Spaces:
Sleeping
Sleeping
File size: 12,943 Bytes
e75a247 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
import matplotlib
import torch
#matplotlib.rc("font", size=25)
import numpy as np
from scipy import stats
from scipy.optimize import curve_fit
from scipy import asarray as ar, exp
def calculate_eff(sd, log_scale=False, pandora=False):
if log_scale:
bins = np.exp(np.arange(np.log(0.1), np.log(80), 0.3))
else:
bins = np.arange(0, 51, 5)
eff = []
energy_eff = []
for i in range(len(bins) - 1):
bin_i = bins[i]
bin_i1 = bins[i + 1]
mask_above = sd.reco_showers_E.values <= bin_i1
mask_below = sd.reco_showers_E.values > bin_i
mask = mask_below * mask_above
number_of_non_reconstructed_showers = np.sum(
np.isnan(sd.pred_showers_E.values)[mask]
)
total_showers = len(sd.true_showers_E.values[mask])
if pandora:
number_of_non_reconstructed_showers = np.sum(
np.isnan(sd.pandora_calibrated_E.values)[mask]
)
total_showers = len(sd.pandora_calibrated_E.values[mask])
if total_showers > 0:
eff.append(
(total_showers - number_of_non_reconstructed_showers) / total_showers
)
energy_eff.append((bin_i1 + bin_i) / 2)
return eff, energy_eff
def calculate_fakes(sd, matched, log_scale=False, pandora=False):
if log_scale:
bins_fakes = np.exp(np.arange(np.log(0.1), np.log(80), 0.3))
else:
bins_fakes = np.linspace(0, 51, 5)
fake_rate = []
energy_fakes = []
fake_percent_energy = []
total_true_showers = np.sum(
~np.isnan(sd.true_showers_E.values)
) # the ones where truthHitAssignedEnergies is not nan
for i in range(len(bins_fakes) - 1):
bin_i = bins_fakes[i]
bin_i1 = bins_fakes[i + 1]
if pandora:
mask_above = sd.pred_showers_E.values <= bin_i1
mask_below = sd.pred_showers_E.values > bin_i
mask = mask_below * mask_above
fakes = np.sum(np.isnan(sd.pid)[mask])
non_fakes_mask = ~np.isnan(sd.pid)[mask]
fakes_mask = np.isnan(sd.pid)[mask]
energy_in_fakes = np.sum(sd.pandora_calibrated_pfo[mask].values[fakes_mask])
total_energy_true = np.sum(sd.true_showers_E.values[mask][non_fakes_mask])
total_showers = len(sd.pred_showers_E.values[mask])
else:
mask_above = sd.pred_showers_E.values <= bin_i1
mask_below = sd.pred_showers_E.values > bin_i
mask = mask_below * mask_above
fakes = np.sum(np.isnan(sd.pid)[mask])
total_showers = len(sd.pred_showers_E.values[mask])
fakes_mask = np.isnan(sd.pid)[mask]
energy_in_fakes = np.sum(sd.pred_showers_E[mask].values[fakes_mask])
non_fakes_mask = ~np.isnan(sd.pid)[mask]
total_energy_true = np.sum(sd.true_showers_E.values[mask][non_fakes_mask])
if total_showers > 0:
# print(fakes, np.mean(sd.pred_energy_hits_raw[mask]))
fake_rate.append(fakes / total_true_showers)
energy_fakes.append((bin_i1 + bin_i) / 2)
fake_percent_energy.append(energy_in_fakes / total_energy_true)
return fake_rate, energy_fakes, fake_percent_energy
def calculate_response(matched, pandora, log_scale=False):
if log_scale:
bins = np.exp(np.arange(np.log(0.1), np.log(80), 0.3))
else:
bins = np.arange(0, 51, 2)
bins_plot_histogram = [5, 6, 10, 20]
if pandora:
bins_per_binned_E = np.arange(0, 3, 0.001)
else:
bins_per_binned_E = np.arange(0, 3, 0.001)
mean = []
variance_om = []
mean_true_rec = []
variance_om_true_rec = []
energy_resolutions = []
energy_resolutions_reco = []
dic_histograms = {}
for i in range(len(bins) - 1):
bin_i = bins[i]
bin_i1 = bins[i + 1]
mask_above = (
matched["reco_showers_E"] <= bin_i1
) # true_showers_E, reco_showers_E
mask_below = matched["reco_showers_E"] > bin_i
mask_check = matched["pred_showers_E"] > 0
mask = mask_below * mask_above * mask_check
pred_e = matched.calibrated_E[mask]
true_rec = matched.reco_showers_E[mask]
true_e = matched.true_showers_E[mask]
if pandora:
pred_e_corrected = matched.pandora_calibrated_E[mask]
else:
pred_e_corrected = matched.calibrated_E[mask]
if np.sum(mask) > 0: # if the bin is not empty
e_over_rec = pred_e / true_rec
if i in bins_plot_histogram:
dic_histograms[str(i) + "reco"] = e_over_rec
dic_histograms[str(i) + "reco_baseline"] = true_rec
dic_histograms[str(i) + "pred_corr_e"] = pred_e_corrected
dic_histograms[str(i) + "true_baseline"] = true_e
dic_histograms[str(i) + "pred_e"] = pred_e
mean_predtored, variance_om_true_rec_ = obtain_MPV_and_68(
e_over_rec, bins_per_binned_E
)
# mean_predtored = np.mean(e_over_rec)
# variance_om_true_rec_ = np.var(e_over_rec) / mean_predtored
mean_true_rec.append(mean_predtored)
variance_om_true_rec.append(variance_om_true_rec_)
energy_resolutions_reco.append((bin_i1 + bin_i) / 2)
# TODO change the pred_showers_E to the pandora calibrated E and the calibrated E for the model pandora_calibrated_E
if pandora:
bins_per_binned_E = np.arange(0, 3, 0.005)
else:
bins_per_binned_E = np.arange(0, 3, 0.005)
for i in range(len(bins) - 1):
bin_i = bins[i]
bin_i1 = bins[i + 1]
mask_above = matched["true_showers_E"] <= bin_i1
mask_below = matched["true_showers_E"] > bin_i
mask_check = matched["pred_showers_E"] > 0
mask = mask_below * mask_above * mask_check
true_e = matched.true_showers_E[mask]
true_rec = matched.reco_showers_E[mask]
if pandora:
pred_e = matched.pandora_calibrated_E[mask]
else:
pred_e = matched.calibrated_E[mask]
if np.sum(mask) > 0: # if the bin is not empty
e_over_true = pred_e / true_e
e_rec_over_true = true_rec / true_e
if i in bins_plot_histogram:
dic_histograms[str(i) + "true"] = e_over_true
dic_histograms[str(i) + "reco_showers"] = e_rec_over_true
mean_predtotrue, var_predtotrue = obtain_MPV_and_68(
e_over_true, bins_per_binned_E
)
# mean_predtotrue, var_predtotrue = get_sigma_gaussian(e_over_true,bins_per_binned_E)
# mean_predtotrue = np.mean(e_over_true)
# var_predtotrue = np.var(e_over_true) / mean_predtotrue
print(
"bin i ",
bins[i],
mean_predtotrue,
var_predtotrue,
np.mean(e_over_true),
np.var(e_over_true) / np.mean(e_over_true),
)
mean.append(mean_predtotrue)
variance_om.append(var_predtotrue)
energy_resolutions.append((bin_i1 + bin_i) / 2)
return (
mean,
variance_om,
mean_true_rec,
variance_om_true_rec,
energy_resolutions,
energy_resolutions_reco,
dic_histograms,
)
def get_sigma_gaussian(e_over_reco, bins_per_binned_E):
hist, bin_edges = np.histogram(e_over_reco, bins=bins_per_binned_E, density=True)
# Calculating the Gaussian PDF values given Gaussian parameters and random variable X
def gaus(X, C, X_mean, sigma):
return C * exp(-((X - X_mean) ** 2) / (2 * sigma**2))
n = len(hist)
x_hist = np.zeros((n), dtype=float)
for ii in range(n):
x_hist[ii] = (bin_edges[ii + 1] + bin_edges[ii]) / 2
y_hist = hist
if (torch.tensor(hist) == 0).all():
return 0,0
mean = sum(x_hist * y_hist) / sum(y_hist)
sigma = sum(y_hist * (x_hist - mean) ** 2) / sum(y_hist)
# cut 1% of highest vals
#e_over_reco_filtered = np.sort(e_over_reco)
#e_over_reco_filtered = e_over_reco_filtered[:int(len(e_over_reco_filtered) * 0.99)]
#mean = np.mean(e_over_reco_filtered)
#sigma = np.std(e_over_reco_filtered)
try:
param_optimised, param_covariance_matrix = curve_fit(
gaus, x_hist, y_hist, p0=[max(y_hist), mean, sigma], maxfev=10000
)
except:
print("Error! Using this")
return mean, sigma/mean, 0.001, 0.001 # dummy errors temporarily
if param_optimised[2] < 0:
param_optimised[2] = sigma
if param_optimised[1] < 0:
param_optimised[1] = mean # due to some weird fitting errors
#assert param_optimised[1] >= 0
#assert param_optimised[2] >= 0
errors = np.sqrt(np.diag(param_covariance_matrix))
# sigma_over_E_error = errors[2] / param_optimised[1]
return param_optimised[1], param_optimised[2] / param_optimised[1], errors[1], errors[2] / param_optimised[1]
def obtain_MPV_and_68(data_for_hist, bins_per_binned_E, epsilon=0.0001):
hist, bin_edges = np.histogram(data_for_hist, bins=bins_per_binned_E, density=True)
ind_max_hist = np.argmax(hist)
MPV = (bin_edges[ind_max_hist] + bin_edges[ind_max_hist + 1]) / 2
std68, low, high = get_std68(hist, bin_edges, epsilon=epsilon)
return MPV, std68 / MPV
def get_std68(theHist, bin_edges, percentage=0.683, epsilon=0.01):
# theHist, bin_edges = np.histogram(data_for_hist, bins=bins, density=True)
wmin = 0.2
wmax = 1.0
weight = 0.0
points = []
sums = []
# fill list of bin centers and the integral up to those point
for i in range(len(bin_edges) - 1):
weight += theHist[i] * (bin_edges[i + 1] - bin_edges[i])
points.append([(bin_edges[i + 1] + bin_edges[i]) / 2, weight])
sums.append(weight)
low = wmin
high = wmax
width = 100
for i in range(len(points)):
for j in range(i, len(points)):
wy = points[j][1] - points[i][1]
if abs(wy - percentage) < epsilon:
wx = points[j][0] - points[i][0]
if wx < width:
low = points[i][0]
high = points[j][0]
width = wx
# ii = i
# jj = j
return 0.5 * (high - low), low, high
def calculate_purity_containment(matched, log_scale=False):
if log_scale:
bins = np.exp(np.arange(np.log(0.1), np.log(80), 0.3))
else:
bins = np.arange(0, 51, 2)
fce_energy = []
fce_var_energy = []
energy_ms = []
purity_energy = []
purity_var_energy = []
fce = matched["e_pred_and_truth"] / matched["reco_showers_E"]
purity = matched["e_pred_and_truth"] / matched["pred_showers_E"]
for i in range(len(bins) - 1):
bin_i = bins[i]
bin_i1 = bins[i + 1]
mask_above = matched["reco_showers_E"] <= bin_i1
mask_below = matched["reco_showers_E"] > bin_i
mask_check = matched["pred_showers_E"] > 0
mask = mask_below * mask_above * mask_check
fce_e = np.mean(fce[mask])
fce_var = np.var(fce[mask])
purity_e = np.mean(purity[mask])
purity_var = np.var(purity[mask])
if np.sum(mask) > 0:
fce_energy.append(fce_e)
fce_var_energy.append(fce_var)
energy_ms.append((bin_i1 + bin_i) / 2)
purity_energy.append(purity_e)
purity_var_energy.append(purity_var)
return (
fce_energy,
fce_var_energy,
energy_ms,
purity_energy,
purity_var_energy,
)
def obtain_metrics(sd, matched, pandora=False, log_scale=False):
eff, energy_eff = calculate_eff(sd, log_scale)
fake_rate, energy_fakes = calculate_fakes(sd, matched, log_scale)
(
mean,
variance_om,
mean_true_rec,
variance_om_true_rec,
energy_resolutions,
energy_resolutions_reco,
dic_histograms,
) = calculate_response(matched, pandora, log_scale)
(
fce_energy,
fce_var_energy,
energy_ms,
purity_energy,
purity_var_energy,
) = calculate_purity_containment(matched, log_scale)
dict = {
"energy_eff": energy_eff,
"eff": eff,
"energy_fakes": energy_fakes,
"fake_rate": fake_rate,
"mean": mean,
"variance_om": variance_om,
"mean_true_rec": mean_true_rec,
"variance_om_true_rec": variance_om_true_rec,
"fce_energy": fce_energy,
"fce_var_energy": fce_var_energy,
"energy_ms": energy_ms,
"purity_energy": purity_energy,
"purity_var_energy": purity_var_energy,
"energy_resolutions": energy_resolutions,
"energy_resolutions_reco": energy_resolutions_reco,
"dic_histograms": dic_histograms,
}
return dict
|