <= 0.0)
        norms_beta_sig *= beta_alpha
        # Conclusion:
        # lower beta --> higher loss (less negative)
        # higher norms --> higher loss

        # Sum over objects, divide by number of objects per event, then sum over events
        L_beta_norms_term = (
            scatter_add(norms_beta_sig, batch_object) / n_objects_per_event
        ).sum()
        assert L_beta_norms_term >= -batch_size and L_beta_norms_term <= 0.0

        # Logbeta term: Take -.2*torch.log(beta_alpha[is_object]+1e-9), sum it over objects,
        # divide by n_objects_per_event, then sum over events (same pattern as above)
        # lower beta --> higher loss
        L_beta_logbeta_term = (
            scatter_add(-0.2 * torch.log(beta_alpha + 1e-9), batch_object)
            / n_objects_per_event
        ).sum()

        # Final L_beta term
        L_beta_sig = L_beta_norms_term + L_beta_logbeta_term

    else:
        valid_options = ["paper", "short-range-potential"]
        raise ValueError(
            f'beta_term_option "{beta_term_option}" is not valid, choose from {valid_options}'
        )

    L_beta = L_beta_noise + L_beta_sig

    L_alpha_coordinates = torch.mean(torch.norm(x_alpha_original - x_alpha, p=2, dim=1))
    # ________________________________
    # Returning
    # Also divide by batch size here

    if return_components or DEBUG:
        components = dict(
            L_V=L_V / batch_size,
            L_V_attractive=L_V_attractive / batch_size,
            L_V_repulsive=L_V_repulsive / batch_size,
            L_beta=L_beta / batch_size,
            L_beta_noise=L_beta_noise / batch_size,
            L_beta_sig=L_beta_sig / batch_size,
        )
        if beta_term_option == "short-range-potential":
            components["L_beta_norms_term"] = L_beta_norms_term / batch_size
            components["L_beta_logbeta_term"] = L_beta_logbeta_term / batch_size
    if DEBUG:
        debug(formatted_loss_components_string(components))
    if torch.isnan(L_beta / batch_size):
        print("isnan!!!")
        print(L_beta, batch_size)
        print("L_beta_noise", L_beta_noise)
        print("L_beta_sig", L_beta_sig)
    if not tracking:
        e_particles_pred = e_particles_pred.detach().to("cpu").flatten()
        e_particles = e_particles.detach().to("cpu").flatten()
        positions_particles_pred = positions_particles_pred.detach().to("cpu").flatten()
        x_particles = x_particles.detach().to("cpu").flatten()
        mom_particles_pred = mom_particles_pred.detach().flatten().to("cpu")
        mom_particles_true = mom_particles_true.detach().flatten().to("cpu")
        resolutions = {
            "momentum_res": (
                (mom_particles_pred - mom_particles_true) / mom_particles_true
            ),
            "e_res": ((e_particles_pred - e_particles) / e_particles).tolist(),
            "pos_res": (
                (positions_particles_pred - x_particles) / x_particles
            ).tolist(),
        }
    # also return pid_true an<d pid_pred here to log the confusion matrix at each validation step
    # try:
    #    L_clusters = L_clusters.detach().cpu().item()  # if L_clusters is zero
    # except:
    #    pass
    L_exp = L_beta
    if hgcal_implementation:
        if not tracking:
            return (
                L_V,  # 0
                L_beta,
                loss_E,
                loss_x,
                None,  # loss_particle_ids0,  # 4
                loss_momentum,
                loss_mass,
                None,  # pid_true,
                None,  # pid_pred,
                resolutions,
                L_clusters,  # 10
                fill_loss,
                L_V_attractive,
                L_V_repulsive,
                L_alpha_coordinates,
                L_exp,
                norms_rep,  # 16
                norms_att,  # 17
                L_V_repulsive2,
            )
        else:
            return (
                L_V,  # 0
                L_beta,
                L_V_attractive,
                L_V_repulsive,
                L_beta_sig,
                L_beta_noise,
            )
    else:
        if not tracking:
            return (
                L_V / batch_size,  # 0
                L_beta / batch_size,
                loss_E,
                loss_x,
                None,  # loss_particle_ids0,  # 4
                loss_momentum,
                loss_mass,
                None,  # pid_true,
                None,  # pid_pred,
                resolutions,
                L_clusters,  # 10
                fill_loss,
                L_V_attractive / batch_size,
                L_V_repulsive / batch_size,
                L_alpha_coordinates,
                L_exp,
                norms_rep,  # 16
                norms_att,  # 17
            )


def calc_LV_Lbeta_inference(
    g,
    distance_threshold,
    energy_correction,
    momentum: torch.Tensor,
    beta: torch.Tensor,
    cluster_space_coords: torch.Tensor,  # Predicted by model
    cluster_index_per_event: torch.Tensor,  # inferred cluster_index_per_event
    batch: torch.Tensor,
    predicted_pid: torch.Tensor,  # predicted PID embeddings - will be aggregated by summing up the clusters and applying the post_pid_pool_module MLP afterwards
    post_pid_pool_module: torch.nn.Module,  # MLP to apply to the pooled embeddings to get the PID predictions
    # From here on just parameters
    qmin: float = 0.1,
    s_B: float = 1.0,
    beta_stabilizing="soft_q_scaling",
    huberize_norm_for_V_attractive=False,
    beta_term_option="paper",
) -> Union[Tuple[torch.Tensor, torch.Tensor], dict]:
    """
    Calculates the L_V and L_beta object condensation losses.
    Concepts:
    - A hit belongs to exactly one cluster (cluster_index_per_event is (n_hits,)),
      and to exactly one event (batch is (n_hits,))
    - A cluster index of `noise_cluster_index` means the cluster is a noise cluster.
      There is typically one noise cluster per event. Any hit in a noise cluster
      is a 'noise hit'. A hit in an object is called a 'signal hit' for lack of a
      better term.
    - An 'object' is a cluster that is *not* a noise cluster.
    beta_stabilizing: Choices are ['paper', 'clip', 'soft_q_scaling']:
        paper: beta is sigmoid(model_output), q = beta.arctanh()**2 + qmin
        clip:  beta is clipped to 1-1e-4, q = beta.arctanh()**2 + qmin
        soft_q_scaling: beta is sigmoid(model_output), q = (clip(beta)/1.002).arctanh()**2 + qmin
    huberize_norm_for_V_attractive: Huberizes the norms when used in the attractive potential
    beta_term_option: Choices are ['paper', 'short-range-potential']:
        Choosing 'short-range-potential' introduces a short range potential around high
        beta points, acting like V_attractive.
    Note this function has modifications w.r.t. the implementation in 2002.03605:
    - The norms for V_repulsive are now Gaussian (instead of linear hinge)
    """
    # remove dummy rows added for dataloader  # TODO think of better way to do this

    device = beta.device
    # alert the user if there are nans
    if torch.isnan(beta).any():
        print("There are nans in beta!", len(beta[torch.isnan(beta)]))

    beta = torch.nan_to_num(beta, nan=0.0)
    assert_no_nans(beta)
    # ________________________________
    # Calculate a bunch of needed counts and indices locally

    # cluster_index: unique index over events
    # E.g. cluster_index_per_event=[ 0, 0, 1, 2, 0, 0, 1], batch=[0, 0, 0, 0, 1, 1, 1]
    #      -> cluster_index=[ 0, 0, 1, 2, 3, 3, 4 ]

    cluster_index, n_clusters_per_event = batch_cluster_indices(
        cluster_index_per_event, batch
    )
    n_clusters = n_clusters_per_event.sum()
    n_hits, cluster_space_dim = cluster_space_coords.size()
    batch_size = batch.max() + 1
    n_hits_per_event = scatter_count(batch)

    # Index of cluster -> event (n_clusters,)
    # batch_cluster = scatter_counts_to_indices(n_clusters_per_event)

    # Per-hit boolean, indicating whether hit is sig or noise
    # is_noise = cluster_index_per_event == noise_cluster_index
    ##is_sig = ~is_noise
    # n_hits_sig = is_sig.sum()
    # n_sig_hits_per_event = scatter_count(batch[is_sig])

    # Per-cluster boolean, indicating whether cluster is an object or noise
    # is_object = scatter_max(is_sig.long(), cluster_index)[0].bool()
    # is_noise_cluster = ~is_object

    # FIXME: This assumes noise_cluster_index == 0!!
    # Not sure how to do this in a performant way in case noise_cluster_index != 0
    # if noise_cluster_index != 0:
    #    raise NotImplementedError
    # object_index_per_event = cluster_index_per_event[is_sig] - 1
    # object_index, n_objects_per_event = batch_cluster_indices(
    #    object_index_per_event, batch[is_sig]
    # )
    # n_hits_per_object = scatter_count(object_index)
    # print("n_hits_per_object", n_hits_per_object)
    # batch_object = batch_cluster[is_object]
    # n_objects = is_object.sum()

    # assert object_index.size() == (n_hits_sig,)
    # assert is_object.size() == (n_clusters,)
    # assert torch.all(n_hits_per_object > 0)
    # assert object_index.max() + 1 == n_objects

    # ________________________________
    # L_V term

    # Calculate q
    if beta_stabilizing == "paper":
        q = beta.arctanh() ** 2 + qmin
    elif beta_stabilizing == "clip":
        beta = beta.clip(0.0, 1 - 1e-4)
        q = beta.arctanh() ** 2 + qmin
    elif beta_stabilizing == "soft_q_scaling":
        q = (beta.clip(0.0, 1 - 1e-4) / 1.002).arctanh() ** 2 + qmin
    else:
        raise ValueError(f"beta_stablizing mode {beta_stabilizing} is not known")
    if torch.isnan(beta).any():
        print("There are nans in beta!", len(beta[torch.isnan(beta)]))

    beta = torch.nan_to_num(beta, nan=0.0)
    assert_no_nans(q)
    assert q.device == device
    assert q.size() == (n_hits,)
    # TODO:  continue here
    # Calculate q_alpha, the max q per object, and the indices of said maxima
    q_alpha, index_alpha = scatter_max(q, cluster_index)
    assert q_alpha.size() == (n_clusters,)

    # Get the cluster space coordinates and betas for these maxima hits too
    index_alpha -= 1  # why do we need this?
    x_alpha = cluster_space_coords[index_alpha]
    beta_alpha = beta[index_alpha]

    positions_particles_pred = g.ndata["pos_hits_xyz"][index_alpha]
    positions_particles_pred = (
        positions_particles_pred + distance_threshold[index_alpha]
    )

    is_sig_everything = torch.ones_like(batch).bool()

    e_particles_pred, pid_particles_pred, mom_particles_pred = calc_energy_pred(
        batch,
        g,
        cluster_index_per_event,
        is_sig_everything,
        q,
        beta,
        energy_correction,
        predicted_pid,
        momentum,
    )
    pid_particles_pred = post_pid_pool_module(
        pid_particles_pred
    )  # project the pooled PID embeddings to the final "one hot encoding" space

    mass_particles_pred = e_particles_pred**2 - mom_particles_pred**2
    mass_particles_pred[mass_particles_pred < 0] = 0.0
    mass_particles_pred = torch.sqrt(mass_particles_pred)

    pid_pred = pid_particles_pred.argmax(dim=1).detach().tolist()
    return (
        pid_pred,
        pid_particles_pred,
        mass_particles_pred,
        e_particles_pred,
        mom_particles_pred,
    )


def formatted_loss_components_string(components: dict) -> str:
    """
    Formats the components returned by calc_LV_Lbeta
    """
    total_loss = components["L_V"] + components["L_beta"]
    fractions = {k: v / total_loss for k, v in components.items()}
    fkey = lambda key: f"{components[key]:+.4f} ({100.*fractions[key]:.1f}%)"
    s = (
        "  L_V                 = {L_V}"
        "\n    L_V_attractive      = {L_V_attractive}"
        "\n    L_V_repulsive       = {L_V_repulsive}"
        "\n  L_beta              = {L_beta}"
        "\n    L_beta_noise        = {L_beta_noise}"
        "\n    L_beta_sig          = {L_beta_sig}".format(
            L=total_loss, **{k: fkey(k) for k in components}
        )
    )
    if "L_beta_norms_term" in components:
        s += (
            "\n      L_beta_norms_term   = {L_beta_norms_term}"
            "\n      L_beta_logbeta_term = {L_beta_logbeta_term}".format(
                **{k: fkey(k) for k in components}
            )
        )
    if "L_noise_filter" in components:
        s += f'\n  L_noise_filter = {fkey("L_noise_filter")}'
    return s


def calc_simple_clus_space_loss(
    cluster_space_coords: torch.Tensor,  # Predicted by model
    cluster_index_per_event: torch.Tensor,  # Truth hit->cluster index
    batch: torch.Tensor,
    # From here on just parameters
    noise_cluster_index: int = 0,  # cluster_index entries with this value are noise/noise
    huberize_norm_for_V_attractive=True,
    pred_edc: torch.Tensor = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
    """
    Isolating just the V_attractive and V_repulsive parts of object condensation,
    w.r.t. the geometrical mean of truth cluster centers (rather than the highest
    beta point of the truth cluster).
    Most of this code is copied from `calc_LV_Lbeta`, so it's easier to try out
    different scalings for the norms without breaking the main OC function.
    `pred_edc`: Predicted estimated distance-to-center.
    This is an optional column, that should be `n_hits` long. If it is
    passed, a third loss component is calculated based on the truth distance-to-center
    w.r.t. predicted distance-to-center. This quantifies how close a hit is to it's center,
    which provides an ansatz for the clustering.
    See also the 'Concepts' in the doc of `calc_LV_Lbeta`.
    """
    # ________________________________
    # Calculate a bunch of needed counts and indices locally

    # cluster_index: unique index over events
    # E.g. cluster_index_per_event=[ 0, 0, 1, 2, 0, 0, 1], batch=[0, 0, 0, 0, 1, 1, 1]
    #      -> cluster_index=[ 0, 0, 1, 2, 3, 3, 4 ]
    cluster_index, n_clusters_per_event = batch_cluster_indices(
        cluster_index_per_event, batch
    )
    n_hits, cluster_space_dim = cluster_space_coords.size()
    batch_size = batch.max() + 1
    n_hits_per_event = scatter_count(batch)

    # Index of cluster -> event (n_clusters,)
    batch_cluster = scatter_counts_to_indices(n_clusters_per_event)

    # Per-hit boolean, indicating whether hit is sig or noise
    is_noise = cluster_index_per_event == noise_cluster_index
    is_sig = ~is_noise
    n_hits_sig = is_sig.sum()

    # Per-cluster boolean, indicating whether cluster is an object or noise
    is_object = scatter_max(is_sig.long(), cluster_index)[0].bool()

    # # FIXME: This assumes noise_cluster_index == 0!!
    # # Not sure how to do this in a performant way in case noise_cluster_index != 0
    # if noise_cluster_index != 0: raise NotImplementedError
    # object_index_per_event = cluster_index_per_event[is_sig] - 1
    batch_object = batch_cluster[is_object]
    n_objects = is_object.sum()

    # ________________________________
    # Build the masks

    # Connectivity matrix from hit (row) -> cluster (column)
    # Index to matrix, e.g.:
    # [1, 3, 1, 0] --> [
    #     [0, 1, 0, 0],
    #     [0, 0, 0, 1],
    #     [0, 1, 0, 0],
    #     [1, 0, 0, 0]
    #     ]
    M = torch.nn.functional.one_hot(cluster_index).long()

    # Anti-connectivity matrix; be sure not to connect hits to clusters in different events!
    M_inv = get_inter_event_norms_mask(batch, n_clusters_per_event) - M

    # Throw away noise cluster columns; we never need them
    M = M[:, is_object]
    M_inv = M_inv[:, is_object]
    assert M.size() == (n_hits, n_objects)
    assert M_inv.size() == (n_hits, n_objects)

    # ________________________________
    # Loss terms

    # First calculate all cluster centers, then throw out the noise clusters
    cluster_centers = scatter_mean(cluster_space_coords, cluster_index, dim=0)
    object_centers = cluster_centers[is_object]

    # Calculate all norms
    # Warning: Should not be used without a mask!
    # Contains norms between hits and objects from different events
    # (n_hits, 1, cluster_space_dim) - (1, n_objects, cluster_space_dim)
    #   gives (n_hits, n_objects, cluster_space_dim)
    norms = (cluster_space_coords.unsqueeze(1) - object_centers.unsqueeze(0)).norm(
        dim=-1
    )
    assert norms.size() == (n_hits, n_objects)

    # -------
    # Attractive loss

    # First get all the relevant norms: We only want norms of signal hits
    # w.r.t. the object they belong to, i.e. no noise hits and no noise clusters.
    # First select all norms of all signal hits w.r.t. all objects (filtering out
    # the noise), mask out later
    norms_att = norms[is_sig]

    # Power-scale the norms
    if huberize_norm_for_V_attractive:
        # Huberized version (linear but times 4)
        # Be sure to not move 'off-diagonal' away from zero
        # (i.e. norms of hits w.r.t. clusters they do _not_ belong to)
        norms_att = huber(norms_att + 1e-5, 4.0)
    else:
        # Paper version is simply norms squared (no need for mask)
        norms_att = norms_att**2
    assert norms_att.size() == (n_hits_sig, n_objects)

    # Now apply the mask to keep only norms of signal hits w.r.t. to the object
    # they belong to (throw away norms w.r.t. cluster they do *not* belong to)
    norms_att *= M[is_sig]

    # Sum norms_att over hits (dim=0), then sum per event, then divide by n_hits_per_event,
    # then sum over events
    L_attractive = (
        scatter_add(norms_att.sum(dim=0), batch_object) / n_hits_per_event
    ).sum()

    # -------
    # Repulsive loss

    # Get all the relevant norms: We want norms of any hit w.r.t. to
    # objects they do *not* belong to, i.e. no noise clusters.
    # We do however want to keep norms of noise hits w.r.t. objects
    # Power-scale the norms: Gaussian scaling term instead of a cone
    # Mask out the norms of hits w.r.t. the cluster they belong to
    norms_rep = torch.exp(-4.0 * norms**2) * M_inv

    # Sum over hits, then sum per event, then divide by n_hits_per_event, then sum up events
    L_repulsive = (
        scatter_add(norms_rep.sum(dim=0), batch_object) / n_hits_per_event
    ).sum()

    L_attractive /= batch_size
    L_repulsive /= batch_size

    # -------
    # Optional: edc column

    if pred_edc is not None:
        n_hits_per_cluster = scatter_count(cluster_index)
        cluster_centers_expanded = torch.index_select(cluster_centers, 0, cluster_index)
        assert cluster_centers_expanded.size() == (n_hits, cluster_space_dim)
        truth_edc = (cluster_space_coords - cluster_centers_expanded).norm(dim=-1)
        assert pred_edc.size() == (n_hits,)
        d_per_hit = (pred_edc - truth_edc) ** 2
        d_per_object = scatter_add(d_per_hit, cluster_index)[is_object]
        assert d_per_object.size() == (n_objects,)
        L_edc = (scatter_add(d_per_object, batch_object) / n_hits_per_event).sum()
        return L_attractive, L_repulsive, L_edc

    return L_attractive, L_repulsive


def huber(d, delta):
    """
    See: https://en.wikipedia.org/wiki/Huber_loss#Definition
    Multiplied by 2 w.r.t Wikipedia version (aligning with Jan's definition)
    """
    return torch.where(
        torch.abs(d) <= delta, d**2, 2.0 * delta * (torch.abs(d) - delta)
    )


def batch_cluster_indices(
    cluster_id: torch.Tensor, batch: torch.Tensor
) -> Tuple[torch.LongTensor, torch.LongTensor]:
    """
    Turns cluster indices per event to an index in the whole batch
    Example:
    cluster_id = torch.LongTensor([0, 0, 1, 1, 2, 0, 0, 1, 1, 1, 0, 0, 1])
    batch = torch.LongTensor([0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2])
    -->
    offset = torch.LongTensor([0, 0, 0, 0, 0, 3, 3, 3, 3, 3, 5, 5, 5])
    output = torch.LongTensor([0, 0, 1, 1, 2, 3, 3, 4, 4, 4, 5, 5, 6])
    """
    device = cluster_id.device
    assert cluster_id.device == batch.device
    # Count the number of clusters per entry in the batch
    n_clusters_per_event = scatter_max(cluster_id, batch, dim=-1)[0] + 1
    # Offsets are then a cumulative sum
    offset_values_nozero = n_clusters_per_event[:-1].cumsum(dim=-1)
    # Prefix a zero
    offset_values = torch.cat((torch.zeros(1, device=device), offset_values_nozero))
    # Fill it per hit
    offset = torch.gather(offset_values, 0, batch).long()
    return offset + cluster_id, n_clusters_per_event


def get_clustering_np(
    betas: np.array, X: np.array, tbeta: float = 0.1, td: float = 1.0
) -> np.array:
    """
    Returns a clustering of hits -> cluster_index, based on the GravNet model
    output (predicted betas and cluster space coordinates) and the clustering
    parameters tbeta and td.
    Takes numpy arrays as input.
    """
    n_points = betas.shape[0]
    select_condpoints = betas > tbeta
    # Get indices passing the threshold
    indices_condpoints = np.nonzero(select_condpoints)[0]
    # Order them by decreasing beta value
    indices_condpoints = indices_condpoints[np.argsort(-betas[select_condpoints])]
    # Assign points to condensation points
    # Only assign previously unassigned points (no overwriting)
    # Points unassigned at the end are bkg (-1)
    unassigned = np.arange(n_points)
    clustering = -1 * np.ones(n_points, dtype=np.int32)
    for index_condpoint in indices_condpoints:
        d = np.linalg.norm(X[unassigned] - X[index_condpoint], axis=-1)
        assigned_to_this_condpoint = unassigned[d < td]
        clustering[assigned_to_this_condpoint] = index_condpoint
        unassigned = unassigned[~(d < td)]
    return clustering


def get_clustering(betas: torch.Tensor, X: torch.Tensor, tbeta=0.1, td=1.0):
    """
    Returns a clustering of hits -> cluster_index, based on the GravNet model
    output (predicted betas and cluster space coordinates) and the clustering
    parameters tbeta and td.
    Takes torch.Tensors as input.
    """
    n_points = betas.size(0)
    select_condpoints = betas > tbeta
    # Get indices passing the threshold
    indices_condpoints = select_condpoints.nonzero()
    # Order them by decreasing beta value
    indices_condpoints = indices_condpoints[(-betas[select_condpoints]).argsort()]
    # Assign points to condensation points
    # Only assign previously unassigned points (no overwriting)
    # Points unassigned at the end are bkg (-1)
    unassigned = torch.arange(n_points)
    clustering = -1 * torch.ones(n_points, dtype=torch.long)
    for index_condpoint in indices_condpoints:
        d = torch.norm(X[unassigned] - X[index_condpoint][0], dim=-1)
        assigned_to_this_condpoint = unassigned[d < td]
        clustering[assigned_to_this_condpoint] = index_condpoint[0]
        unassigned = unassigned[~(d < td)]
    return clustering


def scatter_count(input: torch.Tensor):
    """
    Returns ordered counts over an index array
    Example:
    >>> scatter_count(torch.Tensor([0, 0, 0, 1, 1, 2, 2])) # input
    >>> [3, 2, 2]
    Index assumptions work like in torch_scatter, so:
    >>> scatter_count(torch.Tensor([1, 1, 1, 2, 2, 4, 4]))
    >>> tensor([0, 3, 2, 0, 2])
    """
    return scatter_add(torch.ones_like(input, dtype=torch.long), input.long())


def scatter_counts_to_indices(input: torch.LongTensor) -> torch.LongTensor:
    """
    Converts counts to indices. This is the inverse operation of scatter_count
    Example:
    input:  [3, 2, 2]
    output: [0, 0, 0, 1, 1, 2, 2]
    """
    return torch.repeat_interleave(
        torch.arange(input.size(0), device=input.device), input
    ).long()


def get_inter_event_norms_mask(
    batch: torch.LongTensor, nclusters_per_event: torch.LongTensor
):
    """
    Creates mask of (nhits x nclusters) that is only 1 if hit i is in the same event as cluster j
    Example:
    cluster_id_per_event = torch.LongTensor([0, 0, 1, 1, 2, 0, 0, 1, 1, 1, 0, 0, 1])
    batch = torch.LongTensor([0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2])
    Should return:
    torch.LongTensor([
        [1, 1, 1, 0, 0, 0, 0],
        [1, 1, 1, 0, 0, 0, 0],
        [1, 1, 1, 0, 0, 0, 0],
        [1, 1, 1, 0, 0, 0, 0],
        [1, 1, 1, 0, 0, 0, 0],
        [0, 0, 0, 1, 1, 0, 0],
        [0, 0, 0, 1, 1, 0, 0],
        [0, 0, 0, 1, 1, 0, 0],
        [0, 0, 0, 1, 1, 0, 0],
        [0, 0, 0, 1, 1, 0, 0],
        [0, 0, 0, 0, 0, 1, 1],
        [0, 0, 0, 0, 0, 1, 1],
        [0, 0, 0, 0, 0, 1, 1],
        ])
    """
    device = batch.device
    # Following the example:
    # Expand batch to the following (nhits x nevents) matrix (little hacky, boolean mask -> long):
    # [[1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    #  [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0],
    #  [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1]]
    batch_expanded_as_ones = (
        batch
        == torch.arange(batch.max() + 1, dtype=torch.long, device=device).unsqueeze(-1)
    ).long()
    # Then repeat_interleave it to expand it to nclusters rows, and transpose to get (nhits x nclusters)
    return batch_expanded_as_ones.repeat_interleave(nclusters_per_event, dim=0).T


def isin(ar1, ar2):
    """To be replaced by torch.isin for newer releases of torch"""
    return (ar1[..., None] == ar2).any(-1)


def reincrementalize(y: torch.Tensor, batch: torch.Tensor) -> torch.Tensor:
    """Re-indexes y so that missing clusters are no longer counted.
    Example:
        >>> y = torch.LongTensor([
            0, 0, 0, 1, 1, 3, 3,
            0, 0, 0, 0, 0, 2, 2, 3, 3,
            0, 0, 1, 1
            ])
        >>> batch = torch.LongTensor([
            0, 0, 0, 0, 0, 0, 0,
            1, 1, 1, 1, 1, 1, 1, 1, 1,
            2, 2, 2, 2,
            ])
        >>> print(reincrementalize(y, batch))
        tensor([0, 0, 0, 1, 1, 2, 2, 0, 0, 0, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1])
    """
    y_offset, n_per_event = batch_cluster_indices(y, batch)
    offset = y_offset - y
    n_clusters = n_per_event.sum()
    holes = (
        (~isin(torch.arange(n_clusters, device=y.device), y_offset))
        .nonzero()
        .squeeze(-1)
    )
    n_per_event_without_holes = n_per_event.clone()
    n_per_event_cumsum = n_per_event.cumsum(0)
    for hole in holes.sort(descending=True).values:
        y_offset[y_offset > hole] -= 1
        i_event = (hole > n_per_event_cumsum).long().argmin()
        n_per_event_without_holes[i_event] -= 1
    offset_per_event = torch.zeros_like(n_per_event_without_holes)
    offset_per_event[1:] = n_per_event_without_holes.cumsum(0)[:-1]
    offset_without_holes = torch.gather(offset_per_event, 0, batch).long()
    reincrementalized = y_offset - offset_without_holes
    return reincrementalized


def L_clusters_calc(batch, cluster_space_coords, cluster_index, frac_combinations, q):
    number_of_pairs = 0
    for batch_id in batch.unique():
        # do all possible pairs...
        bmask = batch == batch_id
        clust_space_filt = cluster_space_coords[bmask]
        pos_pairs_all = []
        neg_pairs_all = []
        if len(cluster_index[bmask].unique()) <= 1:
            continue
        L_clusters = torch.tensor(0.0).to(q.device)
        for cluster in cluster_index[bmask].unique():
            coords_pos = clust_space_filt[cluster_index[bmask] == cluster]
            coords_neg = clust_space_filt[cluster_index[bmask] != cluster]
            if len(coords_neg) == 0:
                continue
            clust_idx = cluster_index[bmask] == cluster
            # all_ones = torch.ones_like((clust_idx, clust_idx))
            # pos_pairs = [[i, j] for i in range(len(coords_pos)) for j in range (len(coords_pos)) if i < j]
            total_num = (len(coords_pos) ** 2) / 2
            num = int(frac_combinations * total_num)
            pos_pairs = []
            for i in range(num):
                pos_pairs.append(
                    [
                        np.random.randint(len(coords_pos)),
                        np.random.randint(len(coords_pos)),
                    ]
                )
            neg_pairs = []
            for i in range(len(pos_pairs)):
                neg_pairs.append(
                    [
                        np.random.randint(len(coords_pos)),
                        np.random.randint(len(coords_neg)),
                    ]
                )
            pos_pairs_all += pos_pairs
            neg_pairs_all += neg_pairs
        pos_pairs = torch.tensor(pos_pairs_all)
        neg_pairs = torch.tensor(neg_pairs_all)
        """# do just a small sample of the pairs. ...
        bmask = batch == batch_id

        #L_clusters = 0   # Loss of randomly sampled distances between points inside and outside clusters

        pos_idx, neg_idx = [], []
        for cluster in cluster_index[bmask].unique():
            clust_idx = (cluster_index == cluster)[bmask]
            perm = torch.randperm(clust_idx.sum())
            perm1 = torch.randperm((~clust_idx).sum())
            perm2 = torch.randperm(clust_idx.sum())
            #cutoff = clust_idx.sum()//2
            pos_lst = clust_idx.nonzero()[perm]
            neg_lst = (~clust_idx).nonzero()[perm1]
            neg_lst_second = clust_idx.nonzero()[perm2]
            if len(pos_lst) % 2:
                pos_lst = pos_lst[:-1]
            if len(neg_lst) % 2:
                neg_lst = neg_lst[:-1]
            len_cap = min(len(pos_lst), len(neg_lst), len(neg_lst_second))
            if len_cap % 2:
                len_cap -= 1
            pos_lst = pos_lst[:len_cap]
            neg_lst = neg_lst[:len_cap]
            neg_lst_second = neg_lst_second[:len_cap]
            pos_pairs = pos_lst.reshape(-1, 2)
            neg_pairs = torch.cat([neg_lst, neg_lst_second], dim=1)
            neg_pairs = neg_pairs[:pos_lst.shape[0]//2, :]
            pos_idx.append(pos_pairs)
            neg_idx.append(neg_pairs)
        pos_idx = torch.cat(pos_idx)
        neg_idx = torch.cat(neg_idx)"""
        assert pos_pairs.shape == neg_pairs.shape
        if len(pos_pairs) == 0:
            continue
        cluster_space_coords_filtered = cluster_space_coords[bmask]
        qs_filtered = q[bmask]
        pos_norms = (
            cluster_space_coords_filtered[pos_pairs[:, 0]]
            - cluster_space_coords_filtered[pos_pairs[:, 1]]
        ).norm(dim=-1)

        neg_norms = (
            cluster_space_coords_filtered[neg_pairs[:, 0]]
            - cluster_space_coords_filtered[neg_pairs[:, 1]]
        ).norm(dim=-1)
        q_pos = qs_filtered[pos_pairs[:, 0]]
        q_neg = qs_filtered[neg_pairs[:, 0]]
        q_s = torch.cat([q_pos, q_neg])
        norms_pos = torch.cat([pos_norms, neg_norms])
        ys = torch.cat([torch.ones_like(pos_norms), -torch.ones_like(neg_norms)])
        L_clusters += torch.sum(
            q_s * torch.nn.HingeEmbeddingLoss(reduce=None)(norms_pos, ys)
        )
        number_of_pairs += norms_pos.shape[0]
    if number_of_pairs > 0:
        L_clusters = L_clusters / number_of_pairs

    return L_clusters



## deprecated code: