Spaces:
Sleeping
Sleeping
File size: 9,828 Bytes
e75a247 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
import os
from tqdm import tqdm
import argparse
import pickle
from src.plotting.eval_matrix import matrix_plot, scatter_plot
from src.utils.paths import get_path
import matplotlib.pyplot as plt
parser = argparse.ArgumentParser()
parser.add_argument("--input", type=str, required=False, default="scouting_PFNano_signals2/SVJ_hadronic_std/batch_eval/small_dataset")
args = parser.parse_args()
path = get_path(args.input, "results")
def get_steps(config):
if "ckpt_step" in config:
return config["ckpt_step"]
# else, config["load_model_weights"] looks like /.../.../step_xxxx_epoch_y.ckpt (fallback)
return int(config["load_model_weights"].split("/")[-1].split("_")[1])
def get_short(network_config):
if "transformer" in network_config.lower():
return "Transformer"
if "lgatr" in network_config.lower():
return "LGATr"
if "gatr" in network_config.lower():
return "GATr"
return "Unknown"
def get_model_details(path_to_eval):
config = pickle.load(open(os.path.join(path_to_eval, "run_config.pkl"), "rb"))
return config["num_parameters"], get_short(config["network_config"]), get_steps(config)
models = sorted([x for x in os.listdir(path) if not (os.path.isfile(os.path.join(path, x)) or "AK8" in x)])# + ["AK8", "AK8_GenJets"]
data = [get_model_details(os.path.join(path, model)) for model in models] + [(0, "AK8", 0), (0, "AK8_GenJets", 0)]
models = models + ["AK8", "AK8_GenJets"]
out_file_PR = os.path.join(get_path(args.input, "results"), "precision_recall_n_params.pdf")
sz = 5
fig, ax = plt.subplots(3, len(models), figsize=(sz * len(models), sz * 3))
result_scatter = {} # e.g. Transformer -> [xarr, yarr, yarr1, yarr2]
result_scatter_900_03 = {}
result_by_step = {"900_03": {}, "700_07": {}} # Model+n_params -> [step, p, r, f1]
def get_arch_name(n_params, net_short):
if net_short == "Transformer":
if n_params == 4674:
return "Tr-2-16-4"
elif n_params == 1201108:
return "Tr"
elif n_params == 1322274:
return "Tr"
elif n_params == 167394:
return "Tr-5-64-4"
if net_short == "LGATr":
if n_params == 8424:
return "LGATr-2-4-4"
elif n_params == 1201108:
return "LGATr"
elif n_params == 156332:
return "LGATr-3-16-16"
if net_short == "GATr":
if n_params == 6533:
return "GATr-2-4-4"
if n_params == 926041:
return "GATr"
if "AK8" in net_short:
return net_short
return None
# n_params, P, R, f1
for i, model in tqdm(enumerate(models)):
output_path = os.path.join(path, model, "count_matched_quarks")
if not os.path.exists(os.path.join(output_path, "result.pkl")):
continue
result = pickle.load(open(os.path.join(output_path, "result.pkl"), "rb"))
result_fakes = pickle.load(open(os.path.join(output_path, "result_fakes.pkl"), "rb"))
result_bc = pickle.load(open(os.path.join(output_path, "result_bc.pkl"), "rb"))
result_PR = pickle.load(open(os.path.join(output_path, "result_PR.pkl"), "rb"))
#matrix_plot(result_PR, "Oranges", "Precision (N matched dark quarks / N predicted jets)", metric_comp_func = lambda r: r[0], ax=ax[0, i])
#matrix_plot(result_PR, "Reds", "Recall (N matched dark quarks / N dark quarks)", metric_comp_func = lambda r: r[1], ax=ax[1, i])
#matrix_plot(result_PR, "Purples", r"$F_1$ score", metric_comp_func = lambda r: 2 * r[0] * r[1] / (r[0] + r[1]), ax=ax[2, i])
arch = get_arch_name(data[i][0], data[i][1])
if arch is not None:
if result_by_step["900_03"].get(arch) is None:
for key in result_by_step:
result_by_step[key][arch] = [[], [], [], []]
pr = result_PR[900][20][0.3]
result_by_step["900_03"][arch][0].append(data[i][2])
result_by_step["900_03"][arch][1].append(pr[0])
result_by_step["900_03"][arch][2].append(pr[1])
result_by_step["900_03"][arch][3].append(2 * pr[0] * pr[1] / (pr[0] + pr[1]))
pr = result_PR[700][20][0.7]
result_by_step["700_07"][arch][0].append(data[i][2])
result_by_step["700_07"][arch][1].append(pr[0])
result_by_step["700_07"][arch][2].append(pr[1])
result_by_step["700_07"][arch][3].append(2 * pr[0] * pr[1] / (pr[0] + pr[1]))
if data[i][2] != 40000:
continue
ax[0, i].set_title(str(data[i][0]) + " " + data[i][1])
ax[1, i].set_title(str(data[i][0]) + " " + data[i][1])
ax[2, i].set_title(str(data[i][0]) + " " + data[i][1])
if data[i][1] not in result_scatter:
result_scatter[data[i][1]] = [[], [], [], []]
result_scatter_900_03[data[i][1]] = [[], [], [], []]
result_scatter[data[i][1]][0].append(data[i][0])
pr = result_PR[700][20][0.7]
pr_900_03 = result_PR[900][20][0.3]
result_scatter[data[i][1]][3].append(2 * pr[0] * pr[1] / (pr[0] + pr[1]))
result_scatter[data[i][1]][1].append(pr[0])
result_scatter[data[i][1]][2].append(pr[1])
result_scatter_900_03[data[i][1]][3].append(2 * pr_900_03[0] * pr_900_03[1] / (pr_900_03[0] + pr_900_03[1]))
result_scatter_900_03[data[i][1]][1].append(pr_900_03[0])
result_scatter_900_03[data[i][1]][2].append(pr_900_03[1])
result_scatter_900_03[data[i][1]][0].append(data[i][0])
fig.tight_layout()
fig.savefig(out_file_PR)
print("Saved to", out_file_PR)
fig_scatter, ax_scatter = plt.subplots(3, 1, figsize=(sz , sz * 3))
colors = {
"Transformer": "green",
"GATr": "blue",
"LGATr": "red",
}
for key in result_scatter:
scatter_plot(ax_scatter[0], result_scatter[key][0], result_scatter[key][1], key)
scatter_plot(ax_scatter[1], result_scatter[key][0], result_scatter[key][2], key)
scatter_plot(ax_scatter[2], result_scatter[key][0], result_scatter[key][3], key)
ax_scatter[0].set_ylabel("Precision")
ax_scatter[1].set_ylabel("Recall")
ax_scatter[2].set_ylabel("F1 score")
ax_scatter[0].set_xlabel("N params")
ax_scatter[1].set_xlabel("N params")
ax_scatter[2].set_xlabel("N params")
ax_scatter[0].legend()
ax_scatter[1].legend()
ax_scatter[2].legend()
ax_scatter[0].grid()
ax_scatter[1].grid()
ax_scatter[2].grid()
ax_scatter[0].set_xscale("log")
ax_scatter[1].set_xscale("log")
ax_scatter[2].set_xscale("log")
fig_scatter.tight_layout()
fig_scatter.savefig(out_file_PR.replace(".pdf", "_scatter_700_07.pdf"))
print("Saved to", out_file_PR.replace(".pdf", "_scatter_700_07.pdf"))
fig_scatter, ax_scatter = plt.subplots(3, 1, figsize=(sz, sz*3))
for key in result_scatter_900_03:
scatter_plot(ax_scatter[0], result_scatter_900_03[key][0], result_scatter_900_03[key][1], key)
scatter_plot(ax_scatter[1], result_scatter_900_03[key][0], result_scatter_900_03[key][2], key)
scatter_plot(ax_scatter[2], result_scatter_900_03[key][0], result_scatter_900_03[key][3], key)
ax_scatter[0].set_ylabel("Precision")
ax_scatter[1].set_ylabel("Recall")
ax_scatter[2].set_ylabel("F1 score")
ax_scatter[0].set_xlabel("N params")
ax_scatter[1].set_xlabel("N params")
ax_scatter[2].set_xlabel("N params")
ax_scatter[0].legend()
ax_scatter[1].legend()
ax_scatter[2].legend()
ax_scatter[0].grid()
ax_scatter[1].grid()
ax_scatter[2].grid()
ax_scatter[0].set_xscale("log")
ax_scatter[1].set_xscale("log")
ax_scatter[2].set_xscale("log")
fig_scatter.tight_layout()
fig_scatter.savefig(out_file_PR.replace(".pdf", "_scatter_900_03.pdf"))
print("Saved to", out_file_PR.replace(".pdf", "_scatter_900_03.pdf"))
fig_scatter, ax_scatter = plt.subplots(3, 2, figsize=(sz*2, sz*3))
fig_params_paper, ax_params_paper = plt.subplots(1, 2, figsize=(sz, sz*1.5))
for i, key in enumerate(sorted(list(result_by_step.keys()))):
for model in result_by_step[key]:
#scatter_plot(ax_scatter[], result_scatter_900_03[key][0], result_scatter_900_03[key][1], key)
#scatter_plot(ax_scatter[1], result_scatter_900_03[key][0], result_scatter_900_03[key][2], key)
#scatter_plot(ax_scatter[2], result_scatter_900_03[key][0], result_scatter_900_03[key][3], key)
if "AK8" in model:
# put a horizontal dotted line instead of a scatterplot, as there is only one dot
colors = {"AK8": "gray", "AK8_GenJets": "black"}
ax_scatter[0, i].axhline(result_by_step[key][model][1][0], label=model, color=colors[model], linestyle="--")
ax_scatter[1, i].axhline(result_by_step[key][model][2][0], label=model, color=colors[model], linestyle="--")
ax_scatter[2, i].axhline(result_by_step[key][model][3][0], label=model, color=colors[model], linestyle="--")
else:
scatter_plot(ax_scatter[0, i], result_by_step[key][model][0], result_by_step[key][model][1], model)
scatter_plot(ax_scatter[1, i], result_by_step[key][model][0], result_by_step[key][model][2], model)
scatter_plot(ax_scatter[2, i], result_by_step[key][model][0], result_by_step[key][model][3], model)
ax_scatter[0, i].set_title(key)
ax_scatter[1, i].set_title(key)
ax_scatter[2, i].set_title(key)
ax_scatter[0, i].set_ylabel("Precision")
ax_scatter[1, i].set_ylabel("Recall")
ax_scatter[2, i].set_ylabel("F_1 score")
ax_scatter[0, i].set_xlabel("training steps")
ax_scatter[1, i].set_xlabel("training steps")
ax_scatter[2, i].set_xlabel("training steps")
ax_scatter[0, i].legend()
ax_scatter[1, i].legend()
ax_scatter[2, i].legend()
ax_scatter[0, i].grid()
ax_scatter[1, i].grid()
ax_scatter[2, i].grid()
ax_scatter[0, i].set_xscale("log")
ax_scatter[1, i].set_xscale("log")
ax_scatter[2, i].set_xscale("log")
fig_scatter.tight_layout()
fig_scatter.savefig(out_file_PR.replace(".pdf", "_by_step.pdf"))
print("Saved to", out_file_PR.replace(".pdf", "_by_step.pdf"))
|