File size: 10,172 Bytes
e75a247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
#!/usr/bin/env python

import shutil
import glob
import argparse
import functools
import numpy as np
import math
import torch
import sys
import os
import wandb
import time
from pathlib import Path

torch.autograd.set_detect_anomaly(True)

from src.utils.train_utils import count_parameters, get_gt_func, get_loss_func
from src.utils.utils import clear_empty_paths
from src.utils.wandb_utils import get_run_by_name, update_args
from src.logger.logger import _logger, _configLogger
from src.dataset.dataset import SimpleIterDataset
from src.utils.import_tools import import_module
from src.utils.train_utils import (
    to_filelist,
    train_load,
    test_load,
    get_model,
    get_optimizer_and_scheduler,
    get_model_obj_score
)
from src.evaluation.clustering_metrics import compute_f1_score_from_result
from src.dataset.functions_graph import graph_batch_func
from src.utils.parser_args import parser
from src.utils.paths import get_path
import warnings
import pickle
import os



def find_free_port():
    """https://stackoverflow.com/questions/1365265/on-localhost-how-do-i-pick-a-free-port-number"""
    import socket
    from contextlib import closing

    with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as s:
        s.bind(("", 0))
        s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
        return str(s.getsockname()[1])

# Create directories and initialize wandb run
args = parser.parse_args()

if args.load_from_run:
    print("Loading args from run", args.load_from_run)
    run = get_run_by_name(args.load_from_run)
    args = update_args(args, run)
timestamp = time.strftime("%Y_%m_%d_%H_%M_%S")
random_number = str(np.random.randint(0, 1000)) # to avoid overwriting in case two jobs are started at the same time
args.run_name = f"{args.run_name}_{timestamp}_{random_number}"
if "transformer" in args.network_config.lower() or args.network_config == "src/models/GATr/Gatr.py":
    args.spatial_part_only = False


if args.load_model_weights:
    print("Changing args.load_model_weights")
    args.load_model_weights = get_path(args.load_model_weights, "results", fallback=True)
if args.load_objectness_score_weights:
    args.load_objectness_score_weights = get_path(args.load_objectness_score_weights, "results", fallback=True)
run_path = os.path.join(args.prefix, "train", args.run_name)
clear_empty_paths(get_path(os.path.join(args.prefix, "train"), "results"))  # Clear paths of failed runs that don't have any files or folders in them
run_path = get_path(run_path, "results")
#Path(run_path).mkdir(parents=True, exist_ok=False)
os.makedirs(run_path, exist_ok=False)
assert os.path.exists(run_path)
print("Created directory", run_path)
args.run_path = run_path
wandb.init(project=args.wandb_projectname, entity=os.environ["SVJ_WANDB_ENTITY"])
wandb.run.name = args.run_name
print("Setting the run name to", args.run_name)
#wandb.config.run_path = run_path
wandb.config.update(args.__dict__)
wandb.config.env_vars = {key: os.environ[key] for key in os.environ if key.startswith("SVJ_") or key.startswith("CUDA_") or key.startswith("SLURM_")}
if args.tag:
    wandb.run.tags = [args.tag.strip()]
args.local_rank = (
    None if args.backend is None else int(os.environ.get("LOCAL_RANK", "0"))
)
if args.backend is not None:
    port = find_free_port()
    args.port = port
    world_size = torch.cuda.device_count()
stdout = sys.stdout
if args.local_rank is not None:
    args.log += ".%03d" % args.local_rank
    if args.local_rank != 0:
        stdout = None
_configLogger("weaver", stdout=stdout, filename=args.log)

warnings.filterwarnings("ignore")
from src.utils.nn.tools_condensation import train_epoch
from src.utils.nn.tools_condensation import evaluate as evaluate

training_mode = bool(args.data_train)
if training_mode:
    # val_loaders and test_loaders are a dictionary file -> Dataloader with only one dataset
    # train_loader is a single dataloader of all the files
    train_loader, val_loaders, val_dataset = train_load(args)
    if args.irc_safety_loss:
        train_loader_aug, val_loaders_aug, val_dataset_aug = train_load(args, aug_soft=False, aug_collinear=True)
    else:
        train_loader_aug = None
else:
    test_loaders = test_load(args)

if args.gpus:
    if args.backend is not None:
        # distributed training
        local_rank = args.local_rank
        print("localrank", local_rank)
        torch.cuda.set_device(local_rank)
        gpus = [local_rank]
        dev = torch.device(local_rank)
        print("initializing group process", dev)
        torch.distributed.init_process_group(backend=args.backend)
        _logger.info(f"Using distributed PyTorch with {args.backend} backend")
        print("ended initializing group process")
    else:
        gpus = [int(i) for i in args.gpus.split(",")]
        #if os.environ.get("CUDA_VISIBLE_DEVICES", None) is not None:
        #    gpus = [int(i) for i in os.environ["CUDA_VISIBLE_DEVICES"].split(",")]
        dev = torch.device(gpus[0])
        local_rank = 0
else:
    gpus = None
    local_rank = 0
    dev = torch.device("cpu")

model = get_model(args, dev)

if args.train_objectness_score:
    model_obj_score = get_model_obj_score(args, dev)
    model_obj_score = model_obj_score.to(dev)
else:
    model_obj_score = None
num_parameters_counted = count_parameters(model)
print("Number of parameters:", num_parameters_counted)
wandb.config.num_parameters = num_parameters_counted

orig_model = model
loss = get_loss_func(args)
gt = get_gt_func(args)
batch_config = {"use_p_xyz": True, "use_four_momenta": False}

if "lgatr" in args.network_config.lower():
    batch_config = {"use_four_momenta": True}

batch_config["quark_dist_loss"] = args.loss == "quark_distance"

batch_config["parton_level"] = args.parton_level
batch_config["gen_level"] = args.gen_level
batch_config["obj_score"] = args.train_objectness_score
if args.no_pid:
    print("Not using PID in the features")
    batch_config["no_pid"] = True

print("batch_config:", batch_config)
if training_mode:
    model = orig_model.to(dev)
    if args.backend is not None:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
        print("device_ids = gpus", gpus)
        model = torch.nn.parallel.DistributedDataParallel(
            model,
            device_ids=gpus,
            output_device=local_rank,
            find_unused_parameters=True,
        )
    opt, scheduler = get_optimizer_and_scheduler(args, model, dev)
    if args.train_objectness_score:
        opt_os, scheduler_os = get_optimizer_and_scheduler(args, model_obj_score, dev, load_model_weights="load_objectness_score_weights")
    else:
        opt_os, scheduler_os = None, None
    # DataParallel
    if args.backend is None:
        if gpus is not None and len(gpus) > 1:
            # model becomes `torch.nn.DataParallel` w/ model.module being the original `torch.nn.Module`
            model = torch.nn.DataParallel(model, device_ids=gpus)
    if local_rank == 0:
        wandb.watch(model, log="all", log_freq=10)
    # Training loop
    best_valid_metric = np.inf
    grad_scaler = torch.cuda.amp.GradScaler() if args.use_amp else None
    steps = 0
    evaluate(
        model,
        val_loaders,
        dev,
        0,
        steps,
        loss_func=loss,
        gt_func=gt,
        local_rank=local_rank,
        args=args,
        batch_config=batch_config,
        predict=False,
        model_obj_score=model_obj_score
    )
    res = evaluate(
        model,
        val_loaders,
        dev,
        0,
        steps,
        loss_func=loss,
        gt_func=gt,
        local_rank=local_rank,
        args=args,
        batch_config=batch_config,
        predict=True,
        model_obj_score=model_obj_score
    )
    # It was the quickest to do it like this
    if model_obj_score is not None:
        res, res_obj_score_pred, res_obj_score_target = res
    f1 = compute_f1_score_from_result(res, val_dataset)
    wandb.log({"val_f1_score": f1}, step=steps)
    epochs = args.num_epochs
    if args.num_steps != -1:
        epochs = 999999999
    for epoch in range(1, epochs + 1):
        _logger.info("-" * 50)
        _logger.info("Epoch #%d training" % epoch)
        steps = train_epoch(
            args,
            model,
            loss_func=loss,
            gt_func=gt,
            opt=opt,
            scheduler=scheduler,
            train_loader=train_loader,
            dev=dev,
            epoch=epoch,
            grad_scaler=grad_scaler,
            local_rank=local_rank,
            current_step=steps,
            val_loader=val_loaders,
            batch_config=batch_config,
            val_dataset=val_dataset,
            obj_score_model=model_obj_score,
            opt_obj_score=opt_os,
            sched_obj_score=scheduler_os,
            train_loader_aug=train_loader_aug
        )
        if steps == "quit_training":
            break

if args.data_test:
    if args.backend is not None and local_rank != 0:
        sys.exit(0)
    if training_mode:
        del train_loader, val_loaders
        test_loaders = test_load(args)
    model = orig_model.to(dev)

    if gpus is not None and len(gpus) > 1:
        model = torch.nn.DataParallel(model, device_ids=gpus)
    model = model.to(dev)
    i = 0
    for filename, test_loader in test_loaders.items():
        result = evaluate(
            model,
            test_loader,
            dev,
            0,
            0,
            loss_func=loss,
            gt_func=gt,
            local_rank=local_rank,
            args=args,
            batch_config=batch_config,
            predict=True,
            model_obj_score=model_obj_score
        )
        if model_obj_score is not None:
            result, result_obj_score, result_obj_score_target = result
            result["obj_score_pred"] = result_obj_score
            result["obj_score_target"] = result_obj_score_target
        _logger.info(f"Finished evaluating {filename}")
        result["filename"] = filename
        os.makedirs(run_path, exist_ok=True)
        output_filename = os.path.join(run_path, f"eval_{i}.pkl")
        pickle.dump(result, open(output_filename, "wb"))
        i += 1