Spaces:
Sleeping
Sleeping
File size: 23,459 Bytes
e75a247 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
import os
import ast
import glob
import functools
import math
import torch
from torch.utils.data import DataLoader
from src.logger.logger import _logger, _configLogger
from src.dataset.dataset import EventDatasetCollection, EventDataset
from src.utils.import_tools import import_module
from src.dataset.functions_graph import graph_batch_func
from src.dataset.functions_data import concat_events
from src.utils.paths import get_path
from src.layers.object_cond import calc_eta_phi
from src.layers.object_cond import object_condensation_loss
def to_filelist(args, mode="train"):
if mode == "train":
flist = args.data_train
elif mode == "val":
flist = args.data_val
elif mode == "test":
flist = args.data_test
else:
raise NotImplementedError("Invalid mode %s" % mode)
print(mode, "filelist:", flist)
flist = [get_path(p, "preprocessed_data") for p in flist]
return flist
class TensorCollection:
def __init__(self, **kwargs):
self.__dict__.update(kwargs)
def to(self, device):
# Move all tensors to device
for k, v in self.__dict__.items():
if torch.is_tensor(v):
setattr(self, k, v.to(device))
return self
def dict_rep(self):
d = {}
for k, v in self.__dict__.items():
if torch.is_tensor(v):
d[k] = v
return d
#def __getitem__(self, i):
# return TensorCollection(**{k: v[i] for k, v in self.__dict__.items()})
def train_load(args, aug_soft=False, aug_collinear=False):
train_files = to_filelist(args, "train")
val_files = to_filelist(args, "val")
train_data = EventDatasetCollection(train_files, args, aug_soft=aug_soft, aug_collinear=aug_collinear)
if args.train_dataset_size is not None:
train_data = torch.utils.data.Subset(train_data, list(range(args.train_dataset_size)))
train_loader = DataLoader(
train_data,
batch_size=args.batch_size,
drop_last=True,
pin_memory=True,
num_workers=args.num_workers,
collate_fn=concat_events,
persistent_workers=args.num_workers > 0,
shuffle=False
)
'''val_loaders = {}
for filename in val_files:
val_data = EventDataset.from_directory(filename, mmap=True)
val_loaders[filename] = DataLoader(
val_data,
batch_size=args.batch_size,
drop_last=True,
pin_memory=True,
collate_fn=concat_events,
num_workers=args.num_workers,
persistent_workers=args.num_workers > 0,
)'''
val_data = EventDatasetCollection(val_files, args)
if args.val_dataset_size is not None:
val_data = torch.utils.data.Subset(val_data, list(range(args.val_dataset_size)))
val_loader = DataLoader(
val_data,
batch_size=args.batch_size,
drop_last=True,
pin_memory=True,
num_workers=args.num_workers,
collate_fn=concat_events,
persistent_workers=args.num_workers > 0,
shuffle=False
)
return train_loader, val_loader, val_data
def test_load(args):
test_files = to_filelist(args, "test")
test_loaders = {}
for filename in test_files:
test_data = EventDataset.from_directory(filename, mmap=True, aug_soft=args.augment_soft_particles, seed=1000000)
if args.test_dataset_max_size is not None:
print("Limiting test dataset size to", args.test_dataset_max_size)
test_data = torch.utils.data.Subset(test_data, list(range(args.test_dataset_max_size)))
test_loaders[filename] = DataLoader(
test_data,
batch_size=args.batch_size,
drop_last=True,
pin_memory=True,
collate_fn=concat_events,
num_workers=args.num_workers,
persistent_workers=args.num_workers > 0,
)
return test_loaders
def get_optimizer_and_scheduler(args, model, device, load_model_weights="load_model_weights"):
"""
Optimizer and scheduler.
:param args:
:param model:
:return:
"""
optimizer_options = {k: ast.literal_eval(v) for k, v in args.optimizer_option}
_logger.info("Optimizer options: %s" % str(optimizer_options))
names_lr_mult = []
if "weight_decay" in optimizer_options or "lr_mult" in optimizer_options:
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/optim/optim_factory.py#L31
import re
decay, no_decay = {}, {}
names_no_decay = []
for name, param in model.named_parameters():
if not param.requires_grad:
continue # frozen weights
if (
len(param.shape) == 1
or name.endswith(".bias")
or (
hasattr(model, "no_weight_decay")
and name in model.no_weight_decay()
)
):
no_decay[name] = param
names_no_decay.append(name)
else:
decay[name] = param
decay_1x, no_decay_1x = [], []
decay_mult, no_decay_mult = [], []
mult_factor = 1
if "lr_mult" in optimizer_options:
pattern, mult_factor = optimizer_options.pop("lr_mult")
for name, param in decay.items():
if re.match(pattern, name):
decay_mult.append(param)
names_lr_mult.append(name)
else:
decay_1x.append(param)
for name, param in no_decay.items():
if re.match(pattern, name):
no_decay_mult.append(param)
names_lr_mult.append(name)
else:
no_decay_1x.append(param)
assert len(decay_1x) + len(decay_mult) == len(decay)
assert len(no_decay_1x) + len(no_decay_mult) == len(no_decay)
else:
decay_1x, no_decay_1x = list(decay.values()), list(no_decay.values())
wd = optimizer_options.pop("weight_decay", 0.0)
parameters = [
{"params": no_decay_1x, "weight_decay": 0.0},
{"params": decay_1x, "weight_decay": wd},
{
"params": no_decay_mult,
"weight_decay": 0.0,
"lr": args.start_lr * mult_factor,
},
{
"params": decay_mult,
"weight_decay": wd,
"lr": args.start_lr * mult_factor,
},
]
_logger.info(
"Parameters excluded from weight decay:\n - %s",
"\n - ".join(names_no_decay),
)
if len(names_lr_mult):
_logger.info(
"Parameters with lr multiplied by %s:\n - %s",
mult_factor,
"\n - ".join(names_lr_mult),
)
else:
parameters = model.parameters()
if args.optimizer == "ranger":
from src.utils.nn.optimizer.ranger import Ranger
opt = Ranger(parameters, lr=args.start_lr, **optimizer_options)
elif args.optimizer == "adam":
opt = torch.optim.Adam(parameters, lr=args.start_lr, **optimizer_options)
elif args.optimizer == "adamW":
opt = torch.optim.AdamW(parameters, lr=args.start_lr, **optimizer_options)
elif args.optimizer == "radam":
opt = torch.optim.RAdam(parameters, lr=args.start_lr, **optimizer_options)
if args.__dict__[load_model_weights] is not None:
_logger.info("Resume training from file %s" % args.__dict__[load_model_weights])
model_state = torch.load(
args.__dict__[load_model_weights],
map_location=device,
)
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
model.module.load_state_dict(model_state["model"])
else:
model.load_state_dict(model_state["model"])
opt_state = model_state["optimizer"]
opt.load_state_dict(opt_state)
scheduler = None
if args.lr_scheduler == "steps":
lr_step = round(args.num_epochs / 3)
scheduler = torch.optim.lr_scheduler.MultiStepLR(
opt,
milestones=[10],
gamma=0.20,
last_epoch=-1
)
elif args.lr_scheduler == "flat+decay":
num_decay_epochs = max(1, int(args.num_epochs * 0.3))
milestones = list(
range(args.num_epochs - num_decay_epochs, args.num_epochs)
)
gamma = 0.01 ** (1.0 / num_decay_epochs)
if len(names_lr_mult):
def get_lr(epoch):
return gamma ** max(0, epoch - milestones[0] + 1) # noqa
scheduler = torch.optim.lr_scheduler.LambdaLR(
opt,
(lambda _: 1, lambda _: 1, get_lr, get_lr),
last_epoch=-1,
verbose=True,
)
else:
scheduler = torch.optim.lr_scheduler.MultiStepLR(
opt,
milestones=milestones,
gamma=gamma,
last_epoch=-1
)
elif args.lr_scheduler == "flat+linear" or args.lr_scheduler == "flat+cos":
total_steps = args.num_epochs * args.steps_per_epoch
warmup_steps = args.warmup_steps
flat_steps = total_steps * 0.7 - 1
min_factor = 0.001
def lr_fn(step_num):
if step_num > total_steps:
raise ValueError(
"Tried to step {} times. The specified number of total steps is {}".format(
step_num + 1, total_steps
)
)
if step_num < warmup_steps:
return 1.0 * step_num / warmup_steps
if step_num <= flat_steps:
return 1.0
pct = (step_num - flat_steps) / (total_steps - flat_steps)
if args.lr_scheduler == "flat+linear":
return max(min_factor, 1 - pct)
else:
return max(min_factor, 0.5 * (math.cos(math.pi * pct) + 1))
scheduler = torch.optim.lr_scheduler.LambdaLR(
opt,
lr_fn,
last_epoch=-1
if args.load_epoch is None
else args.load_epoch * args.steps_per_epoch,
)
scheduler._update_per_step = (
True # mark it to update the lr every step, instead of every epoch
)
elif args.lr_scheduler == "one-cycle":
scheduler = torch.optim.lr_scheduler.OneCycleLR(
opt,
max_lr=args.start_lr,
epochs=args.num_epochs,
steps_per_epoch=args.steps_per_epoch,
pct_start=0.3,
anneal_strategy="cos",
div_factor=25.0,
last_epoch=-1 if args.load_epoch is None else args.load_epoch,
)
scheduler._update_per_step = (
True # mark it to update the lr every step, instead of every epoch
)
elif args.lr_scheduler == "reduceplateau":
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
opt, patience=2, threshold=0.01
)
# scheduler._update_per_step = (
# True # mark it to update the lr every step, instead of every epoch
# )
scheduler._update_per_step = (
False # mark it to update the lr every step, instead of every epoch
)
if args.__dict__[load_model_weights]:
if scheduler is not None:
scheduler.load_state_dict(model_state["scheduler"])
return opt, scheduler
def get_target_obj_score(clusters_eta, clusters_phi, clusters_pt, event_idx_clusters, dq_eta, dq_phi, dq_event_idx, gt_mode="all_in_radius"):
# return the target scores for each cluster (reteurns list of 1's and 0's)
# dq_coords: list of [eta, phi] for each dark quark
# dq_event_idx: list of event_idx for each dark quarks
target = []
if gt_mode == "all_in_radius":
for event in event_idx_clusters.unique():
filt = event_idx_clusters == event
clusters = torch.stack([clusters_eta[filt], clusters_phi[filt], clusters_pt[filt]], dim=1)
dq_coords_event = torch.stack([dq_eta[dq_event_idx == event], dq_phi[dq_event_idx == event]], dim=1)
dist_matrix = torch.cdist(
dq_coords_event,
clusters[:, :2].to(dq_coords_event.device),
p=2
).T
if len(dist_matrix) == 0:
target.append(torch.zeros(len(clusters)).int().to(dist_matrix.device))
continue
closest_quark_dist, closest_quark_idx = dist_matrix.min(dim=1)
closest_quark_idx[closest_quark_dist > 0.8] = -1
target.append((closest_quark_idx != -1).float())
else:
# GT is set by only considering the closest jet to each dark quark (if it's within radius)
for event in event_idx_clusters.unique():
filt = event_idx_clusters == event
clusters = torch.stack([clusters_eta[filt], clusters_phi[filt], clusters_pt[filt]], dim=1)
dq_coords_event = torch.stack([dq_eta[dq_event_idx == event], dq_phi[dq_event_idx == event]], dim=1)
dist_matrix = torch.cdist(
dq_coords_event,
clusters[:, :2].to(dq_coords_event.device),
p=2
).T
if len(dist_matrix) == 0:
target.append(torch.zeros(len(clusters)).int().to(dist_matrix.device))
continue
closest_cluster_dist, closest_cluster_idx = dist_matrix.min(dim=0)
closest_cluster_idx[closest_cluster_dist > 0.8] = -1
matched_clusters = closest_cluster_idx[closest_cluster_idx != -1]
t = torch.zeros_like(clusters_eta[filt])
print(matched_clusters)
print(matched_clusters.int())
t[matched_clusters.long()] = 1
target.append(t)
return torch.cat(target).flatten()
def plot_obj_score_debug(dq_eta, dq_phi, dq_batch_idx, clusters_eta, clusters_phi, clusters_pt, clusters_batch_idx, clusters_labels, input_pxyz, input_event_idx, input_clusters, pred_obj_score_clusters):
# For debugging the Objectness Score head.
import matplotlib.pyplot as plt
n_events = dq_batch_idx.max().int().item() + 1
pfcands_pt = torch.sqrt(input_pxyz[:, 0] ** 2 + input_pxyz[:, 1] ** 2)
pfcands_eta, pfcands_phi = calc_eta_phi(input_pxyz, return_stacked=0)
fig, ax = plt.subplots(1, n_events, figsize=(n_events * 3, 3))
colors = {0: "grey", 1: "green"}
for i in range(n_events):
# Plot the clusters as dots that are green for label 1 and gray for label 0
filt = clusters_batch_idx == i
ax[i].scatter(clusters_eta[filt].cpu(), clusters_phi[filt].cpu(), c=[colors[x] for x in clusters_labels[filt].tolist()], cmap="coolwarm", s=clusters_pt[filt].cpu(), alpha=0.5)
# with a light gray text, also plot the target objectness score for each cluster
for j in range(len(clusters_eta[filt])):
ax[i].text(clusters_eta[filt][j].cpu()-0.5, clusters_phi[filt][j].cpu()-0.5, str(round(pred_obj_score_clusters[filt][j].item(), 2)), fontsize=6, color="gray", alpha=0.7)
# Plot the dark quarks as red dots
filt = dq_batch_idx == i
ax[i].scatter(dq_eta[filt].cpu(), dq_phi[filt].cpu(), c="red", alpha=0.5)
ax[i].scatter(pfcands_eta[input_event_idx == i].cpu(), pfcands_phi[input_event_idx == i].cpu(), c=input_clusters[input_event_idx == i].cpu(), cmap="coolwarm", s=pfcands_pt[input_event_idx == i].cpu(), alpha=0.5)
# put pt of the clusters in gray text on top of them
filt = clusters_batch_idx == i
for j in range(len(clusters_eta[filt])):
ax[i].text(clusters_eta[filt][j].cpu(), clusters_phi[filt][j].cpu(), str(round(clusters_pt[filt][j].item(), 2)), fontsize=8, color="black")
fig.tight_layout()
return fig
def get_loss_func(args):
# Loss function takes in the output of a model and the output of GT (the GT labels) and returns the loss.
def loss(model_input, model_output, gt_labels):
batch_numbers = model_input.batch_idx
if not (args.loss == "quark_distance" or args.train_objectness_score):
labels = gt_labels+1
else:
labels = gt_labels
return object_condensation_loss(model_input, model_output, labels, batch_numbers,
attr_weight=args.attr_loss_weight,
repul_weight=args.repul_loss_weight,
coord_weight=args.coord_loss_weight,
beta_type=args.beta_type,
lorentz_norm=args.lorentz_norm,
spatial_part_only=args.spatial_part_only,
loss_quark_distance=args.loss=="quark_distance",
oc_scalars=args.scalars_oc,
loss_obj_score=args.train_objectness_score)
return loss
def renumber_clusters(tensor):
unique = tensor.unique()
mapping = torch.zeros(unique.max() + 1)
for i, u in enumerate(unique):
mapping[u] = i
return mapping[tensor]
def get_gt_func(args):
# Gets the GT function: the function accepts an Event batch
# and returns the ground truth labels (GT idx of a dark quark it belongs to, or -1 for noise)
# By default, it returns the dark quark that is closest to the event, IF it's closer than R.
R = args.gt_radius
def get_idx_for_event(obj, i):
return obj.batch_number[i], obj.batch_number[i + 1]
def get_labels(b, pfcands, special=False, get_coordinates=False, get_dq_coords=False):
# b: Batch of events
# if get_coordinates is true, it returns the coordinates of the labels rather than the clustering labels themselves.
labels = torch.zeros(len(pfcands)).long()
if get_coordinates:
labels_coordinates = torch.zeros(len(b.matrix_element_gen_particles.pt), 4).float()
labels_no_renumber = torch.ones_like(labels)*-1
offset = 0
if get_dq_coords:
dq_coords = [b.matrix_element_gen_particles.eta, b.matrix_element_gen_particles.phi]
#dq_coords_batch_idx = b.matrix_element_gen_particles.batch_number
dq_coords_batch_idx = torch.zeros(b.matrix_element_gen_particles.pt.shape)
for i in range(len(b.matrix_element_gen_particles.batch_number) - 1):
dq_coords_batch_idx[b.matrix_element_gen_particles.batch_number[i]:b.matrix_element_gen_particles.batch_number[i + 1]] = i
for i in range(len(b)):
s_dq, e_dq = get_idx_for_event(b.matrix_element_gen_particles, i)
dq_eta = b.matrix_element_gen_particles.eta[s_dq:e_dq]
dq_phi = b.matrix_element_gen_particles.phi[s_dq:e_dq]
# dq_pt = b.matrix_element_gen_particles.pt[s:e] # Maybe we can somehow weigh the loss by pt?
s, e = get_idx_for_event(pfcands, i)
pfcands_eta = pfcands.eta[s:e]
pfcands_phi = pfcands.phi[s:e]
# calculate the distance matrix between each dark quark and pfcands
dist_matrix = torch.cdist(
torch.stack([dq_eta, dq_phi], dim=1),
torch.stack([pfcands_eta, pfcands_phi], dim=1),
p=2
)
dist_matrix = dist_matrix.T
closest_quark_dist, closest_quark_idx = dist_matrix.min(dim=1)
closest_quark_idx[closest_quark_dist > R] = -1
if len(closest_quark_idx):
#if special: print("Closest quark idx", closest_quark_idx, "; renumbered ",
# renumber_clusters(closest_quark_idx + 1) - 1)
if not get_coordinates:
closest_quark_idx = renumber_clusters(closest_quark_idx + 1) - 1
else:
labels_no_renumber[s:e] = closest_quark_idx
closest_quark_idx[closest_quark_idx != -1] += offset
labels[s:e] = closest_quark_idx
if get_coordinates:
E_dq = b.matrix_element_gen_particles.E[s_dq:e_dq]
pxyz_dq = b.matrix_element_gen_particles.pxyz[s_dq:e_dq] # the -1 doesn't matter as it will be ignored anyway
labels_coordinates[s_dq:e_dq] = torch.cat([E_dq.unsqueeze(-1), pxyz_dq], dim=1)
offset += len(E_dq)
if get_coordinates:
return TensorCollection(labels=labels, labels_coordinates=labels_coordinates, labels_no_renumber=labels_no_renumber)
if get_dq_coords:
return TensorCollection(labels=labels, dq_coords=dq_coords, dq_coords_batch_idx=dq_coords_batch_idx)
return labels
def gt(events):
#special_labels = get_labels(events, events.special_pfcands, special=True)
#print("Special pfcands labels", special_labels)
#return torch.cat([get_labels(events, events.pfcands), special_labels])
pfcands = events.pfcands
if args.parton_level:
pfcands = events.final_parton_level_particles
if args.gen_level:
pfcands = events.final_gen_particles
return get_labels(events, pfcands, get_coordinates=args.loss=="quark_distance",
get_dq_coords=args.train_objectness_score)
return gt
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def get_model(args, dev):
network_options = {} # TODO: implement network options
network_module = import_module(args.network_config, name="_network_module")
model = network_module.get_model(obj_score=False, args=args, **network_options)
if args.load_model_weights:
print("Loading model state dict from %s" % args.load_model_weights)
model_state = torch.load(args.load_model_weights, map_location=dev)["model"]
missing_keys, unexpected_keys = model.load_state_dict(model_state, strict=False)
_logger.info(
"Model initialized with weights from %s\n ... Missing: %s\n ... Unexpected: %s"
% (args.load_model_weights, missing_keys, unexpected_keys)
)
assert len(missing_keys) == 0
assert len(unexpected_keys) == 0
return model
def get_model_obj_score(args, dev):
network_options = {} # TODO: implement network options
network_module = import_module(args.obj_score_module, name="_network_module")
model = network_module.get_model(obj_score=True, args=args, **network_options)
if args.load_objectness_score_weights:
assert args.train_objectness_score
print("Loading objectness score model state dict from %s" % args.load_objectness_score_weights)
model_state = torch.load(args.load_objectness_score_weights, map_location=dev)["model"]
missing_keys, unexpected_keys = model.load_state_dict(model_state, strict=False)
_logger.info(
"Objectness score model initialized with weights from %s\n ... Missing: %s\n ... Unexpected: %s"
% (args.load_objectness_score_weights, missing_keys, unexpected_keys)
)
assert len(missing_keys) == 0
assert len(unexpected_keys) == 0
return model
|