File size: 80,597 Bytes
e75a247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
import torch
from itertools import chain, combinations

import os
from tqdm import tqdm
import argparse
import pickle
from src.plotting.eval_matrix import matrix_plot, scatter_plot, multiple_matrix_plot, ax_tiny_histogram
from src.utils.paths import get_path
import matplotlib.pyplot as plt
import numpy as np
from collections import OrderedDict

#### Plotting functions

from matplotlib_venn import venn3
import matplotlib.pyplot as plt
from copy import copy


def plot_venn3_from_index_dict(ax, data_dict, set_labels=('Set 0', 'Set 1', 'Set 2'), set_colors=("orange", "purple", "gray"), remove_max=True):
    """
    Generate a 3-set Venn diagram from a dictionary where keys are strings of '0', '1', and '2'
    indicating set membership, and values are counts.

    Parameters:
    - data_dict (dict): Dictionary with keys like '0', '01', '012', etc.
    - set_labels (tuple): Labels for the three sets.
    - remove_max: if true, it will remove
    """
    # Mapping of set index combinations to venn3 region codes
    index_to_region = {
        '100': '100',  # Only in Set 0
        '010': '010',  # Only in Set 1
        '001': '001',  # Only in Set 2
        '110': '110',  # In Set 0 and Set 1
        '101': '101',  # In Set 0 and Set 2
        '011': '011',  # In Set 1 and Set 2
        '111': '111',  # In all three
    }

    # Initialize region counts
    venn_counts = {region: 0 for region in index_to_region.values()}
    max_value = 0
    for key in data_dict:
        if data_dict[key] > max_value and key != "":
            max_value = data_dict[key]
    print("Max val", max_value)
    data_dict = copy(data_dict)
    new_data_dict = {}
    for key in data_dict:
        if remove_max and data_dict[key] == max_value:
        #    #data_dict[key] = 0
        #    del data_dict[key]
            continue
        else:
            new_data_dict[key] = data_dict[key]
    data_dict = new_data_dict
    print("data dict", data_dict)
    # Convert data_dict keys to binary keys for region mapping
    for k, v in data_dict.items():
        binary_key = ''.join(['1' if str(i) in k else '0' for i in range(3)])
        if binary_key in index_to_region:
            venn_counts[index_to_region[binary_key]] += v
    # Plotting
    #plt.figure(figsize=(8, 8))
    del venn_counts['111']
    venn = venn3(subsets=venn_counts, set_labels=set_labels, set_colors=set_colors, alpha=0.5, ax=ax)
    venn.get_label_by_id("111").set_text(max_value)
    #plt.title("3-Set Venn Diagram from Index Dictionary")
    #plt.show()


### Change this to make custom plots highlighting differences between different models (the histograms of pt_pred/pt_true, eta_pred-eta_true, and phi_pred-phi_true)
histograms_dict = {
        "": [{"base_LGATr": 50000, "base_Tr": 50000 , "base_GATr": 50000, "AK8": 50000}, {"base_LGATr": "orange", "base_Tr": "blue", "base_GATr": "green", "AK8": "gray"}],
        "LGATr_comparison": [{"base_LGATr": 50000, "LGATr_GP_IRC_S_50k": 9960, "LGATr_GP_50k": 9960, "AK8": 50000, "LGATr_GP_IRC_SN_50k": 24000}, {"base_LGATr": "orange", "LGATr_GP_IRC_S_50k": "red", "LGATr_GP_50k": "purple", "LGATr_GP_IRC_SN_50k": "pink", "AK8": "gray"}],
        "LGATr_comparsion_DifferentTrainingDS": [{"base_LGATr": 50000, "LGATr_700_07": 50000, "LGATr_QCD": 50000, "LGATr_700_07+900_03": 50000, "LGATr_700_07+900_03+QCD": 50000, "AK8": 50000}, {"base_LGATr": "orange", "LGATr_700_07": "red", "LGATr_QCD": "purple", "LGATr_700_07+900_03": "blue", "LGATr_700_07+900_03+QCD": "green", "AK8": "gray"}]
}

# This is a dictionary that contains the models and their colors for plotting - to plot the F1 scores etc. of the models
results_dict = {
    "LGATr_comparison_DifferentTrainingDS":
        [{"base_LGATr": "orange", "LGATr_700_07": "red", "LGATr_QCD": "purple", "LGATr_700_07+900_03": "blue",
         "LGATr_700_07+900_03+QCD": "green", "AK8": "gray"}, {"base_LGATr": "LGATr_900_03"}], # 2nd dict in list is rename dict
    "LGATr_comparison": [{"base_LGATr": "orange", "LGATr_GP_IRC_S_50k": "red", "LGATr_GP_50k": "purple", "LGATr_GP_IRC_SN_50k": "pink", "AK8": "gray"},
                         {"base_LGATr": "LGATr", "LGATr_GP_IRC_S_50k": "LGATr_GP_IRC_S", "LGATr_GP_50k": "LGATr_GP", "LGATr_GP_IRC_SN_50k": "LGATr_GP_IRC_SN"}], # 2nd dict in list is rename dict
    "LGATr_comparison_QCDtrain": [{"LGATr_QCD": "orange", "LGATr_GP_IRC_S_QCD": "red", "LGATr_GP_QCD": "purple", "LGATr_GP_IRC_SN_QCD": "pink", "AK8": "gray"},
                         {"LGATr_QCD": "LGATr", "LGATr_GP_IRC_S_QCD": "LGATr_GP_IRC_S", "LGATr_GP_QCD": "LGATr_GP", "LGATr_GP_IRC_SN_QCD": "LGATr_GP_IRC_SN"}], # 2nd dict in list is rename dict
    "LGATr_comparison_GP_training": [
        {"LGATr_GP_QCD": "purple", "LGATr_GP_700_07": "red", "LGATr_GP_700_07+900_03": "blue", "LGATr_GP_700_07+900_03+QCD": "green",  "LGATr_GP_50k": "orange", "AK8": "gray"},
        {"LGATr_GP_QCD": "QCD", "LGATr_GP_700_07": "700_07", "LGATr_GP_700_07+900_03": "700_07+900_03" ,  "LGATr_GP_50k": "900_03", "LGATr_GP_700_07+900_03+QCD": "700_07+900_03+QCD"} # 2nd dict in list is rename dict
    ],
    "LGATr_comparison_GP_IRC_S_training": [
        {"LGATr_GP_IRC_S_QCD": "purple", "LGATr_GP_IRC_S_700_07": "red", "LGATr_GP_IRC_S_700_07+900_03": "blue", "LGATr_GP_IRC_S_700_07+900_03+QCD": "green", "LGATr_GP_IRC_S_50k": "orange", "AK8": "gray"},
        {"LGATr_GP_IRC_S_QCD": "QCD", "LGATr_GP_IRC_S_700_07": "700_07", "LGATr_GP_IRC_S_700_07+900_03": "700_07+900_03",  "LGATr_GP_IRC_S_50k": "900_03",  "LGATr_GP_IRC_S_700_07+900_03+QCD": "700_07+900_03+QCD"} # 2nd dict in list is rename dict
    ],
    "LGATr_comparison_GP_IRC_SN_training": [
        {"LGATr_GP_IRC_SN_QCD": "purple", "LGATr_GP_IRC_SN_700_07": "red", "LGATr_GP_IRC_SN_700_07+900_03": "blue", "LGATr_GP_IRC_SN_700_07+900_03+QCD": "green", "LGATr_GP_IRC_SN_50k": "orange", "AK8": "gray"},
        {"LGATr_GP_IRC_SN_QCD": "QCD", "LGATr_GP_IRC_SN_700_07": "700_07", "LGATr_GP_IRC_SN_700_07+900_03": "700_07+900_03",  "LGATr_GP_IRC_SN_50k": "900_03",  "LGATr_GP_IRC_SN_700_07+900_03+QCD": "700_07+900_03+QCD"} # 2nd dict in list is rename dict
    ]
}


'''
        "GP_LGATr_training_NoPID_Delphes_PU_PFfix_QCD_events_10_16_64_0.8_2025_05_19_21_29_06_946": "LGATr_GP_QCD",
        "GP_LGATr_training_NoPID_Delphes_PU_PFfix_700_07_10_16_64_0.8_2025_05_19_21_38_20_376": "LGATr_GP_700_07",
        "GP_LGATr_training_NoPID_Delphes_PU_PFfix_700_07_AND_900_03_AND_QCD_10_16_64_0.8_2025_05_20_13_12_54_359": "LGATr_GP_700_07+900_03+QCD",
        "GP_LGATr_training_NoPID_Delphes_PU_PFfix_700_07_AND_900_03_10_16_64_0.8_2025_05_20_13_13_00_503": "LGATr_GP_700_07+900_03",
        "GP_IRC_S_LGATr_training_NoPID_Delphes_PU_PFfix_700_07_AND_900_03_10_16_64_0.8_2025_05_20_15_29_30_29": "LGATr_GP_IRC_S_700_07+900_03",
        "GP_IRC_S_LGATr_training_NoPID_Delphes_PU_PFfix_700_07_AND_900_03_AND_QCD_10_16_64_0.8_2025_05_20_15_29_28_959": "LGATr_GP_IRC_S_700_07+900_03+QCD",
        "GP_IRC_S_LGATr_training_NoPID_Delphes_PU_PFfix_700_07_10_16_64_0.8_2025_05_20_15_11_35_476": "LGATr_GP_IRC_S_700_07",
        "GP_IRC_S_LGATr_training_NoPID_Delphes_PU_PFfix_QCD_events_10_16_64_0.8_2025_05_20_15_11_20_735": "LGATr_GP_IRC_S_QCD",

'''

parser = argparse.ArgumentParser()
parser.add_argument("--input", type=str, required=False, default="scouting_PFNano_signals2/SVJ_hadronic_std/batch_eval/objectness_score")
parser.add_argument("--threshold-obj-score", "-os-threshold", type=float, default=-1)

thresholds = np.linspace(0.1, 1, 20)
# also add 100 points between 0 and 0.1 at the beginning
thresholds = np.concatenate([np.linspace(0, 0.1, 100), thresholds])

args = parser.parse_args()
path = get_path(args.input, "results")

models = sorted([x for x in os.listdir(path) if not os.path.isfile(os.path.join(path, x))])
models = [x for x in models if "AKX" not in x]

figures_all = {} # title to the f1 score figure to plot
figures_all_sorted = {} # model used -> step -> level -> f1 figure
print("Models:", models)

radius = {
    "LGATr_R10": 1.0,
    "LGATr_R09": 0.9,
    "LGATr_rinv_03_m_900": 0.8,
    "LGATr_R06": 0.6,
    "LGATr_R07": 0.7,
    "LGATr_R11": 1.1,
    "LGATr_R12": 1.2,
    "LGATr_R13": 1.3,
    "LGATr_R14": 1.4,
    "LGATr_R20": 2.0,
    "LGATr_R25": 2.5
}

comments = {
    "Eval_params_study_2025_02_17_13_30_50": ", tr. on 07_700",
    "Eval_objectness_score_2025_02_12_15_34_33": ", tr. on 03_900, GT=all",
    "Eval_objectness_score_2025_02_18_08_48_13": ", tr. on 03_900, GT=closest",
    "Eval_objectness_score_2025_02_14_11_10_14": ", tr. on 03_900, GT=closest",
    "Eval_objectness_score_2025_02_21_14_51_07": ", tr. on 07_700",
    "Eval_objectness_score_2025_02_10_14_59_49": ", tr. on 03_900, GT=all",
    "Eval_objectness_score_2025_02_23_19_26_25": ", tr. on all, GT=closest",
    "Eval_objectness_score_2025_02_23_21_04_33": ", tr. on 03_900, GT=closest"
}

out_file_PR = os.path.join(get_path(args.input, "results"), "precision_recall.pdf")
out_file_PRf1 = os.path.join(get_path(args.input, "results"), "f1_score_sorted.pdf")

out_file_PG = os.path.join(get_path(args.input, "results"), "PLoverGL.pdf")

if args.threshold_obj_score != -1:
    out_file_PR_OS = os.path.join(get_path(args.input, "results"), f"precision_recall_with_obj_score.pdf")

out_file_avg_number_matched_quarks = os.path.join(get_path(args.input, "results"), "avg_number_matched_quarks.pdf")

def get_plots_for_params(mMed, mDark, rInv, result_PR_thresholds):
    precisions = []
    recalls = []
    f1_scores = []
    for i in range(len(thresholds)):
        if result_PR_thresholds[mMed][mDark][rInv][i][1] == 0:
            precisions.append(0)
        else:
            precisions.append(
                result_PR_thresholds[mMed][mDark][rInv][i][0] / result_PR_thresholds[mMed][mDark][rInv][i][1])
        if result_PR_thresholds[mMed][mDark][rInv][i][2] == 0:
            recalls.append(0)
        else:
            recalls.append(
                result_PR_thresholds[mMed][mDark][rInv][i][0] / result_PR_thresholds[mMed][mDark][rInv][i][2])
    for i in range(len(thresholds)):
        if precisions[i] + recalls[i] == 0:
            f1_scores.append(0)
        else:
            f1_scores.append(2 * precisions[i] * recalls[i] / (precisions[i] + recalls[i]))
    return precisions, recalls, f1_scores

sz = 5
nplots = 9

# Now make 3 plots, one for mMed=700,r_inv=0.7; one for mMed=700,r_inv=0.5; one for mMed=700,r_inv=0.3
###fig, ax = plt.subplots(3, 3, figsize=(3 * sz, 3 * sz))

'''fig, ax = plt.subplots(3, nplots, figsize=(nplots*sz, 3*sz))
for mi, mass in enumerate([700, 900, 1500]):
    start_idx = mi*3
    for i0, rinv in enumerate([0.3, 0.5, 0.7]):
        i = start_idx + i0
        # 0 is precision, 1 is recall, 2 is f1 score
        ax[0, i].set_title(f"r_inv={rinv}, m_med={mass} GeV")
        ax[1, i].set_title(f"r_inv={rinv}, m_med={mass} GeV")
        ax[2, i].set_title(f"r_inv={rinv}, m_med={mass} GeV")
        ax[0, i].set_ylabel("Precision")
        ax[1, i].set_ylabel("Recall")
        ax[2, i].set_ylabel("F1 score")
        ax[0, i].grid()
        ax[1, i].grid()
        ax[2, i].grid()
        ylims = {} # key: j and i
        default_ylims = [1, 0]
        for j, model in enumerate(models):
            result_PR_thresholds = os.path.join(path, model, "count_matched_quarks", "result_PR_thresholds.pkl")
            if not os.path.exists(result_PR_thresholds):
                continue
            run_config = pickle.load(open(os.path.join(path, model, "run_config.pkl"), "rb"))
            result_PR_thresholds = pickle.load(open(result_PR_thresholds, "rb"))
            if mass not in result_PR_thresholds:
                continue
            if rinv not in result_PR_thresholds[mass]:
                continue6
            precisions, recalls, f1_scores = get_plots_for_params(mass, 20, rinv, result_PR_thresholds)
            if not run_config["gt_radius"] == 0.8:
                continue
            label = "R={} gl.f.={} {}".format(run_config["gt_radius"], run_config.get("global_features_obj_score", False), comments.get(run_config["run_name"], run_config["run_name"]))
            scatter_plot(ax[0, i], thresholds, precisions, label=label)
            scatter_plot(ax[1, i], thresholds, recalls, label=label)
            scatter_plot(ax[2, i], thresholds, f1_scores, label=label)
            #ylims[0] = [min(ylims[0][0], min(precisions)), max(ylims[0][1], max(precisions))]
            #ylims[1] = [min(ylims[1][0], min(recalls)), max(ylims[1][1], max(recalls))]
            #ylims[2] = [min(ylims[2][0], min(f1_scores)), max(ylims[2][1], max(f1_scores))]
            filt = thresholds < 0.2
            precisions = np.array(precisions)[filt]
            recalls = np.array(recalls)[filt]
            f1_scores = np.array(f1_scores)[filt]
            if (i, 0) not in ylims:
                ylims[(i, 0)] = default_ylims
            upper_factor = 1.01
            lower_factor = 0.99
            ylims[(i, 0)] = [min(ylims[(i, 0)][0], min(precisions)*lower_factor), max(ylims[(i, 0)][1], max(precisions)*upper_factor)]
            if (i, 1) not in ylims:
                ylims[(i, 1)] = default_ylims
            ylims[(i, 1)] = [min(ylims[(i, 1)][0], min(recalls)*lower_factor), max(ylims[(i, 1)][1], max(recalls)*upper_factor)]
            if (i, 2) not in ylims:
                ylims[(i, 2)] = default_ylims
            ylims[(i, 2)] = [min(ylims[(i, 2)][0], min(f1_scores)*lower_factor), max(ylims[(i, 2)][1], max(f1_scores)*upper_factor)]
        for j in range(3):
            ax[j, i].set_ylim(ylims[(i, j)])
            ax[j, i].legend()
            ax[j, i].set_xlim([0, 0.2])
            ax[j, i].set_xlim([0, 0.2])
            ax[j, i].set_xlim([0, 0.2])
        # now adjust the ylim so that the plots are more readable

fig.tight_layout()
fig.savefig(os.path.join(get_path(args.input, "results"), "precision_recall_thresholds.pdf"))

print("Saved to", os.path.join(get_path(args.input, "results"), "precision_recall_thresholds.pdf"))'''


import wandb
api = wandb.Api()

def get_run_by_name(name):
    clust_suffix = ""
    if name.endswith("FT"):
        #remove FT from the end
        name = name[:-2]
        clust_suffix = "FT"
    if name.endswith("FT1"):
        #remove FT from the end # min-samples 1 min-cluster-size 2 epsilon 0.3
        name = name[:-3]
        clust_suffix = "FT1"
    if name.endswith("10_5"):
        name = name[:-4]
        clust_suffix = "10_5"
    runs = api.runs(
        path="fcc_ml/svj_clustering",
        filters={"display_name": {"$eq": name.strip()}}
    )
    runs = api.runs(
        path="fcc_ml/svj_clustering",
        filters={"display_name": {"$eq": name.strip()}}
    )
    if runs.length != 1:
        return None
    return runs[0], clust_suffix


def get_run_config(run_name):
    r, clust_suffix = get_run_by_name(run_name)
    if r is None:
        print("Getting info from run", run_name, "failed")
        return None, None
    config = r.config
    result = {}
    if config["parton_level"]:
        prefix = "PL"
        result["level"] = "PL"
        result["level_idx"] = 0
    elif config["gen_level"]:
        prefix = "GL"
        result["level"] = "GL"
        result["level_idx"] = 2
    else:
        prefix = "sc."
        result["level"] = "scouting"
        result["level_idx"] = 1
    if config["augment_soft_particles"]:
        result["ghosts"] = True
        #result["level"] += "+ghosts"
    gt_r = config["gt_radius"]
    if config.get("augment_soft_particles", False):
        prefix += " (aug)" # ["LGATr_training_NoPID_10_16_64_0.8_Aug_Finetune_vanishing_momentum_QCap05_2025_03_28_17_12_25_820", "LGATr_training_NoPID_10_16_64_2.0_Aug_Finetune_vanishing_momentum_QCap05_2025_03_28_17_12_26_400"]

    training_datasets = {
        "LGATr_training_NoPID_10_16_64_0.8_AllData_2025_02_28_13_42_59": "all",
        "LGATr_training_NoPID_10_16_64_0.8_2025_02_28_12_42_59": "900_03",
        "LGATr_training_NoPID_10_16_64_2.0_2025_02_28_12_48_58": "900_03",
        "LGATr_training_NoPID_10_16_64_0.8_700_07_2025_02_28_13_01_59": "700_07",
        "LGATr_training_NoPIDGL_10_16_64_0.8_2025_03_17_20_05_04": "900_03_GenLevel",
        "LGATr_training_NoPIDGL_10_16_64_2.0_2025_03_17_20_05_04": "900_03_GenLevel",
        "Transformer_training_NoPID_10_16_64_2.0_2025_03_03_17_00_38": "900_03_T",
        "Transformer_training_NoPID_10_16_64_0.8_2025_03_03_15_55_50": "900_03_T",
        "LGATr_training_NoPID_10_16_64_0.8_Aug_Finetune_2025_03_27_12_46_12_740": "900_03+SoftAug",
        "LGATr_training_NoPID_10_16_64_2.0_Aug_Finetune_vanishing_momentum_2025_03_28_10_43_36_81": "900_03+SoftAugVM",
        "LGATr_training_NoPID_10_16_64_0.8_Aug_Finetune_vanishing_momentum_2025_03_28_10_43_37_44": "900_03+SoftAugVM",
        "LGATr_training_NoPID_10_16_64_0.8_Aug_Finetune_vanishing_momentum_QCap05_2025_03_28_17_12_25_820": "900_03+qcap05",
        "LGATr_training_NoPID_10_16_64_2.0_Aug_Finetune_vanishing_momentum_QCap05_2025_03_28_17_12_26_400": "900_03+qcap05",
        "LGATr_training_NoPID_10_16_64_2.0_Aug_Finetune_vanishing_momentum_QCap05_1e-2_2025_03_29_14_58_38_650": "pt 1e-2",
        "LGATr_training_NoPID_10_16_64_0.8_Aug_Finetune_vanishing_momentum_QCap05_1e-2_2025_03_29_14_58_36_446": "pt 1e-2",
        "LGATr_pt_1e-2_500part_2025_04_01_16_49_08_406": "500_pt_1e-2_PLFT",
        "LGATr_pt_1e-2_500part_2025_04_01_21_14_07_350": "500_pt_1e-2_PLFT",
        "LGATr_pt_1e-2_500part_NoQMin_2025_04_03_23_15_17_745": "500_1e-2_scFT",
        "LGATr_pt_1e-2_500part_NoQMin_2025_04_03_23_15_35_810": "500_1e-2_scFT",
        "LGATr_pt_1e-2_500part_NoQMin_10_to_1000p_2025_04_04_12_57_51_536": "10_1000_1e-2_scFT",
        "LGATr_pt_1e-2_500part_NoQMin_10_to_1000p_2025_04_04_12_57_47_788": "10_1000_1e-2_scFT",
        "LGATr_pt_1e-2_500part_NoQMin_10_to_1000p_CW0_2025_04_04_15_30_16_839": "10_1000_1e-2_CW0",
        "LGATr_pt_1e-2_500part_NoQMin_10_to_1000p_CW0_2025_04_04_15_30_20_113": "10_1000_1e-2_CW0",
        "debug_IRC_loss_weighted100_plus_ghosts_2025_04_08_22_40_33_972": "IRC_short_debug",
        "debug_IRC_loss_weighted100_plus_ghosts_2025_04_09_13_48_55_569": "IRC",
        "debug_IRC_loss_weighted100_plus_ghosts_Qmin05_2025_04_09_14_45_51_381": "IRC_qmin05",
        "LGATr_500part_NOQMin_2025_04_09_21_53_37_210": "500part_NOQMin_reprod",
        "IRC_loss_Split_and_Noise_alternate_Aug_2025_04_14_11_10_21_788": "IRC_Aug_S+N",
        "IRC_loss_Split_and_Noise_alternate_NoAug_2025_04_11_16_15_48_955": "IRC_S+N",
        "LGATr_training_NoPID_Delphes_10_16_64_0.8_2025_04_17_18_07_38_405": "DelphesTrain",
        "Delphes_IRC_aug_2025_04_19_11_16_17_130": "DelphesTrain+IRC",
        "LGATr_500part_NOQMin_Delphes_2025_04_19_11_15_24_417": "DelphesTrain+ghosts",
        "Delphes_IRC_aug_SplitOnly_2025_04_20_15_50_33_553": "DelphesTrain+IRC_SplitOnly",
        "Delphes_IRC_NOAug_SplitOnly_2025_04_21_12_58_36_99": "Delphes_IRC_NoAug_SplitOnly",
        "Delphes_IRC_NOAug_SplitAndNoise_2025_04_21_19_32_08_865": "Delphes_IRC_NoAug_S+N",
        "CONT_Delphes_IRC_aug_SplitOnly_2025_04_21_12_53_27_730": "IRC_aug_SplitOnly_ContFrom14k",
        "Transformer_training_NoPID_Delphes_PU_10_16_64_0.8_2025_05_03_18_37_01_188": "base_Tr_Old",
        "LGATr_training_NoPID_Delphes_PU_PFfix_10_16_64_0.8_2025_05_03_18_35_53_134": "base_LGATr",
        "GATr_training_NoPID_Delphes_PU_10_16_64_0.8_2025_05_03_18_35_48_163": "base_GATr_Old",
        "Transformer_training_NoPID_Delphes_PU_CoordFix_10_16_64_0.8_2025_05_05_13_05_20_755": "base_Tr",
        "GATr_training_NoPID_Delphes_PU_CoordFix_SmallDS_10_16_64_0.8_2025_05_05_16_24_13_579": "base_GATr_SD",
        "GATr_training_NoPID_Delphes_PU_CoordFix_10_16_64_0.8_2025_05_05_13_06_27_898": "base_GATr",
        "LGATr_Aug_2025_05_06_10_08_05_956": "LGATr_GP",
        "Delphes_Aug_IRCSplit_CONT_2025_05_07_11_00_18_422": "LGATr_GP_IRC_S",
        "Delphes_Aug_IRC_Split_and_Noise_2025_05_07_14_43_13_968": "LGATr_GP_IRC_SN",
        "Transformer_training_NoPID_Delphes_PU_CoordFix_SmallDS_10_16_64_0.8_2025_05_05_16_24_19_936": "base_Tr_SD",
        "LGATr_training_NoPID_Delphes_PU_PFfix_SmallDS_10_16_64_0.8_2025_05_05_16_24_16_127": "base_LGATr_SD",
        "Delphes_Aug_IRCSplit_2025_05_06_10_09_00_567": "LGATr_GP_IRC_S",
        "GATr_training_NoPID_Delphes_PU_CoordFix_SmallDS_10_16_64_0.8_2025_05_09_15_34_13_531": "base_GATr_SD",
        "Transformer_training_NoPID_Delphes_PU_CoordFix_SmallDS_10_16_64_0.8_2025_05_09_15_56_50_216": "base_Tr_SD",
        "LGATr_training_NoPID_Delphes_PU_PFfix_SmallDS_10_16_64_0.8_2025_05_09_15_56_50_875": "base_LGATr_SD",
        "Delphes_Aug_IRCSplit_50k_from10k_2025_05_11_14_08_49_675": "LGATr_GP_IRC_S_50k",
        "LGATr_Aug_50k_2025_05_09_15_25_32_34": "LGATr_GP_50k",
        "Delphes_Aug_IRCSplit_50k_2025_05_09_15_22_38_956": "LGATr_GP_IRC_S_50k",
        "LGATr_training_NoPID_Delphes_PU_PFfix_700_07_AND_900_03_AND_QCD_10_16_64_0.8_2025_05_16_21_04_26_937": "LGATr_700_07+900_03+QCD",
        "LGATr_training_NoPID_Delphes_PU_PFfix_700_07_AND_900_03_10_16_64_0.8_2025_05_16_21_04_26_991": "LGATr_700_07+900_03",
        "LGATr_training_NoPID_Delphes_PU_PFfix_QCD_events_10_16_64_0.8_2025_05_16_19_46_57_48": "LGATr_QCD",
        "LGATr_training_NoPID_Delphes_PU_PFfix_700_07_10_16_64_0.8_2025_05_16_19_44_46_795": "LGATr_700_07",
        "Delphes_Aug_IRCSplit_50k_SN_from3kFT_2025_05_16_14_07_29_474": "LGATr_GP_IRC_SN_50k",
        "GP_LGATr_training_NoPID_Delphes_PU_PFfix_QCD_events_10_16_64_0.8_2025_05_19_21_29_06_946": "LGATr_GP_QCD",
        "GP_LGATr_training_NoPID_Delphes_PU_PFfix_700_07_10_16_64_0.8_2025_05_19_21_38_20_376": "LGATr_GP_700_07",
        "GP_LGATr_training_NoPID_Delphes_PU_PFfix_700_07_AND_900_03_AND_QCD_10_16_64_0.8_2025_05_20_13_12_54_359": "LGATr_GP_700_07+900_03+QCD",
        "GP_LGATr_training_NoPID_Delphes_PU_PFfix_700_07_AND_900_03_10_16_64_0.8_2025_05_20_13_13_00_503": "LGATr_GP_700_07+900_03",
        "GP_IRC_S_LGATr_training_NoPID_Delphes_PU_PFfix_700_07_AND_900_03_10_16_64_0.8_2025_05_20_15_29_30_29": "LGATr_GP_IRC_S_700_07+900_03",
        "GP_IRC_S_LGATr_training_NoPID_Delphes_PU_PFfix_700_07_AND_900_03_AND_QCD_10_16_64_0.8_2025_05_20_15_29_28_959": "LGATr_GP_IRC_S_700_07+900_03+QCD",
        "GP_IRC_S_LGATr_training_NoPID_Delphes_PU_PFfix_700_07_10_16_64_0.8_2025_05_20_15_11_35_476": "LGATr_GP_IRC_S_700_07",
        "GP_IRC_S_LGATr_training_NoPID_Delphes_PU_PFfix_QCD_events_10_16_64_0.8_2025_05_20_15_11_20_735": "LGATr_GP_IRC_S_QCD",
        "GP_IRC_S_LGATr_training_NoPID_Delphes_PU_PFfix_QCD_events_10_16_64_0.8_2025_05_24_23_00_54_948": "LGATr_GP_IRC_SN_QCD",
        "GP_IRC_S_LGATr_training_NoPID_Delphes_PU_PFfix_700_07_AND_900_03_AND_QCD_10_16_64_0.8_2025_05_24_23_00_56_910": "LGATr_GP_IRC_SN_700_07+900_03+QCD",
        "GP_IRC_S_LGATr_training_NoPID_Delphes_PU_PFfix_700_07_AND_900_03_10_16_64_0.8_2025_05_24_23_01_01_212": "LGATr_GP_IRC_SN_700_07+900_03",
        "GP_IRC_S_LGATr_training_NoPID_Delphes_PU_PFfix_700_07_10_16_64_0.8_2025_05_24_23_01_07_703": "LGATr_GP_IRC_SN_700_07",
    }

    train_name = config["load_from_run"]
    ckpt_step = config["ckpt_step"]
    print("train name", train_name)
    if train_name not in training_datasets:
        print("!! unknown run", train_name)
    training_dataset = training_datasets.get(train_name, train_name) + "_s" + str(ckpt_step) + clust_suffix
    if "plptfilt01" in run_name.lower():
        training_dataset += "_PLPtFiltMinPt01" # min pt 0.1
    elif "noplfilter" in run_name.lower():
        training_dataset += "_noPLFilter"
    elif "noplptfilter" in run_name.lower():
        training_dataset += "_noPLPtFilter" # actually there was a 0.5 pt cut in the ntuplizer, removed by plptfilt01
    elif "nopletafilter" in run_name.lower():
        training_dataset += "_noPLEtaFilter"
    result["GT_R"] = gt_r
    result["training_dataset"] = training_dataset
    result["training_dataset_nostep"] = training_datasets.get(train_name, train_name)  + clust_suffix
    result["ckpt_step"] = ckpt_step
    return f"GT_R={gt_r} {training_dataset}, {prefix}", result


def flatten_list(lst):# lst is like [[0,0],[1,1]...]
    #return [item for sublist in lst for item in sublist]
    return list(chain.from_iterable(lst))

sz = 5
ak_path = os.path.join(path, "AKX", "count_matched_quarks")

result_PR_AKX = pickle.load(open(os.path.join(ak_path, "result_PR_AKX.pkl"), "rb"))
result_jet_props_akx = pickle.load(open(os.path.join(ak_path, "result_jet_properties_AKX.pkl"), "rb"))
result_qj_akx = pickle.load(open(os.path.join(ak_path, "result_quark_to_jet.pkl"), "rb"))
result_dq_pt_akx = pickle.load(open(os.path.join(ak_path, "result_pt_dq.pkl"), "rb"))
result_dq_mc_pt_akx = pickle.load(open(os.path.join(ak_path, "result_pt_mc_gt.pkl"), "rb"))
result_dq_props_akx = pickle.load(open(os.path.join(ak_path, "result_props_dq.pkl"), "rb"))

try:
    result_PR_AKX_PL = pickle.load(open(os.path.join(os.path.join(path, "AKX_PL", "count_matched_quarks"), "result_PR_AKX.pkl"), "rb"))
    result_qj_akx_PL = pickle.load(open(os.path.join(os.path.join(path, "AKX_PL", "count_matched_quarks"), "result_quark_to_jet.pkl"), "rb"))
    result_dq_mc_pt_akx_PL = pickle.load(open(os.path.join(os.path.join(path, "AKX_PL", "count_matched_quarks"), "result_pt_mc_gt.pkl"), "rb"))
    result_dq_pt_akx_PL = pickle.load(open(os.path.join(os.path.join(path, "AKX_PL", "count_matched_quarks"), "result_pt_dq.pkl"), "rb"))
    result_dq_props_akx_PL = pickle.load(open(os.path.join(os.path.join(path, "AKX_PL", "count_matched_quarks"), "result_props_dq.pkl"), "rb"))
except FileNotFoundError:
    print("FileNotFoundError")
    result_PR_AKX_PL = result_PR_AKX
try:
    result_PR_AKX_GL = pickle.load(open(os.path.join(os.path.join(path, "AKX_GL", "count_matched_quarks"), "result_PR_AKX.pkl"), "rb"))
    result_qj_akx_GL = pickle.load(open(os.path.join(os.path.join(path, "AKX_GL", "count_matched_quarks"), "result_quark_to_jet.pkl"), "rb"))
    result_dq_mc_pt_akx_GL = pickle.load(
        open(os.path.join(os.path.join(path, "AKX_GL", "count_matched_quarks"), "result_pt_mc_gt.pkl"), "rb"))
    result_dq_pt_akx_GL = pickle.load(
        open(os.path.join(os.path.join(path, "AKX_GL", "count_matched_quarks"), "result_pt_dq.pkl"), "rb"))
    result_dq_props_akx_GL = pickle.load(
        open(os.path.join(os.path.join(path, "AKX_GL", "count_matched_quarks"), "result_props_dq.pkl"), "rb"))

except FileNotFoundError:
    print("FileNotFoundError")
    result_PR_AKX_GL = result_PR_AKX

#plot_only = ["LGATr_GP", "LGATr_GP_IRC_S", "LGATr_GP_IRC_SN", "LGATr_GP_50k", "LGATr_GP_IRC_S_50k"]
plot_only = []

radius = [0.8]
def select_radius(d, radius, depth=3):
    # from the dictionary, select radius at the level
    if depth == 0:
        return d[radius]
    return {key: select_radius(d[key], radius, depth - 1) for key in d}

if len(models): # temporarily do not plot this one
    #fig, ax = plt.subplots(3, len(plot_only) + len(radius)*2, figsize=(sz * (len(plot_only)+len(radius)*2), sz * 3))
    # three columns: PL, GL, scouting for each model
    for i, model in tqdm(enumerate(sorted(models))):
        output_path = os.path.join(path, model, "count_matched_quarks")
        if not os.path.exists(os.path.join(output_path, "result.pkl")):
            print("Result not exists for model", model)
            continue
        result = pickle.load(open(os.path.join(output_path, "result.pkl"), "rb"))
        #result_unmatched = pickle.load(open(os.path.join(output_path, "result_unmatched.pkl"), "rb"))
        #result_fakes = pickle.load(open(os.path.join(output_path, "result_fakes.pkl"), "rb"))
        result_bc = pickle.load(open(os.path.join(output_path, "result_bc.pkl"), "rb"))
        result_PR = pickle.load(open(os.path.join(output_path, "result_PR.pkl"), "rb"))
        #matrix_plot(result, "Blues", "Avg. matched dark quarks / event").savefig(os.path.join(output_path, "avg_matched_dark_quarks.pdf"), ax=ax[0, i])
        #matrix_plot(result_fakes, "Greens", "Avg. unmatched jets / event").savefig(os.path.join(output_path, "avg_unmatched_jets.pdf"), ax=ax[1, i])
        #matrix_plot(result_PR, "Oranges", "Precision (N matched dark quarks / N predicted jets)", metric_comp_func = lambda r: r[0], ax=ax[0, i])
        #matrix_plot(result_PR, "Reds", "Recall (N matched dark quarks / N dark quarks)", metric_comp_func = lambda r: r[1], ax=ax[1, i])
        #matrix_plot(result_PR, "Purples", r"$F_1$ score", metric_comp_func = lambda r: 2 * r[0] * r[1] / (r[0] + r[1]), ax=ax[2, i])
        print("Getting run config for model", model)
        run_config_title, run_config = get_run_config(model)
        print("RC title", run_config_title)
        if run_config is None:
            print("Skipping", model)
            continue
        #ax[0, i].set_title(run_config_title)
        #ax[1, i].set_title(run_config_title)
        #ax[2, i].set_title(run_config_title)
        li = run_config["level_idx"]
        #ax_f1[i, li].set_title(run_config_title)
        #matrix_plot(result_PR, "Purples", r"$F_1$ score", metric_comp_func = lambda r: 2 * r[0] * r[1] / (r[0] + r[1]), ax=ax_f1[i, li])
        figures_all[run_config_title] = result_PR
        print(model, run_config_title)
        td, gtr, level, tdns = run_config["training_dataset"], run_config["GT_R"], run_config["level_idx"], run_config["training_dataset_nostep"]
        if tdns in plot_only or not len(plot_only):
            td = "R=" + str(gtr) + " " + td
            if td not in figures_all_sorted:
                figures_all_sorted[td] = {}
            figures_all_sorted[td][level] = figures_all[run_config_title]

    result_AKX_current = select_radius(result_PR_AKX, 0.8)
    result_AKX_PL = select_radius(result_PR_AKX_PL, 0.8)
    result_AKX_GL = select_radius(result_PR_AKX_GL, 0.8)

    figures_all_sorted["AK8"]: {
        0: result_AKX_PL,
        1: result_AKX_current,
        2: result_AKX_GL
    }
    for i, R in enumerate(radius):
        result_PR_AKX_current = select_radius(result_PR_AKX, R)
        #matrix_plot(result_PR_AKX_current, "Oranges", "Precision (N matched dark quarks / N predicted jets)",
        #            metric_comp_func=lambda r: r[0], ax=ax[0, i+len(models)])
        #matrix_plot(result_PR_AKX_current, "Reds", "Recall (N matched dark quarks / N dark quarks)",
        #            metric_comp_func=lambda r: r[1], ax=ax[1, i+len(models)])
        #matrix_plot(result_PR_AKX_current, "Purples", r"$F_1$ score", metric_comp_func=lambda r: 2 * r[0] * r[1] / (r[0] + r[1]),
        #            ax=ax[2, i+len(models)])
        #ax[0, i+len(models)].set_title(f"AK, R={R}")
        #ax[1, i+len(models)].set_title(f"AK, R={R}")
        #ax[2, i+len(models)].set_title(f"AK, R={R}")
        t = f"AK, R={R}"
        figures_all[t] = result_PR_AKX_current
    for i, R in enumerate(radius):
        result_PR_AKX_current = select_radius(result_PR_AKX_PL, R)
        #matrix_plot(result_PR_AKX_current, "Oranges", "Precision (N matched dark quarks / N predicted jets)",
        #            metric_comp_func=lambda r: r[0], ax=ax[0, i+len(models)+len(radius)])
        #matrix_plot(result_PR_AKX_current, "Reds", "Recall (N matched dark quarks / N dark quarks)",
        #            metric_comp_func=lambda r: r[1], ax=ax[1, i+len(models)+len(radius)])
        #matrix_plot(result_PR_AKX_current, "Purples", r"$F_1$ score", metric_comp_func=lambda r: 2 * r[0] * r[1] / (r[0] + r[1]),
        #            ax=ax[2, i+len(models)+len(radius)])
        #ax[0, i+len(models)+len(radius)].set_title(f"AK PL, R={R}")
        #ax[1, i+len(models)+len(radius)].set_title(f"AK PL, R={R}")
        #ax[2, i+len(models)+len(radius)].set_title(f"AK PL, R={R}")
        figures_all[f"AK PL, R={R}"] = result_PR_AKX_current
    for i, R in enumerate(radius):
        result_PR_AKX_current = select_radius(result_PR_AKX_GL, R)
        figures_all[f"AK GL, R={R}"] = result_PR_AKX_current
    #fig.tight_layout()
    #fig.savefig(out_file_PR)
    #print("Saved to", out_file_PR)
    #fig_f1.tight_layout().463
    #fig_f1.savefig(out_file_PRf1)
    pickle.dump(figures_all, open(out_file_PR.replace(".pdf", ".pkl"), "wb"))

figures_all_sorted["AK8"] = {
    0: select_radius(result_PR_AKX_PL, 0.8),
    1: select_radius(result_PR_AKX, 0.8),
    2: select_radius(result_PR_AKX_GL, 0.8)
}
text_level = ["PL", "PFCands", "GL"]

fig_f1, ax_f1 = plt.subplots(len(figures_all_sorted), 3, figsize=(sz * 2.5, sz * len(figures_all_sorted)))
if len(figures_all_sorted) == 1:
    ax_f1 = np.array([ax_f1])
for i in range(len(figures_all_sorted)):
    model = list(figures_all_sorted.keys())[i]
    renames = {
        "R=0.8 base_LGATr_s50000": "LGATr",
        "R=0.8 LGATr_GP_50k_s25020": "LGATr_GP",
        "R=0.8 LGATr_GP_IRC_S_50k_s12900": "LGATr_GP_IRC_S",
        "AK8": "AK8",
        "R=0.8 LGATr_GP_IRC_SN_50k_s22020": "LGATr_GP_IRC_SN"
    }
    for j in range(3):
        if j in figures_all_sorted[model]:
            if j in figures_all_sorted[model]:
                matrix_plot(figures_all_sorted[model][j], "Purples", r"$F_1$ score",
                            metric_comp_func=lambda r: 2 * r[0] * r[1] / (r[0] + r[1]), ax=ax_f1[i, j], is_qcd="qcd" in path.lower())
                ax_f1[i, j].set_title(renames.get(model, model) + " "+ text_level[j])
                ax_f1[i, j].set_xlabel("$m_{Z'}$")
                ax_f1[i, j].set_ylabel("$r_{inv.}$")
fig_f1.tight_layout()
fig_f1.savefig(out_file_PRf1)


import pandas as pd

# plot QCD results:
def get_qcd_results(i):
    # i=0: precision, i=1: recall, i=2: f1 score
    qcd_results = {}
    for model in figures_all_sorted:
        qcd_results[model] = {}
        for level in figures_all_sorted[model]:
            r = figures_all_sorted[model][level][0][0][0]
            r = [float(x) for x in r] # append f1 score
            r.append(r[0]*2*r[1] / (r[0]+r[1]))
            qcd_results[model][text_level[level]] = r[i]
    return pd.DataFrame(qcd_results).T

if "qcd" in path.lower():
    print("Precision:")
    print(get_qcd_results(0))
    print("----------------")
    print("Recall:")
    print(get_qcd_results(1))
    print("----------------")
    print("F1 score:")
    print(get_qcd_results(2))
## Now do the GT R vs metrics plots

oranges = plt.get_cmap("Oranges")
reds = plt.get_cmap("Reds")
purples = plt.get_cmap("Purples")

mDark = 20
if "qcd" in path.lower():
    print("QCD events")
    mDark=0
to_plot = {} # training dataset -> rInv -> mMed -> level -> "f1score" -> value
to_plot_steps = {} # training dataset -> rInv -> mMed -> level -> step -> value
to_plot_v2 = {} # level -> rInv -> mMed -> {"model": [P,R]}
quark_to_jet = {} # level -> rInv -> mMed -> model -> quark to jet assignment list

mc_gt_pt_of_dq = {}
pt_of_dq = {}
props_of_dq = {"eta": {}, "phi": {}} # Properties of dark quarks: eta and phi

results_all = {}
results_all_ak = {}
jet_properties = {} # training dataset -> rInv -> mMed -> level -> step -> jet property dict
jet_properties_ak = {} # rInv -> mMed -> level -> radius
plotting_hypotheses = [[700, 0.7], [700, 0.5], [700, 0.3], [900, 0.3], [900, 0.7]]
if "qcd" in path.lower():
    plotting_hypotheses = [[0,0]]
sz_small = 5
for j, model in enumerate(models):
    _, rc = get_run_config(model)
    if rc is None or model in ["Eval_eval_19March2025_pt1e-2_500particles_FT_PL_2025_04_02_14_28_33_421FT", "Eval_eval_19March2025_pt1e-2_500particles_FT_PL_2025_04_02_14_47_23_671FT", "Eval_eval_19March2025_small_aug_vanishing_momentum_2025_03_28_11_45_16_582", "Eval_eval_19March2025_small_aug_vanishing_momentum_2025_03_28_11_46_26_326"]:
        print("Skipping", model)
        continue
    td = rc["training_dataset"]
    td_raw = rc["training_dataset_nostep"]
    level = rc["level"]
    r = rc["GT_R"]
    output_path = os.path.join(path, model, "count_matched_quarks")
    if not os.path.exists(os.path.join(output_path, "result_PR.pkl")):
        continue
    result_PR = pickle.load(open(os.path.join(output_path, "result_PR.pkl"), "rb"))
    result_QJ = pickle.load(open(os.path.join(output_path, "result_quark_to_jet.pkl"), "rb"))
    result_jet_props = pickle.load(open(os.path.join(output_path, "result_jet_properties.pkl"), "rb"))
    result_MC_PT = pickle.load(open(os.path.join(output_path, "result_pt_mc_gt.pkl"), "rb"))
    result_PT_DQ = pickle.load(open(os.path.join(output_path, "result_pt_dq.pkl"), "rb"))
    result_DQ_props = pickle.load(open(os.path.join(output_path, "result_props_dq.pkl"), "rb"))
    print(level)
    if td not in to_plot:
        to_plot[td] = {}
        results_all[td] = {}
    if td_raw not in to_plot_steps:
        to_plot_steps[td_raw] = {}
        jet_properties[td_raw] = {}
    level_idx = ["PL", "scouting", "GL"].index(level)
    if level_idx not in to_plot_v2:
        to_plot_v2[level_idx] = {}
        quark_to_jet[level_idx] = {}
        pt_of_dq[level_idx] = {}
        mc_gt_pt_of_dq[level_idx] = {}
        for prop in props_of_dq:
            props_of_dq[prop][level_idx] = {}
    for mMed_h in result_PR:
        if mMed_h not in to_plot_v2[level_idx]:
            to_plot_v2[level_idx][mMed_h] = {}
            quark_to_jet[level_idx][mMed_h] = {}
            pt_of_dq[level_idx][mMed_h] = {}
            mc_gt_pt_of_dq[level_idx][mMed_h] = {}
            for prop in props_of_dq:
                props_of_dq[prop][level_idx][mMed_h] = {}
        if mMed_h not in to_plot_steps[td_raw]:
            to_plot_steps[td_raw][mMed_h] = {}
            jet_properties[td_raw][mMed_h] = {}
        if mMed_h not in results_all[td]:
            results_all[td][mMed_h] = {mDark: {}}
        for rInv_h in result_PR[mMed_h][mDark]:
            if rInv_h not in to_plot_v2[level_idx][mMed_h]:
                to_plot_v2[level_idx][mMed_h][rInv_h] = {}
                quark_to_jet[level_idx][mMed_h][rInv_h] = {}
                pt_of_dq[level_idx][mMed_h][rInv_h] = {}
                mc_gt_pt_of_dq[level_idx][mMed_h][rInv_h] = {}
                for prop in props_of_dq:
                    props_of_dq[prop][level_idx][mMed_h][rInv_h] = {}
            if rInv_h not in to_plot_steps[td_raw][mMed_h]:
                to_plot_steps[td_raw][mMed_h][rInv_h] = {}
                jet_properties[td_raw][mMed_h][rInv_h] = {}
            if level not in to_plot_steps[td_raw][mMed_h][rInv_h]:
                to_plot_steps[td_raw][mMed_h][rInv_h][level] = {}
                jet_properties[td_raw][mMed_h][rInv_h][level] = {}
            if rInv_h not in results_all[td][mMed_h][mDark]:
                results_all[td][mMed_h][mDark][rInv_h] = {}
            #for level in ["PL+ghosts", "GL+ghosts", "scouting+ghosts"]:
            if level not in results_all[td][mMed_h][mDark][rInv_h]:
                results_all[td][mMed_h][mDark][rInv_h][level] = {}
            precision = result_PR[mMed_h][mDark][rInv_h][0]
            recall = result_PR[mMed_h][mDark][rInv_h][1]
            f1score = 2 * precision * recall / (precision + recall)
            to_plot_v2[level_idx][mMed_h][rInv_h][td_raw] = [precision, recall]
            quark_to_jet[level_idx][mMed_h][rInv_h][td_raw] = result_QJ[mMed_h][mDark][rInv_h]
            pt_of_dq[level_idx][mMed_h][rInv_h][td_raw] = flatten_list(result_PT_DQ[mMed_h][mDark][rInv_h])
            mc_gt_pt_of_dq[level_idx][mMed_h][rInv_h][td_raw] = flatten_list(result_MC_PT[mMed_h][mDark][rInv_h])
            for prop in props_of_dq:
                props_of_dq[prop][level_idx][mMed_h][rInv_h][td_raw] = flatten_list(result_DQ_props[prop][mMed_h][mDark][rInv_h])
            #print("qj", quark_to_jet[level_idx][mMed_h][rInv_h][td_raw])
            if r not in results_all[td][mMed_h][mDark][rInv_h][level]:
                results_all[td][mMed_h][mDark][rInv_h][level][r] = f1score
            ckpt_step = rc["ckpt_step"]
            to_plot_steps[td_raw][mMed_h][rInv_h][level][ckpt_step] = f1score
            jet_properties[td_raw][mMed_h][rInv_h][level][ckpt_step] = result_jet_props[mMed_h][mDark][rInv_h]
m_Meds = []
r_invs = []
for key in to_plot_steps:
    m_Meds += list(to_plot_steps[key].keys())
    for key2 in to_plot_steps[key]:
        r_invs += list(to_plot_steps[key][key2].keys())

m_Meds = sorted(list(set(m_Meds)))
r_invs = sorted(list(set(r_invs)))

result_AKX_current = select_radius(result_PR_AKX, 0.8)
result_AKX_PL = select_radius(result_PR_AKX_PL, 0.8)
result_AKX_GL = select_radius(result_PR_AKX_GL, 0.8)
result_AKX_jet_properties = select_radius(result_jet_props_akx, 0.8)

jet_properties["AK8"] = {}
result_AKX_current_QJ = select_radius(result_qj_akx, 0.8)
result_AKX_PL_QJ = select_radius(result_qj_akx_PL, 0.8)
result_AKX_GL_QJ = select_radius(result_qj_akx_GL, 0.8)

result_AKX_current_pt_dq = select_radius(result_dq_pt_akx, 0.8)
result_AKX_PL_pt_dq = select_radius(result_dq_pt_akx_PL, 0.8)
result_AKX_GL_pt_dq = select_radius(result_dq_pt_akx_GL, 0.8)

result_AKX_current_MCpt_dq = select_radius(result_dq_mc_pt_akx, 0.8)
result_AKX_PL_MCpt_dq = select_radius(result_dq_mc_pt_akx_PL, 0.8)
result_AKX_GL_MCpt_dq = select_radius(result_dq_mc_pt_akx_GL, 0.8)

result_AKX_current_props_dq = select_radius(result_dq_props_akx, 0.8, depth=4)
result_AKX_PL_props_dq = select_radius(result_dq_props_akx_PL, 0.8, depth=4)
result_AKX_GL_props_dq = select_radius(result_dq_props_akx_GL, 0.8, depth=4)

from tqdm import tqdm

for mMed_h in result_AKX_jet_properties:
    for rInv_h in result_AKX_jet_properties[mMed_h][mDark]:
        if 0 in to_plot_v2:
            to_plot_v2[0][mMed_h][rInv_h]["AK8"] = result_AKX_PL[mMed_h][mDark][rInv_h]
            to_plot_v2[1][mMed_h][rInv_h]["AK8"] = result_AKX_current[mMed_h][mDark][rInv_h]
            to_plot_v2[2][mMed_h][rInv_h]["AK8"] = result_AKX_GL[mMed_h][mDark][rInv_h]
            quark_to_jet[0][mMed_h][rInv_h]["AK8"] = result_AKX_PL_QJ[mMed_h][mDark][rInv_h]
            quark_to_jet[1][mMed_h][rInv_h]["AK8"] = result_AKX_current_QJ[mMed_h][mDark][rInv_h]
            quark_to_jet[2][mMed_h][rInv_h]["AK8"] = result_AKX_GL_QJ[mMed_h][mDark][rInv_h]
            pt_of_dq[0][mMed_h][rInv_h]["AK8"] = flatten_list(result_AKX_PL_pt_dq[mMed_h][mDark][rInv_h])
            pt_of_dq[1][mMed_h][rInv_h]["AK8"] = flatten_list(result_AKX_current_pt_dq[mMed_h][mDark][rInv_h])
            pt_of_dq[2][mMed_h][rInv_h]["AK8"] = flatten_list(result_AKX_GL_pt_dq[mMed_h][mDark][rInv_h])
            mc_gt_pt_of_dq[0][mMed_h][rInv_h]["AK8"] = flatten_list(result_AKX_PL_MCpt_dq[mMed_h][mDark][rInv_h])
            mc_gt_pt_of_dq[1][mMed_h][rInv_h]["AK8"] = flatten_list(result_AKX_current_MCpt_dq[mMed_h][mDark][rInv_h])
            mc_gt_pt_of_dq[2][mMed_h][rInv_h]["AK8"] = flatten_list(result_AKX_GL_MCpt_dq[mMed_h][mDark][rInv_h])
            for k in props_of_dq:
                props_of_dq[k][0][mMed_h][rInv_h]["AK8"] = flatten_list(result_AKX_PL_props_dq[k][mMed_h][mDark][rInv_h])
                props_of_dq[k][1][mMed_h][rInv_h]["AK8"] = flatten_list(result_AKX_current_props_dq[k][mMed_h][mDark][rInv_h])
                props_of_dq[k][2][mMed_h][rInv_h]["AK8"] = flatten_list(result_AKX_GL_props_dq[k][mMed_h][mDark][rInv_h])
        if mMed_h not in jet_properties["AK8"]:
            jet_properties["AK8"][mMed_h] = {}
        if rInv_h not in jet_properties["AK8"][mMed_h]:
            jet_properties["AK8"][mMed_h][rInv_h] = {}
        jet_properties["AK8"][mMed_h][rInv_h] = {"scouting": {50000: result_AKX_jet_properties[mMed_h][mDark][rInv_h]}}

rename_results_dict = {
    "LGATr_comparison_DifferentTrainingDS": "base",
    "LGATr_comparison_GP_training": "GP",
    "LGATr_comparison_GP_IRC_S_training": "GP_IRC_S",
    "LGATr_comparison_GP_IRC_SN_training": "GP_IRC_SN"
}


hypotheses_to_plot = [[0,0],[700,0.7],[700,0.5],[700,0.3]]



def powerset(iterable):
    "powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
    s = list(iterable)
    return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))


def get_label_from_superset(lbl, labels_rename, labels):
    if lbl == '':
        return "Missed by all"
    r = [labels[int(i)] for i in lbl]
    r = [labels_rename.get(l,l) for l in r]
    if len(r) == 2 and "QCD" in r and "900_03" in r:
        return "Found by both models but not AK"
    if len(r) == 3:
        return "Found by all"
    return ", ".join(r)


for hyp_m, hyp_rinv in hypotheses_to_plot:
    if 0 not in to_plot_v2:
        continue # Not for the lower-pt thresholds, where only GL and PL are available
    if hyp_m not in to_plot_v2[0] or hyp_rinv not in to_plot_v2[0][hyp_m]:
        continue
    # plot here the venn diagrams
    labels = ["LGATr_GP_IRC_S_QCD", "AK8", "LGATr_GP_IRC_S_50k"]
    labels_global = ["LGATr_GP_IRC_S_QCD", "AK8", "LGATr_GP_IRC_S_50k"]
    labels_rename = {"LGATr_GP_IRC_S_QCD": "QCD", "LGATr_GP_IRC_S_50k": "900_03"}
    fig_venn, ax_venn = plt.subplots(6, 3, figsize=(5 * 3, 5 * 6)) # the bottom ones are for pt of the DQ, pt of the MC GT, pt of MC GT / pt of DQ, eta, and phi distributions
    fig_venn1, ax_venn1 = plt.subplots(6, 2, figsize=(5*2, 5*6)) # Only the PFCands-level, with full histogram on the left and density on the right
    for level in range(3):
        #labels = list(results_dict["LGATr_comparison_GP_IRC_S_training"][0].keys())
        label_combination_to_number = {} # fill it with all possible label combinations e.g. if there are 3 labels: "NA", "0", "1", "2", "01", "012", "12", "02"
        powerset_str = ["".join([str(x) for x in sorted(list(a))]) for a in powerset(range(len(labels)))]
        set_to_count = {key: 0 for key in powerset_str}
        set_to_stats = {key: {"pt_dq": [], "pt_mc_t": [], "pt_mc_t_dq_ratio": [], "eta": [], "phi": []} for key in powerset_str}
        label_to_result = {}
        #label_to_stats = {"pt_dq": , "pt_mc_t": [], "pt_mc_t_dq_ratio": [], "eta": [], "phi": []}
        n_dq = 999999999
        for j, label in enumerate(labels):
            r = flatten_list(quark_to_jet[level][hyp_m][hyp_rinv][label])
            n_dq = min(n_dq, len(r)) # Find the minimum number of dark quarks in all labels
        for j, label in enumerate(labels):
            r = torch.tensor(flatten_list(quark_to_jet[level][hyp_m][hyp_rinv][label]))
            r = (r != -1) # Whether quark no. X is caught or not
            label_to_result[j] = r.tolist()[:n_dq]
            #r = torch.tensor(flatten_list(pt_of_dq[level][hyp_m][hyp_rinv][label]))
            #r = r[:n_dq]
            #label_to_stats["pt_dq"].append(r.tolist())
            #r1 = torch.tensor(flatten_list(mc_gt_pt_of_dq[level][hyp_m][hyp_rinv][label]))
            #r1 = r1[:n_dq]
            #label_to_stats["pt_mc_t"].append(r1.tolist())
            #r2 = r1 / r
            #r2 = r2[:n_dq]
            #label_to_stats["pt_mc_t_dq_ratio"].append(r2.tolist())
            #r_eta = torch.tensor(flatten_list(props_of_dq["eta"][level][hyp_m][hyp_rinv][label]))
            #r_eta = r_eta[:n_dq]
            #label_to_stats["eta"].append(r_eta.tolist())
            ##r_phi = torch.tensor(flatten_list(props_of_dq["phi"][level][hyp_m][hyp_rinv][label]))
            #r_phi = r_phi[:n_dq]
            #label_to_stats["phi"].append(r_phi.tolist())
            assert len(label_to_result[j]) == n_dq, f"Label {label} has different number of quarks than others {n_dq} != {len(label_to_result[j])}"
            #n_dq = min(n_dq, len(r))
        #for j, label in enumerate(labels):
        #    assert len(label_to_result[j]) == n_dq, f"Label {label} has different number of quarks than others {n_dq} != {len(label_to_result[j])}"
        for c in tqdm(range(n_dq)):
            belonging_to_set = ""
            for j, label in enumerate(labels):
                if label_to_result[j][c] == 1:
                    belonging_to_set += str(j)
            set_to_count[belonging_to_set] += 1
            #for key in label_to_stats:
            #    for idx in belonging_to_set:
            #        idx_int = int(idx) # e.g. "0", "1" etc.
            #        set_to_stats[belonging_to_set]
            for j, label in enumerate(labels):
                current_dq_pt = pt_of_dq[level][hyp_m][hyp_rinv][label][c]
                current_mc_gt_pt = mc_gt_pt_of_dq[level][hyp_m][hyp_rinv][label][c]
                current_dq_eta = props_of_dq["eta"][level][hyp_m][hyp_rinv][label][c]
                current_dq_phi = props_of_dq["phi"][level][hyp_m][hyp_rinv][label][c]
                set_to_stats[belonging_to_set]["pt_dq"].append(current_dq_pt)
                set_to_stats[belonging_to_set]["pt_mc_t"].append(current_mc_gt_pt)
                set_to_stats[belonging_to_set]["pt_mc_t_dq_ratio"].append(current_mc_gt_pt/current_dq_pt)
                set_to_stats[belonging_to_set]["eta"].append(current_dq_eta)
                set_to_stats[belonging_to_set]["phi"].append(current_dq_phi)
        #print("set_to_count for level", level, ":", set_to_count, "labels:", labels)
        title = f"$m_{{Z'}}={hyp_m}$ GeV, $r_{{inv.}}={hyp_rinv}$, {text_level[level]} (missed by all: {set_to_count['']}) "
        if hyp_m == 0 and hyp_rinv == 0:
            title = f"QCD, {text_level[level]} (missed by all: {set_to_count['']})"
        ax_venn[0, level].set_title(title)
        plot_venn3_from_index_dict(ax_venn[0, level], set_to_count, set_labels=[labels_rename.get(l,l) for l in labels], set_colors=["orange", "gray", "red"])
        if level == 1: #reco-level
            plot_venn3_from_index_dict(ax_venn1[0, 1], set_to_count,
                                   set_labels=[labels_rename.get(l,l) for l in labels],
                                   set_colors=["orange", "gray", "red"])
        bins = {
            "pt_dq": np.linspace(90, 250, 50),
            "pt_mc_t": np.linspace(0, 200, 50),
            "pt_mc_t_dq_ratio": np.linspace(0, 1.3, 30),
            "eta": np.linspace(-4, 4, 20),
            "phi": np.linspace(-np.pi, np.pi, 20)
        }
        # 10 random colors
        clrs = ["green", "red", "orange", "pink", "blue", "purple", "cyan", "magenta"]
        key_rename_dict = {"pt_dq": "$p_T$ of quark", "pt_mc_t": "$p_T$ of particles within radius of R=0.8 of quark", "pt_mc_t_dq_ratio": "$p_T$ (part. within R=0.8 of quark) / $p_T$ (quark) ", "eta": "$\eta$ of quark", "phi": "$\phi$ of quark" }
        for k, key in enumerate(["pt_dq", "pt_mc_t", "pt_mc_t_dq_ratio", "eta", "phi"]):
            for s_idx, s in enumerate(sorted(set_to_stats.keys())):
                if len(set_to_stats[s][key]) == 0:
                    continue
                lbl = s
                #if s == "":
                #    lbl = "none"
                lbl1 = get_label_from_superset(lbl, labels_rename, labels)

                if lbl1 not in ["Missed by all", "Found by both models but not AK", "AK8", "Found by all"]:
                    continue
                if level == 1:
                    ax_venn1[k + 1, 1].hist(set_to_stats[s][key], bins=bins[key], histtype="step",
                                           label=lbl1, color=clrs[s_idx], density=True)
                    ax_venn1[k + 1, 0].set_title(f"{key_rename_dict[key]}")
                    ax_venn1[k+1, 1].set_title(f"{key_rename_dict[key]}")
                    ax_venn1[k + 1, 1].set_ylabel("Density")
                if lbl not in ["", "012"]:
                    # We are only interested in the differences...
                    ax_venn[k+1, level].hist(set_to_stats[s][key], bins=bins[key], histtype="step", label=lbl1, color=clrs[s_idx])
                    ax_venn[k+1, level].set_title(f"{key_rename_dict[key]}")
                    if level == 1:
                        ax_venn1[k + 1, 0].hist(set_to_stats[s][key], bins=bins[key], histtype="step",
                                            label=lbl1,
                                            color=clrs[s_idx])
                #ax_venn[k+1, level].set_xlabel(key)
                #ax_venn[k+1, level].set_ylabel("Count")
        for k in range(5):
            ax_venn[k+1, level].legend()
    fig_venn.tight_layout()
    for k in range(5):
        ax_venn1[k+1, 0].legend()
        ax_venn1[k+1, 1].legend()
    fig_venn1.tight_layout()
    f = os.path.join(get_path(args.input, "results"), f"venn_diagram_{hyp_m}_{hyp_rinv}.pdf")
    fig_venn.savefig(f)
    f1 = os.path.join(get_path(args.input, "results"), f"venn_diagram_{hyp_m}_{hyp_rinv}_reco_level_only.pdf")
    fig_venn1.savefig(f1)

    for i, lbl in enumerate(["precision", "recall", "F1"]): # 0=precision, 1=recall, 2=F1
        sz_small1 = 2.5
        fig, ax = plt.subplots(len(rename_results_dict), 3, figsize=(sz_small1 * 3, sz_small1 * len(rename_results_dict)))
        for i1, key in enumerate(list(rename_results_dict.keys())):
            for level in range(3):
                level_text = text_level[level]
                labels = list(results_dict[key][0].keys())
                colors = [results_dict[key][0][l] for l in labels]
                res_precision = np.array([to_plot_v2[level][hyp_m][hyp_rinv][l][0] for l in labels])
                res_recall = np.array([to_plot_v2[level][hyp_m][hyp_rinv][l][1] for l in labels])
                res_f1 = 2 * res_precision * res_recall / (res_precision + res_recall)
                if i == 0:
                    values = res_precision
                elif i == 1:
                    values = res_recall
                else:
                    values = res_f1
                rename_dict = results_dict[key][1]
                labels_renamed = [rename_dict.get(l,l) for l in labels]
                print(i1, level)
                ax_tiny_histogram(ax[i1, level], labels_renamed, colors, values)
                ax[i1, level].set_title(f"{rename_results_dict[key]} {level_text}")
        fig.tight_layout()
        fig.savefig(os.path.join(get_path(args.input, "results"), f"{lbl}_results_by_level_{hyp_m}_{hyp_rinv}_{key}.pdf"))


for hyp_m, hyp_rinv in hypotheses_to_plot:
    if 0 not in to_plot_v2:
        continue # Not for the lower-pt thresholds, where only GL and PL are available
    if hyp_m not in to_plot_v2[0] or hyp_rinv not in to_plot_v2[0][hyp_m]:
        continue
    # plot here the venn diagrams
    labels = ["LGATr_GP_IRC_S_QCD", "AK8", "LGATr_GP_IRC_S_50k"]
    labels_global = ["LGATr_GP_IRC_S_QCD", "AK8", "LGATr_GP_IRC_S_50k"]
    labels_rename = {"LGATr_GP_IRC_S_QCD": "QCD", "LGATr_GP_IRC_S_50k": "900_03"}
    fig_venn2, ax_venn2 = plt.subplots(1, len(labels), figsize=(4*len(labels), 4)) # the bottom ones are for pt of the DQ, pt of the MC GT, pt of MC GT / pt of DQ, eta, and phi distributions
    for j, label in enumerate(labels):
        #labels = list(results_dict["LGATr_comparison_GP_IRC_S_training"][0].keys())
        label_combination_to_number = {} # fill it with all possible label combinations e.g. if there are 3 labels: "NA", "0", "1", "2", "01", "012", "12", "02"
        powerset_str = ["".join([str(x) for x in sorted(list(a))]) for a in powerset(range(3))]
        set_to_count = {key: 0 for key in powerset_str}
        label_to_result = {}
        n_dq = 99999999 # Sometimes, the last batch gets cut off etc. ...
        for level in range(3):
            r = flatten_list(quark_to_jet[level][hyp_m][hyp_rinv][label])
            n_dq = min(n_dq, len(r))
        for level in range(3):
            r = torch.tensor(flatten_list(quark_to_jet[level][hyp_m][hyp_rinv][label]))
            r = (r != -1)
            label_to_result[level] = r.tolist()[:n_dq]
            assert len(label_to_result[level]) == n_dq, f"Label {label} has different number of quarks than others {n_dq} != {len(label_to_result[level])}"
        for c in tqdm(range(n_dq)):
            belonging_to_set = ""
            for lvl in range(3):
                if label_to_result[lvl][c] == 1:
                    belonging_to_set += str(lvl)
            set_to_count[belonging_to_set] += 1
        if hyp_m == 0 and hyp_rinv == 0:
            title = f"QCD, {label} (missed by all: {set_to_count['']}) "
        else:
            title = f"$m_{{Z'}}={hyp_m}$ GeV, $r_{{inv.}}={hyp_rinv}$, {label} (miss: {set_to_count['']}) "
        ax_venn2[j].set_title(title)
        plot_venn3_from_index_dict(ax_venn2[j], set_to_count, set_labels=text_level, set_colors=["orange", "gray", "red"], remove_max=1)
    fig_venn2.tight_layout()
    f = os.path.join(get_path(args.input, "results"), f"venn_diagram_{hyp_m}_{hyp_rinv}_Agreement_between_levels.pdf")
    fig_venn2.savefig(f)


for key in results_dict:
    for level in range(3):
        level_text = text_level[level]
        labels = list(results_dict[key][0].keys())
        if level in to_plot_v2:
            f, a = multiple_matrix_plot(to_plot_v2[level], labels=labels, colors=[results_dict[key][0][l] for l in labels], rename_dict=results_dict[key][1])
            if f is None:
                print("No figure for", key, level)
                continue
            #f.suptitle(f"{level_text} $F_1$ score")
            out_file = f"grid_stack_F1_{level_text}_{key}.pdf"
            out_file = os.path.join(get_path(args.input, "results"), out_file)
            f.savefig(out_file)
            print("Saved to", out_file)

from matplotlib.lines import Line2D

# Define custom legend handles
custom_lines = [
    Line2D([0], [0], color='orange', linestyle='-', label='LGATr'),
    Line2D([0], [0], color='green', linestyle='-', label='GATr'),
    Line2D([0], [0], color='blue', linestyle='-', label='Transformer'),
    Line2D([0], [0], color='gray', linestyle='-', label='AK8'),
    Line2D([0], [0], color='black', linestyle='-', label='reco'),
    Line2D([0], [0], color='black', linestyle=':', label='gen'),
    Line2D([0], [0], color='black', linestyle='--', label='parton'),
]

if len(models):
    fig_steps, ax_steps = plt.subplots(len(m_Meds), len(r_invs),  figsize=(sz_small * len(r_invs), sz_small * len(m_Meds)))
    if len(m_Meds) == 1 and len(r_invs) == 1:
        ax_steps = np.array([[ax_steps]])
    histograms = {}

    for key in histograms_dict:
        if key not in histograms:
            histograms[key] = {}
        for i in ["pt", "eta", "phi"]:
            f, a = plt.subplots(len(m_Meds), len(r_invs), figsize=(sz_small * len(r_invs), sz_small * len(m_Meds)))
            if len(r_invs) == 1 and len(m_Meds) == 1:
                a = np.array([[a]])
            histograms[key][i] = f, a
    colors = {"base_LGATr": "orange", "base_Tr": "blue", "base_GATr": "green", "AK8": "gray"} # THE COLORS FOR THE STEP VS. F1 SCORE
    #colors_small_dataset = {"base_LGATr_SD": "orange", "base_Tr_SD": "blue", "base_GATr_SD": "green", "AK8": "gray"}
    #colors = colors_small_dataset
    level_styles = {"scouting": "solid", "PL": "dashed", "GL": "dotted"}
    #step_to_plot_histograms = 50000  # phi, eta, pt histograms...
    level_to_plot_histograms = "scouting"


    for i, mMed_h in enumerate(m_Meds):
        for j, rInv_h in enumerate(r_invs):
            ax_steps[i, j].set_title("$m_{{Z'}} = {}$ GeV, $r_{{inv.}} = {}$".format(mMed_h, rInv_h))
            ax_steps[i, j].set_xlabel("Training step")
            ax_steps[i, j].set_ylabel("Test $F_1$ score")
            #if j == 0:
                #ax_steps[i, j].set_ylabel("$m_{{Z'}} = {}$".format(mMed_h))
                #for subset in histograms:
                    #for key in histograms[subset]:
                        #histograms[subset][key][1][i, j].set_ylabel("$m_{{Z'}} = {}$".format(mMed_h))
            if i == len(m_Meds)-1:
                ax_steps[i, j].set_xlabel("$r_{{inv.}} = {}$".format(rInv_h))
                for subset in histograms:
                    for key in histograms[subset]:
                        histograms[subset][key][1][i, j].set_xlabel("$r_{{inv.}} = {}$".format(rInv_h))
            for model in jet_properties:
                if level_to_plot_histograms not in jet_properties[model][mMed_h][rInv_h]:
                    print("Skipping", model, level_to_plot_histograms, " - levels:", jet_properties[model][mMed_h][rInv_h].keys())
                    continue
                for subset in histograms:
                    for key in histograms[subset]:
                        if model not in histograms_dict[subset][1]:
                            continue
                        step_to_plot_histograms = histograms_dict[subset][0][model]
                        if step_to_plot_histograms not in jet_properties[model][mMed_h][rInv_h][level_to_plot_histograms]:
                            print("Swapping the step to plot histograms", jet_properties[model][mMed_h][rInv_h][level_to_plot_histograms].keys())
                            step_to_plot_histograms = sorted(list(jet_properties[model][mMed_h][rInv_h][level_to_plot_histograms].keys()))[0]
                        pred = np.array(jet_properties[model][mMed_h][rInv_h][level_to_plot_histograms][step_to_plot_histograms][key + "_pred"])
                        truth = np.array(jet_properties[model][mMed_h][rInv_h][level_to_plot_histograms][step_to_plot_histograms][key + "_gen_particle"])
                        if key.startswith("pt"):
                            q = pred/truth
                            symbol = "/" # division instead of subtraction symbol for pt
                            quantity = "p_{T,pred}/p_{T,true}"
                            bins = np.linspace(0, 2.5, 100)
                        elif key.startswith("eta"):
                            q = (pred - truth)
                            symbol = "-"
                            quantity="\eta_{pred}-\eta_{true}"
                            bins = np.linspace(-0.8, 0.8, 50)
                        elif key.startswith("phi"):
                            q = pred - truth
                            symbol = "-"
                            quantity = "\phi_{pred}-\phi_{true}"
                            q[q > np.pi] -= 2 * np.pi
                            q[q< -np.pi] += 2 * np.pi
                            bins = np.linspace(-0.8, 0.8, 50)
                            print("Max", np.max(q), "Min", np.min(q))
                        rename = {"base_LGATr": "LGATr",
                                  "LGATr_GP_IRC_S_50k": "LGATr_GP_IRC_S",
                                  "AK8": "AK8",
                                  "LGATr_GP_50k": "LGATr_GP"}
                        histograms[subset][key][1][i, j].hist(q, histtype="step", color=histograms_dict[subset][1][model], label=rename.get(model, model), bins=bins, density=True)
                        if mMed_h > 0:
                            histograms[subset][key][1][i, j].set_title(f"${quantity}$ $m_{{Z'}}={mMed_h}$ GeV, $r_{{inv.}}={rInv_h}$")
                        else:
                            histograms[subset][key][1][i, j].set_title(f"${quantity}$")
                        histograms[subset][key][1][i, j].legend()
                        histograms[subset][key][1][i, j].grid(True)
            for model in to_plot_steps:
                for lvl in to_plot_steps[model][mMed_h][rInv_h]:
                    if model not in colors:
                        print("Skipping", model)
                        continue
                    print(model)
                    ls = level_styles[lvl]
                    plt_dict = to_plot_steps[model][mMed_h][rInv_h][lvl]
                    x_pts = sorted(list(plt_dict.keys()))
                    y_pts = [plt_dict[k] for k in x_pts]
                    if ls == "solid":
                        ax_steps[i, j].plot(x_pts, y_pts, label=model, marker=".", linestyle=ls, color=colors[model])
                    else:
                        # No label
                        ax_steps[i, j].plot(x_pts, y_pts, marker=".", linestyle=ls, color=colors[model])
                    ax_steps[i, j].legend(handles=custom_lines)
                    # now plot a horizontal line for the AKX same level
                    if lvl == "scouting":
                        rc = result_AKX_current
                    elif lvl == "PL":
                        rc = result_AKX_PL
                    elif lvl == "GL":
                        rc = result_AKX_GL
                    else:
                        raise Exception
                    pr = rc[mMed_h][mDark][rInv_h][0]
                    rec = rc[mMed_h][mDark][rInv_h][1]
                    f1ak = 2 * pr * rec / (pr + rec)
                    ax_steps[i, j].axhline(f1ak, color="gray", linestyle=ls, alpha=0.5)
                ax_steps[i, j].grid(1)
    path_steps_fig = os.path.join(get_path(args.input, "results"), "score_vs_step_plots.pdf")
    fig_steps.tight_layout()
    fig_steps.savefig(path_steps_fig)
    for subset in histograms:
        for key in histograms[subset]:
            fig = histograms[subset][key][0]
            fig.tight_layout()
            fig.savefig(os.path.join(get_path(args.input, "results"), "histogram_{}_{}.pdf".format(key, subset)))
    print("Saved to", path_steps_fig)


'''for i, h in enumerate(plotting_hypotheses):
        mMed_h, rInv_h = h
        if rInv_h not in to_plot[td]:
            to_plot[td][rInv_h] = {}
        print("Model", model)
        if mMed_h not in to_plot[td][rInv_h]:
            to_plot[td][rInv_h][mMed_h] = {} # level
        if level not in to_plot[td][rInv_h][mMed_h]:
            to_plot[td][rInv_h][mMed_h][level] = {"precision": [], "recall": [], "f1score": [], "R": []}
        precision = result_PR[mMed_h][mDark][rInv_h][0]
        recall = result_PR[mMed_h][mDark][rInv_h][1]
        f1score = 2 * precision * recall / (precision + recall)
        to_plot[td][rInv_h][mMed_h][level]["precision"].append(precision)
        to_plot[td][rInv_h][mMed_h][level]["recall"].append(recall)
        to_plot[td][rInv_h][mMed_h][level]["f1score"].append(f1score)
        to_plot[td][rInv_h][mMed_h][level]["R"].append(r)

'''
to_plot_ak = {} # level ("scouting"/"GL"/"PL") -> rInv -> mMed -> {"f1score": [], "R": []}

for j, model in enumerate(["AKX", "AKX_PL", "AKX_GL"]):
    print(model)
    if os.path.exists(os.path.join(path, model, "count_matched_quarks", "result_PR_AKX.pkl")):
        result_PR_AKX = pickle.load(open(os.path.join(path, model, "count_matched_quarks", "result_PR_AKX.pkl"), "rb"))
    else:
        print("Skipping", model)
        continue
    level = "scouting"
    if "PL" in model:
        level = "PL"
    elif "GL" in model:
        level = "GL"
    if level not in to_plot_ak:
        to_plot_ak[level] = {}
    for mMed_h in result_PR_AKX:
        if mMed_h not in results_all_ak:
            results_all_ak[mMed_h] = {mDark: {}}
        for rInv_h in result_PR_AKX[mMed_h][mDark]:
            if rInv_h not in results_all_ak[mMed_h][mDark]:
                results_all_ak[mMed_h][mDark][rInv_h] = {}
            if level not in results_all_ak[mMed_h][mDark][rInv_h]:
                results_all_ak[mMed_h][mDark][rInv_h][level] = {}
            for ridx, R in enumerate(result_PR_AKX[mMed_h][mDark][rInv_h]):
                if R not in results_all_ak[mMed_h][mDark][rInv_h][level]:
                    precision = result_PR_AKX[mMed_h][mDark][rInv_h][R][0]
                    recall = result_PR_AKX[mMed_h][mDark][rInv_h][R][1]
                    f1score = 2 * precision * recall / (precision + recall)
                    results_all_ak[mMed_h][mDark][rInv_h][level][R] = f1score

    for i, h in enumerate(plotting_hypotheses):
        mMed_h, rInv_h = h
        if rInv_h not in to_plot_ak[level]:
            to_plot_ak[level][rInv_h] = {}
        print("Model", model)
        if mMed_h not in to_plot_ak[level][rInv_h]:
            to_plot_ak[level][rInv_h][mMed_h] = {"precision": [], "recall": [], "f1score": [], "R": []}
        rs = sorted(result_PR_AKX[mMed_h][mDark][rInv_h].keys())
        precision = np.array([result_PR_AKX[mMed_h][mDark][rInv_h][i][0] for i in rs])
        recall = np.array([result_PR_AKX[mMed_h][mDark][rInv_h][i][1] for i in rs])
        f1score = 2 * precision * recall / (precision + recall)
        to_plot_ak[level][rInv_h][mMed_h]["precision"] = precision
        to_plot_ak[level][rInv_h][mMed_h]["recall"] = recall
        to_plot_ak[level][rInv_h][mMed_h]["f1score"] = f1score
        to_plot_ak[level][rInv_h][mMed_h]["R"] = rs
print("AK:", to_plot_ak)
fig, ax = plt.subplots(len(to_plot) + 1, len(plotting_hypotheses), figsize=(sz_small * len(plotting_hypotheses), sz_small * len(to_plot))) # also add AKX as last plot

if len(to_plot) == 0:
    ax = np.array([ax])
colors = {
    #"PL": "green",
    #"GL": "blue",
    #"scouting": "red",
    "PL+ghosts": "green",
    "GL+ghosts": "blue",
    "scouting+ghosts": "red"
}
ak_colors = {
    "PL": "green",
    "GL": "blue",
    "scouting": "red",
}
'''
for i, td in enumerate(to_plot):
    # for each training dataset
    for j, h in enumerate(plotting_hypotheses):
        ax[i, j].set_title(f"r_inv={h[1]}, m={h[0]}, tr. on {td}")
        ax[i, j].set_ylabel("F1 score")
        ax[i, j].set_xlabel("GT R")
        ax[i, j].grid()
        for level in sorted(list(to_plot[td][h[1]][h[0]].keys())):
            print("level", level)
            print("Plotting", td, h[1], h[0], level)
            if level in colors:
                ax[i, j].plot(to_plot[td][h[1]][h[0]][level]["R"], to_plot[td][h[1]][h[0]][level]["f1score"], ".-", label=level, color=colors[level])
        ax[i, j].legend()
for j, h in enumerate(plotting_hypotheses): # for to_plot_AK
    ax[-1, j].set_title(f"r_inv={h[1]}, m={h[0]}, AK baseline")
    ax[-1, j].set_ylabel("F1 score")
    ax[-1, j].set_xlabel("GT R")
    ax[-1, j].grid()
    for i, ak_level in enumerate(sorted(list(to_plot_ak.keys()))):
        mMed_h, rInv_h = h
        if ak_level in ak_colors:
            ax[-1, j].plot(to_plot_ak[ak_level][rInv_h][mMed_h]["R"], to_plot_ak[ak_level][rInv_h][mMed_h]["f1score"], ".-", label=ak_level, color=ak_colors[ak_level])
    ax[-1, j].legend()
fig.tight_layout()
fig.savefig(os.path.join(get_path(args.input, "results"), "score_vs_GT_R_plots_1.pdf"))
print("Saved to", os.path.join(get_path(args.input, "results"), "score_vs_GT_R_plots_1.pdf"))
'''
fig, ax = plt.subplots(1, len(results_all)*len(radius) + len(radius), figsize=(7 * len(results_all)*len(radius)+len(radius), 5))
for i, model in enumerate(results_all):
    for j, R in enumerate(radius):
        #if r not in results_all[model][700][20][0.3]["scouting"]:
        #    continue
        # for each training dataset
        index = len(radius)*i + j
        ax[index].set_title(model + " R={}".format(R))
        matrix_plot(results_all[model], "Greens", r"PL/GL F1 score", ax=ax[index], metric_comp_func=lambda r: r["PL+ghosts"][R]/r["scouting+ghosts"][R])
for i, R in enumerate(radius):
    index = len(radius)*len(results_all) + i
    ax[index].set_title("AK R={}".format(R))
    matrix_plot(results_all_ak, "Greens", r"PL/GL F1 score", ax=ax[index], metric_comp_func=lambda r: r["PL"][R]/r["GL"][R])
fig.tight_layout()
fig.savefig(out_file_PG)

print("Saved to", out_file_PG)
1/0


#print("Saved to", os.path.join(get_path(args.input, "results"), "score_vs_GT_R_plots_AK.pdf"))
#print("Saved to", os.path.join(get_path(args.input, "results"), "score_vs_GT_R_plots_AK_ratio.pdf"))

########### Now save the above plot with objectness score applied

if args.threshold_obj_score != -1:
    fig, ax = plt.subplots(3, len(models), figsize=(sz * len(models), sz * 3))
    for i, model in tqdm(enumerate(models)):
        output_path = os.path.join(path, model, "count_matched_quarks")
        if not os.path.exists(os.path.join(output_path, "result.pkl")):
            continue
        result = pickle.load(open(os.path.join(output_path, "result.pkl"), "rb"))
        #result_unmatched = pickle.load(open(os.path.join(output_path, "result_unmatched.pkl"), "rb"))
        result_fakes = pickle.load(open(os.path.join(output_path, "result_fakes.pkl"), "rb"))
        result_bc = pickle.load(open(os.path.join(output_path, "result_bc.pkl"), "rb"))
        result_PR = pickle.load(open(os.path.join(output_path, "result_PR.pkl"), "rb"))
        result_PR_thresholds = pickle.load(open(os.path.join(output_path, "result_PR_thresholds.pkl"), "rb"))
        #thresholds = sorted(list(result_PR_thresholds[900][20][0.3].keys()))
        #thresholds = np.array(thresholds)
        # now linearly interpolate the thresholds and set the j according to args.threshold_obj_score
        j = np.argmin(np.abs(thresholds - args.threshold_obj_score))
        print("Thresholds", thresholds)
        print("Chose j=", j, "for threshold", args.threshold_obj_score, "(effectively it's", thresholds[j], ")")
        def wrap(r):
            # compute [precision, recall] array from [n_relevant_retrieved, all_retrieved, all_relevant]
            if r[1] == 0 or r[2] == 0:
                return [0, 0]
            return [r[0] / r[1], r[0] / r[2]]
        matrix_plot(result_PR_thresholds, "Oranges", "Precision (N matched dark quarks / N predicted jets)", metric_comp_func = lambda r: wrap(r[j])[0], ax=ax[0, i])
        matrix_plot(result_PR_thresholds, "Reds", "Recall (N matched dark quarks / N dark quarks)", metric_comp_func = lambda r: wrap(r[j])[1], ax=ax[1, i])
        matrix_plot(result_PR_thresholds, "Purples", r"$F_1$ score", metric_comp_func = lambda r: 2 * wrap(r[j])[0] * wrap(r[j])[1] / (wrap(r[j])[0] + wrap(r[j])[1]), ax=ax[2, i])
        ax[0, i].set_title(model)
        ax[1, i].set_title(model)
        ax[2, i].set_title(model)
    fig.tight_layout()
    fig.savefig(out_file_PR_OS)
    print("Saved to", out_file_PR_OS)

################
# UNUSED PLOTS #
################
'''fig, ax = plt.subplots(2, len(models), figsize=(sz * len(models), sz * 2))
for i, model in tqdm(enumerate(models)):
    output_path = os.path.join(path, model, "count_matched_quarks")
    if not os.path.exists(os.path.join(output_path, "result.pkl")):
        continue
    result = pickle.load(open(os.path.join(output_path, "result.pkl"), "rb"))
    #result_unmatched = pickle.load(open(os.path.join(output_path, "result_unmatched.pkl"), "rb"))
    result_fakes = pickle.load(open(os.path.join(output_path, "result_fakes.pkl"), "rb"))
    result_bc = pickle.load(open(os.path.join(output_path, "result_bc.pkl"), "rb"))
    result_PR = pickle.load(open(os.path.join(output_path, "result_PR.pkl"), "rb"))
    matrix_plot(result, "Blues", "Avg. matched dark quarks / event", ax=ax[0, i])
    matrix_plot(result_fakes, "Greens", "Avg. unmatched jets / event", ax=ax[1, i])
    ax[0, i].set_title(model)
    ax[1, i].set_title(model)
fig.tight_layout()
fig.savefig(out_file_avg_number_matched_quarks)
print("Saved to", out_file_avg_number_matched_quarks)'''

rinvs = [0.3, 0.5, 0.7]
sz = 4
fig, ax = plt.subplots(len(rinvs), 3, figsize=(3*sz, sz*len(rinvs)))
fig_AK, ax_AK = plt.subplots(len(rinvs), 3, figsize=(3*sz, sz*len(rinvs)))
fig_AK_ratio, ax_AK_ratio = plt.subplots(len(rinvs), 3, figsize=(3*sz, sz*len(rinvs)))


to_plot = {} # r_inv -> m_med -> precision, recall, R
to_plot_ak = {} # plotting for the AK baseline

### Plotting the score vs GT R plots

oranges = plt.get_cmap("Oranges")
reds = plt.get_cmap("Reds") # Plot a plot for each mass at given r_inv of the precision, recall, F1 score
purples = plt.get_cmap("Purples")

mDark = 20

for i, rinv in enumerate(rinvs):
    if rinv not in to_plot:
        to_plot[rinv] = {}
        to_plot_ak[rinv] = {}
    for j, model in enumerate(models):
        print("Model", model)
        if model not in radius:
            continue
        r = radius[model]
        output_path = os.path.join(path, model, "count_matched_quarks")
        if not os.path.exists(os.path.join(output_path, "result_PR.pkl")):
            continue
        result_PR = pickle.load(open(os.path.join(output_path, "result_PR.pkl"), "rb"))
        #if radius not in to_plot[rinv]:
        #    to_plot[rinv][radius] = {}
        for k, mMed in enumerate(sorted(result_PR.keys())):
            if mMed not in to_plot[rinv]:
                to_plot[rinv][mMed] = {"precision": [], "recall": [], "f1score": [], "R": []}
            precision = result_PR[mMed][mDark][rinv][0]
            recall = result_PR[mMed][mDark][rinv][1]
            f1score = 2 * precision * recall / (precision + recall)
            to_plot[rinv][mMed]["precision"].append(precision)
            to_plot[rinv][mMed]["recall"].append(recall)
            to_plot[rinv][mMed]["f1score"].append(f1score)
            to_plot[rinv][mMed]["R"].append(r)
    for mMed in sorted(to_plot[rinv].keys()):
        # normalize mmed between 0 and 1 (originally between 700 and 3000)
        mmed = (mMed - 500) / (3000 - 500)
        r = to_plot[rinv][mMed]
        print("Model R", r["R"])
        scatter_plot(ax[0, i], r["R"], r["precision"], label="m={} GeV".format(round(mMed)), color=oranges(mmed))
        scatter_plot(ax[1, i], r["R"], r["recall"], label="m={} GeV".format(round(mMed)), color=reds(mmed))
        scatter_plot(ax[2, i], r["R"], r["f1score"], label="m={} GeV".format(round(mMed)), color=purples(mmed))
    if not os.path.exists(os.path.join(ak_path, "result_PR_AKX.pkl")):
        continue
    result_PR_AKX = pickle.load(open(os.path.join(ak_path, "result_PR_AKX.pkl"), "rb"))
    result_jet_props_akx = pickle.load(open(os.path.join(ak_path, "result_jet_properties_AKX.pkl"), "rb"))
    #if radius not in to_plot[rinv]:
    #    to_plot[rinv][radius] = {}
    for k, mMed in enumerate(sorted(result_PR_AKX.keys())):
        if mMed not in to_plot_ak[rinv]:
            to_plot_ak[rinv][mMed] = {"precision": [], "recall": [], "f1score": [], "R": []}
        rs = sorted(result_PR_AKX[mMed][mDark][rinv].keys())
        precision = np.array([result_PR_AKX[mMed][mDark][rinv][k][0] for k in rs])
        recall = np.array([result_PR_AKX[mMed][mDark][rinv][k][1] for k in rs])
        f1score = 2 * precision * recall / (precision + recall)
        to_plot_ak[rinv][mMed]["precision"] += list(precision)
        to_plot_ak[rinv][mMed]["recall"] += list(recall)
        to_plot_ak[rinv][mMed]["f1score"] += list(f1score)
        to_plot_ak[rinv][mMed]["R"] += rs

    for mMed in sorted(to_plot_ak[rinv].keys()):
        # Normalize mmed between 0 and 1 (originally between 700 and 3000)
        mmed = (mMed - 500) / (3000 - 500)
        r = to_plot_ak[rinv][mMed]
        r_model = to_plot[rinv][mMed]
        print("AK R", r["R"])
        scatter_plot(ax_AK[0, i], r["R"], r["precision"], label="m={} GeV AK".format(round(mMed)), color=oranges(mmed), pattern=".--")
        scatter_plot(ax_AK[1, i], r["R"], r["recall"], label="m={} GeV AK".format(round(mMed)), color=reds(mmed), pattern=".--")
        scatter_plot(ax_AK[2, i], r["R"], r["f1score"], label="m={} GeV AK".format(round(mMed)), color=purples(mmed), pattern=".--")
        # r["R"] has more points than r_model["R"] - pick those from r["R"] that are in r_model["R"]
        r["R"] = np.array(r["R"])
        r["precision"] = np.array(r["precision"])
        r["recall"] = np.array(r["recall"])
        r["f1score"] = np.array(r["f1score"])
        filt = np.isin(r["R"], r_model["R"])
        r["R"] = r["R"][filt]
        r["precision"] = r["precision"][filt]
        r["recall"] = r["recall"][filt]
        r["f1score"] = r["f1score"][filt]
        scatter_plot(ax_AK_ratio[0, i], r["R"], r["precision"]/np.array(r_model["precision"]), label="m={} GeV AK".format(round(mMed)), color=oranges(mmed), pattern=".--")
        scatter_plot(ax_AK_ratio[1, i], r["R"], r["recall"]/np.array(r_model["recall"]), label="m={} GeV AK".format(round(mMed)), color=reds(mmed), pattern=".--")
        scatter_plot(ax_AK_ratio[2, i], r["R"], r["f1score"]/np.array(r_model["f1score"]), label="m={} GeV AK".format(round(mMed)), color=purples(mmed), pattern=".--")

    for ax1 in [ax, ax_AK, ax_AK_ratio]:
        ax1[0, i].set_title(f"Precision r_inv = {rinv}")
        ax1[1, i].set_title(f"Recall r_inv = {rinv}")
        ax1[2, i].set_title(f"F1 score r_inv = {rinv}")
        ax1[2, i].legend()
        ax1[1, i].legend()
        ax1[0, i].legend()
        ax1[0, i].grid()
        ax1[1, i].grid()
        ax1[2, i].grid()
        ax1[0, i].set_xlabel("GT R")
        ax1[1, i].set_xlabel("GT R")
        ax1[2, i].set_xlabel("GT R")
    ax_AK_ratio[0, i].set_ylabel("Precision (model=1)")
    ax_AK_ratio[1, i].set_ylabel("Recall (model=1)")
    ax_AK_ratio[2, i].set_ylabel("F1 score (model=1)")
fig.tight_layout()
fig_AK.tight_layout()
fig.savefig(os.path.join(get_path(args.input, "results"), "score_vs_GT_R_plots.pdf"))
fig_AK.savefig(os.path.join(get_path(args.input, "results"), "score_vs_GT_R_plots_AK.pdf"))
fig_AK_ratio.tight_layout()
fig_AK_ratio.savefig(os.path.join(get_path(args.input, "results"), "score_vs_GT_R_plots_AK_ratio.pdf"))

print("Saved to", os.path.join(get_path(args.input, "results"), "score_vs_GT_R_plots_AK.pdf"))
print("Saved to", os.path.join(get_path(args.input, "results"), "score_vs_GT_R_plots_AK_ratio.pdf"))