File size: 7,346 Bytes
e75a247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import os
from tqdm import tqdm
import argparse
import pickle
from src.plotting.eval_matrix import matrix_plot, scatter_plot
from src.utils.paths import get_path
import matplotlib.pyplot as plt
import numpy as np

# This script produces the pt cutoff vs. f1 score

inputs = {
    30: "Delphes_020425_test_PU_PFfix_part0/batch_eval_2k/DelphesPFfix_FullDataset_pt_30.0",
    40: "Delphes_020425_test_PU_PFfix_part0/batch_eval_2k/DelphesPFfix_FullDataset_pt_40.0",
    50: "Delphes_020425_test_PU_PFfix_part0/batch_eval_2k/DelphesPFfix_FullDataset_pt_50.0",
    60: "Delphes_020425_test_PU_PFfix_part0/batch_eval_2k/DelphesPFfix_FullDataset_pt_60.0",
    70: "Delphes_020425_test_PU_PFfix_part0/batch_eval_2k/DelphesPFfix_FullDataset_pt_70.0",
    80: "Delphes_020425_test_PU_PFfix_part0/batch_eval_2k/DelphesPFfix_FullDataset_pt_80.0",
    90: "Delphes_020425_test_PU_PFfix_part0/batch_eval_2k/DelphesPFfix_FullDataset_pt_90.0",
    100: "Delphes_020425_test_PU_PFfix_part0/batch_eval_2k/DelphesPFfix_FullDataset"
}

inputs = {
    30: "Delphes_020425_test_PU_PFfix_part0/batch_eval_2k/DelphesPFfix_FullDataset_TrainDSstudy_pt_30.0",
    40: "Delphes_020425_test_PU_PFfix_part0/batch_eval_2k/DelphesPFfix_FullDataset_TrainDSstudy_pt_40.0",
    50:  "Delphes_020425_test_PU_PFfix_part0/batch_eval_2k/DelphesPFfix_FullDataset_TrainDSstudy_pt_50.0",
    60: "Delphes_020425_test_PU_PFfix_part0/batch_eval_2k/DelphesPFfix_FullDataset_TrainDSstudy_pt_60.0",
    70: "Delphes_020425_test_PU_PFfix_part0/batch_eval_2k/DelphesPFfix_FullDataset_TrainDSstudy_pt_70.0",
    80: "Delphes_020425_test_PU_PFfix_part0/batch_eval_2k/DelphesPFfix_FullDataset_TrainDSstudy_pt_80.0",
    90: "Delphes_020425_test_PU_PFfix_part0/batch_eval_2k/DelphesPFfix_FullDataset_TrainDSstudy_pt_90.0",
    100: "Delphes_020425_test_PU_PFfix_part0/batch_eval_2k/DelphesPFfix_FullDataset_TrainDSstudy",
}
'''
print("PLOTTING QCD")
inputs = {
    30: "QCD_test_part0/batch_eval_2k/DelphesPFfix_FullDataset_TrainDSstudy_QCD_pt_30.0",
    40: "QCD_test_part0/batch_eval_2k/DelphesPFfix_FullDataset_TrainDSstudy_QCD_pt_40.0",
    50: "QCD_test_part0/batch_eval_2k/DelphesPFfix_FullDataset_TrainDSstudy_QCD_pt_50.0",
    60: "QCD_test_part0/batch_eval_2k/DelphesPFfix_FullDataset_TrainDSstudy_QCD_pt_60.0",
    70: "QCD_test_part0/batch_eval_2k/DelphesPFfix_FullDataset_TrainDSstudy_QCD_pt_70.0",
    80: "QCD_test_part0/batch_eval_2k/DelphesPFfix_FullDataset_TrainDSstudy_QCD_pt_80.0",
    90: "QCD_test_part0/batch_eval_2k/DelphesPFfix_FullDataset_TrainDSstudy_QCD_pt_90.0",
    100: "QCD_test_part0/batch_eval_2k/DelphesPFfix_FullDataset_TrainDSstudy_QCD"
}
'''
files = {
    key: pickle.load(open(os.path.join(get_path(value, "results"), "precision_recall.pkl"), "rb")) for key, value in inputs.items()
}

titles = {key: set(value.keys()) for key, value in files.items()}
# make a set of the intersections of titles
intersections = sorted(list(set.intersection(*titles.values())))


titles_to_plot = {
    "AK, R=0.8": ["AK8", "gray"],
    "GT_R=0.8 LGATr_GP_IRC_S_50k_s12900, sc. (aug)": ["LGATr_GP_IRC_S", "red"],
    "GT_R=0.8 LGATr_GP_50k_s25020, sc. (aug)": ["LGATr_GP", "purple"],
    "GT_R=0.8 base_LGATr_s50000, sc.": ["LGATr", "orange"]
} # To plot different variations of the model

print("QCD") # colors=   [{"base_LGATr": "orange", "LGATr_700_07": "red", "LGATr_QCD": "purple", "LGATr_700_07+900_03": "blue", "LGATr_700_07+900_03+QCD": "green", "AK8": "gray"}, {"base_LGATr": "LGATr_900_03"}],
titles_to_plot = {
    "AK, R=0.8": ["AK8", "gray"],

    "GT_R=0.8 base_LGATr_s50000, sc.": ["LGATr_900_03", "orange"],
    "GT_R=0.8 LGATr_QCD_s50000, sc.": ["LGATr_QCD", "purple"],
    "GT_R=0.8 LGATr_700_07_s50000, sc.": ["LGATr_700_07", "red"],
    "GT_R=0.8 LGATr_700_07+900_03_s50000, sc.": ["LGATr_700_07+900_03", "blue"],
    "GT_R=0.8 LGATr_700_07+900_03+QCD_s50000, sc.": ["LGATr_700_07+900_03+QCD", "green"],
}

titles_to_plot = {
    "AK, R=0.8": ["AK8", "gray"],
    "GT_R=0.8 LGATr_GP_IRC_S_50k_s12900, sc. (aug)": ["LGATr_900_03", "orange"],
    "GT_R=0.8 LGATr_GP_IRC_S_QCD_s24000, sc. (aug)": ["LGATr_QCD", "purple"],
    "GT_R=0.8 LGATr_GP_IRC_S_700_07_s24000, sc. (aug)": ["LGATr_700_07", "red"],
    "GT_R=0.8 LGATr_GP_IRC_S_700_07+900_03_s24000, sc. (aug)": ["LGATr_700_07+900_03", "blue"],
    "GT_R=0.8 LGATr_GP_IRC_S_700_07+900_03+QCD_s24000, sc. (aug)": ["LGATr_700_07+900_03+QCD", "green"],
}


intersections = sorted(list(titles_to_plot.keys()))

output_dirs = []
for _, value in inputs.items():
    output_dirs.append(get_path(value, "results"))
result = files[100][intersections[0]]
mediator_masses = sorted(list(result.keys()))

r_invs = sorted(list(set([rinv for mMed in result for mDark in result[mMed] for rinv in result[mMed][mDark]])))
sz = 4

#fig, ax = plt.subplots(len(inputs), len(titles_to_plot), figsize=(sz*len(titles_to_plot), sz*len(inputs)))
fig, ax = plt.subplots(len(mediator_masses), len(r_invs), figsize=(sz*len(r_invs), sz*len(mediator_masses)))
figp, axp = plt.subplots(len(mediator_masses), len(r_invs), figsize=(sz*len(r_invs), sz*len(mediator_masses)))
figr, axr = plt.subplots(len(mediator_masses), len(r_invs), figsize=(sz*len(r_invs), sz*len(mediator_masses)))

if len(r_invs) == 1 and len(mediator_masses) == 1:
    ax = np.array([[ax]])
    axp = np.array([[axp]])
    axr = np.array([[axr]])
grids = set()

for i, mMed in enumerate(mediator_masses):
    for j, rInv in enumerate(r_invs):
        for k, title in enumerate(intersections):
            label, color = titles_to_plot[title]
            pts = sorted(list(inputs.keys()))
            precisions = []
            recalls = []
            f1_scores = []
            for pt in pts:
                precision, recall = files[pt][title][mMed][20][rInv]
                precisions.append(precision)
                recalls.append(recall)
                f1_score = 2 * precision * recall / (precision + recall)
                f1_scores.append(f1_score)
            ax[i, j].plot(pts, f1_scores, ".-", label=label, color=color)
            axp[i, j].plot(pts, precisions, ".-", label=label, color=color)
            axr[i, j].plot(pts, recalls, ".-", label=label, color=color)
            ax[i, j].set_title(f"$m_{{Z'}} = {mMed}$ GeV, $r_{{inv.}}$ = {rInv}")
            ax[i, j].set_xlabel("$p_T^{cutoff}$")
            axp[i, j].set_title(f"$m_{{Z'}} = {mMed}$ GeV, $r_{{inv.}}$ = {rInv}")
            axp[i, j].set_xlabel("$p_T^{cutoff}$")
            axr[i, j].set_title(f"$m_{{Z'}} = {mMed}$ GeV, $r_{{inv.}}$ = {rInv}")
            axr[i, j].set_xlabel("$p_T^{cutoff}$")
            ax[i, j].set_ylabel("$F_1$ score")
            axp[i, j].set_ylabel("Precision")
            axr[i, j].set_ylabel("Recall")

            ax[i, j].legend()
            axp[i, j].legend()
            axr[i, j].legend()
            if (i, j) not in grids:
                ax[i, j].grid()
                axp[i, j].grid()
                axr[i, j].grid()
            grids.add((i, j))


for f in output_dirs:
    fig.tight_layout()
    fname = os.path.join(f, "pt_cutoff_vs_f1_score.pdf")
    fig.tight_layout()
    fig.savefig(fname)
    print("saved to", fname)

    fname = os.path.join(f, "pt_cutoff_vs_precision.pdf")
    figp.tight_layout()
    figp.savefig(fname)
    fname = os.path.join(f, "pt_cutoff_vs_recall.pdf")
    figr.tight_layout()
    figr.savefig(fname)