File size: 9,828 Bytes
e75a247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import os
from tqdm import tqdm
import argparse
import pickle
from src.plotting.eval_matrix import matrix_plot, scatter_plot
from src.utils.paths import get_path
import matplotlib.pyplot as plt

parser = argparse.ArgumentParser()
parser.add_argument("--input", type=str, required=False, default="scouting_PFNano_signals2/SVJ_hadronic_std/batch_eval/small_dataset")

args = parser.parse_args()
path = get_path(args.input, "results")

def get_steps(config):
    if "ckpt_step" in config:
        return config["ckpt_step"]
    # else, config["load_model_weights"] looks like /.../.../step_xxxx_epoch_y.ckpt (fallback)
    return int(config["load_model_weights"].split("/")[-1].split("_")[1])

def get_short(network_config):
    if "transformer" in network_config.lower():
        return "Transformer"
    if "lgatr" in network_config.lower():
        return "LGATr"
    if "gatr" in network_config.lower():
        return "GATr"
    return "Unknown"

def get_model_details(path_to_eval):
    config = pickle.load(open(os.path.join(path_to_eval, "run_config.pkl"), "rb"))
    return config["num_parameters"], get_short(config["network_config"]), get_steps(config)

models = sorted([x for x in os.listdir(path) if not (os.path.isfile(os.path.join(path, x)) or "AK8" in x)])# + ["AK8", "AK8_GenJets"]
data = [get_model_details(os.path.join(path, model)) for model in models] + [(0, "AK8", 0), (0, "AK8_GenJets", 0)]
models = models + ["AK8", "AK8_GenJets"]

out_file_PR = os.path.join(get_path(args.input, "results"), "precision_recall_n_params.pdf")

sz = 5
fig, ax = plt.subplots(3, len(models), figsize=(sz * len(models), sz * 3))
result_scatter = {} # e.g. Transformer -> [xarr, yarr, yarr1, yarr2]
result_scatter_900_03 = {}

result_by_step = {"900_03": {}, "700_07": {}} # Model+n_params -> [step, p, r, f1]

def get_arch_name(n_params, net_short):
    if net_short == "Transformer":
        if n_params == 4674:
            return "Tr-2-16-4"
        elif n_params == 1201108:
            return "Tr"
        elif n_params == 1322274:
            return "Tr"
        elif n_params == 167394:
            return "Tr-5-64-4"
    if net_short == "LGATr":
        if n_params == 8424:
            return "LGATr-2-4-4"
        elif n_params == 1201108:
            return "LGATr"
        elif n_params == 156332:
            return "LGATr-3-16-16"
    if net_short == "GATr":
        if n_params == 6533:
            return "GATr-2-4-4"
        if n_params == 926041:
            return "GATr"
    if "AK8" in net_short:
        return net_short
    return None
# n_params, P, R, f1

for i, model in tqdm(enumerate(models)):
    output_path = os.path.join(path, model, "count_matched_quarks")
    if not os.path.exists(os.path.join(output_path, "result.pkl")):
        continue
    result = pickle.load(open(os.path.join(output_path, "result.pkl"), "rb"))
    result_fakes = pickle.load(open(os.path.join(output_path, "result_fakes.pkl"), "rb"))
    result_bc = pickle.load(open(os.path.join(output_path, "result_bc.pkl"), "rb"))
    result_PR = pickle.load(open(os.path.join(output_path, "result_PR.pkl"), "rb"))
    #matrix_plot(result_PR, "Oranges", "Precision (N matched dark quarks / N predicted jets)", metric_comp_func = lambda r: r[0], ax=ax[0, i])
    #matrix_plot(result_PR, "Reds", "Recall (N matched dark quarks / N dark quarks)", metric_comp_func = lambda r: r[1], ax=ax[1, i])
    #matrix_plot(result_PR, "Purples", r"$F_1$ score", metric_comp_func = lambda r: 2 * r[0] * r[1] / (r[0] + r[1]), ax=ax[2, i])
    arch = get_arch_name(data[i][0], data[i][1])
    if arch is not None:
        if result_by_step["900_03"].get(arch) is None:
            for key in result_by_step:
                result_by_step[key][arch] = [[], [], [], []]
        pr = result_PR[900][20][0.3]
        result_by_step["900_03"][arch][0].append(data[i][2])
        result_by_step["900_03"][arch][1].append(pr[0])
        result_by_step["900_03"][arch][2].append(pr[1])
        result_by_step["900_03"][arch][3].append(2 * pr[0] * pr[1] / (pr[0] + pr[1]))
        pr = result_PR[700][20][0.7]
        result_by_step["700_07"][arch][0].append(data[i][2])
        result_by_step["700_07"][arch][1].append(pr[0])
        result_by_step["700_07"][arch][2].append(pr[1])
        result_by_step["700_07"][arch][3].append(2 * pr[0] * pr[1] / (pr[0] + pr[1]))

    if data[i][2] != 40000:
        continue
    ax[0, i].set_title(str(data[i][0]) +  " " + data[i][1])
    ax[1, i].set_title(str(data[i][0]) +  " " + data[i][1])
    ax[2, i].set_title(str(data[i][0]) +  " " + data[i][1])
    if data[i][1] not in result_scatter:
        result_scatter[data[i][1]] = [[], [], [], []]
        result_scatter_900_03[data[i][1]] = [[], [], [], []]
    result_scatter[data[i][1]][0].append(data[i][0])
    pr = result_PR[700][20][0.7]
    pr_900_03 = result_PR[900][20][0.3]
    result_scatter[data[i][1]][3].append(2 * pr[0] * pr[1] / (pr[0] + pr[1]))
    result_scatter[data[i][1]][1].append(pr[0])
    result_scatter[data[i][1]][2].append(pr[1])
    result_scatter_900_03[data[i][1]][3].append(2 * pr_900_03[0] * pr_900_03[1] / (pr_900_03[0] + pr_900_03[1]))
    result_scatter_900_03[data[i][1]][1].append(pr_900_03[0])
    result_scatter_900_03[data[i][1]][2].append(pr_900_03[1])
    result_scatter_900_03[data[i][1]][0].append(data[i][0])

fig.tight_layout()
fig.savefig(out_file_PR)
print("Saved to", out_file_PR)

fig_scatter, ax_scatter = plt.subplots(3, 1, figsize=(sz , sz  * 3))

colors = {
    "Transformer": "green",
    "GATr": "blue",
    "LGATr": "red",
}
for key in result_scatter:
    scatter_plot(ax_scatter[0], result_scatter[key][0], result_scatter[key][1], key)
    scatter_plot(ax_scatter[1], result_scatter[key][0], result_scatter[key][2], key)
    scatter_plot(ax_scatter[2], result_scatter[key][0], result_scatter[key][3], key)

ax_scatter[0].set_ylabel("Precision")
ax_scatter[1].set_ylabel("Recall")
ax_scatter[2].set_ylabel("F1 score")
ax_scatter[0].set_xlabel("N params")
ax_scatter[1].set_xlabel("N params")
ax_scatter[2].set_xlabel("N params")
ax_scatter[0].legend()
ax_scatter[1].legend()
ax_scatter[2].legend()
ax_scatter[0].grid()
ax_scatter[1].grid()
ax_scatter[2].grid()
ax_scatter[0].set_xscale("log")
ax_scatter[1].set_xscale("log")
ax_scatter[2].set_xscale("log")

fig_scatter.tight_layout()
fig_scatter.savefig(out_file_PR.replace(".pdf", "_scatter_700_07.pdf"))
print("Saved to", out_file_PR.replace(".pdf", "_scatter_700_07.pdf"))

fig_scatter, ax_scatter = plt.subplots(3, 1, figsize=(sz, sz*3))

for key in result_scatter_900_03:
    scatter_plot(ax_scatter[0], result_scatter_900_03[key][0], result_scatter_900_03[key][1], key)
    scatter_plot(ax_scatter[1], result_scatter_900_03[key][0], result_scatter_900_03[key][2], key)
    scatter_plot(ax_scatter[2], result_scatter_900_03[key][0], result_scatter_900_03[key][3], key)

ax_scatter[0].set_ylabel("Precision")
ax_scatter[1].set_ylabel("Recall")
ax_scatter[2].set_ylabel("F1 score")
ax_scatter[0].set_xlabel("N params")
ax_scatter[1].set_xlabel("N params")
ax_scatter[2].set_xlabel("N params")
ax_scatter[0].legend()
ax_scatter[1].legend()
ax_scatter[2].legend()
ax_scatter[0].grid()
ax_scatter[1].grid()
ax_scatter[2].grid()
ax_scatter[0].set_xscale("log")
ax_scatter[1].set_xscale("log")
ax_scatter[2].set_xscale("log")

fig_scatter.tight_layout()
fig_scatter.savefig(out_file_PR.replace(".pdf", "_scatter_900_03.pdf"))
print("Saved to", out_file_PR.replace(".pdf", "_scatter_900_03.pdf"))


fig_scatter, ax_scatter = plt.subplots(3, 2, figsize=(sz*2, sz*3))
fig_params_paper, ax_params_paper = plt.subplots(1, 2, figsize=(sz, sz*1.5))

for i, key in enumerate(sorted(list(result_by_step.keys()))):
    for model in result_by_step[key]:
        #scatter_plot(ax_scatter[], result_scatter_900_03[key][0], result_scatter_900_03[key][1], key)
        #scatter_plot(ax_scatter[1], result_scatter_900_03[key][0], result_scatter_900_03[key][2], key)
        #scatter_plot(ax_scatter[2], result_scatter_900_03[key][0], result_scatter_900_03[key][3], key)
        if "AK8" in model:
            # put a horizontal dotted line instead of a scatterplot, as there is only one dot
            colors = {"AK8": "gray", "AK8_GenJets": "black"}
            ax_scatter[0, i].axhline(result_by_step[key][model][1][0], label=model, color=colors[model], linestyle="--")
            ax_scatter[1, i].axhline(result_by_step[key][model][2][0], label=model, color=colors[model], linestyle="--")
            ax_scatter[2, i].axhline(result_by_step[key][model][3][0], label=model, color=colors[model], linestyle="--")
        else:
            scatter_plot(ax_scatter[0, i], result_by_step[key][model][0], result_by_step[key][model][1], model)
            scatter_plot(ax_scatter[1, i], result_by_step[key][model][0], result_by_step[key][model][2], model)
            scatter_plot(ax_scatter[2, i], result_by_step[key][model][0], result_by_step[key][model][3], model)
        ax_scatter[0, i].set_title(key)
        ax_scatter[1, i].set_title(key)
        ax_scatter[2, i].set_title(key)
        ax_scatter[0, i].set_ylabel("Precision")
        ax_scatter[1, i].set_ylabel("Recall")
        ax_scatter[2, i].set_ylabel("F_1 score")
        ax_scatter[0, i].set_xlabel("training steps")
        ax_scatter[1, i].set_xlabel("training steps")
        ax_scatter[2, i].set_xlabel("training steps")
        ax_scatter[0, i].legend()
        ax_scatter[1, i].legend()
        ax_scatter[2, i].legend()
        ax_scatter[0, i].grid()
        ax_scatter[1, i].grid()
        ax_scatter[2, i].grid()
        ax_scatter[0, i].set_xscale("log")
        ax_scatter[1, i].set_xscale("log")
        ax_scatter[2, i].set_xscale("log")
fig_scatter.tight_layout()
fig_scatter.savefig(out_file_PR.replace(".pdf", "_by_step.pdf"))
print("Saved to", out_file_PR.replace(".pdf", "_by_step.pdf"))