Spaces:
Sleeping
Sleeping
File size: 80,597 Bytes
e75a247 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 |
import torch
from itertools import chain, combinations
import os
from tqdm import tqdm
import argparse
import pickle
from src.plotting.eval_matrix import matrix_plot, scatter_plot, multiple_matrix_plot, ax_tiny_histogram
from src.utils.paths import get_path
import matplotlib.pyplot as plt
import numpy as np
from collections import OrderedDict
#### Plotting functions
from matplotlib_venn import venn3
import matplotlib.pyplot as plt
from copy import copy
def plot_venn3_from_index_dict(ax, data_dict, set_labels=('Set 0', 'Set 1', 'Set 2'), set_colors=("orange", "purple", "gray"), remove_max=True):
"""
Generate a 3-set Venn diagram from a dictionary where keys are strings of '0', '1', and '2'
indicating set membership, and values are counts.
Parameters:
- data_dict (dict): Dictionary with keys like '0', '01', '012', etc.
- set_labels (tuple): Labels for the three sets.
- remove_max: if true, it will remove
"""
# Mapping of set index combinations to venn3 region codes
index_to_region = {
'100': '100', # Only in Set 0
'010': '010', # Only in Set 1
'001': '001', # Only in Set 2
'110': '110', # In Set 0 and Set 1
'101': '101', # In Set 0 and Set 2
'011': '011', # In Set 1 and Set 2
'111': '111', # In all three
}
# Initialize region counts
venn_counts = {region: 0 for region in index_to_region.values()}
max_value = 0
for key in data_dict:
if data_dict[key] > max_value and key != "":
max_value = data_dict[key]
print("Max val", max_value)
data_dict = copy(data_dict)
new_data_dict = {}
for key in data_dict:
if remove_max and data_dict[key] == max_value:
# #data_dict[key] = 0
# del data_dict[key]
continue
else:
new_data_dict[key] = data_dict[key]
data_dict = new_data_dict
print("data dict", data_dict)
# Convert data_dict keys to binary keys for region mapping
for k, v in data_dict.items():
binary_key = ''.join(['1' if str(i) in k else '0' for i in range(3)])
if binary_key in index_to_region:
venn_counts[index_to_region[binary_key]] += v
# Plotting
#plt.figure(figsize=(8, 8))
del venn_counts['111']
venn = venn3(subsets=venn_counts, set_labels=set_labels, set_colors=set_colors, alpha=0.5, ax=ax)
venn.get_label_by_id("111").set_text(max_value)
#plt.title("3-Set Venn Diagram from Index Dictionary")
#plt.show()
### Change this to make custom plots highlighting differences between different models (the histograms of pt_pred/pt_true, eta_pred-eta_true, and phi_pred-phi_true)
histograms_dict = {
"": [{"base_LGATr": 50000, "base_Tr": 50000 , "base_GATr": 50000, "AK8": 50000}, {"base_LGATr": "orange", "base_Tr": "blue", "base_GATr": "green", "AK8": "gray"}],
"LGATr_comparison": [{"base_LGATr": 50000, "LGATr_GP_IRC_S_50k": 9960, "LGATr_GP_50k": 9960, "AK8": 50000, "LGATr_GP_IRC_SN_50k": 24000}, {"base_LGATr": "orange", "LGATr_GP_IRC_S_50k": "red", "LGATr_GP_50k": "purple", "LGATr_GP_IRC_SN_50k": "pink", "AK8": "gray"}],
"LGATr_comparsion_DifferentTrainingDS": [{"base_LGATr": 50000, "LGATr_700_07": 50000, "LGATr_QCD": 50000, "LGATr_700_07+900_03": 50000, "LGATr_700_07+900_03+QCD": 50000, "AK8": 50000}, {"base_LGATr": "orange", "LGATr_700_07": "red", "LGATr_QCD": "purple", "LGATr_700_07+900_03": "blue", "LGATr_700_07+900_03+QCD": "green", "AK8": "gray"}]
}
# This is a dictionary that contains the models and their colors for plotting - to plot the F1 scores etc. of the models
results_dict = {
"LGATr_comparison_DifferentTrainingDS":
[{"base_LGATr": "orange", "LGATr_700_07": "red", "LGATr_QCD": "purple", "LGATr_700_07+900_03": "blue",
"LGATr_700_07+900_03+QCD": "green", "AK8": "gray"}, {"base_LGATr": "LGATr_900_03"}], # 2nd dict in list is rename dict
"LGATr_comparison": [{"base_LGATr": "orange", "LGATr_GP_IRC_S_50k": "red", "LGATr_GP_50k": "purple", "LGATr_GP_IRC_SN_50k": "pink", "AK8": "gray"},
{"base_LGATr": "LGATr", "LGATr_GP_IRC_S_50k": "LGATr_GP_IRC_S", "LGATr_GP_50k": "LGATr_GP", "LGATr_GP_IRC_SN_50k": "LGATr_GP_IRC_SN"}], # 2nd dict in list is rename dict
"LGATr_comparison_QCDtrain": [{"LGATr_QCD": "orange", "LGATr_GP_IRC_S_QCD": "red", "LGATr_GP_QCD": "purple", "LGATr_GP_IRC_SN_QCD": "pink", "AK8": "gray"},
{"LGATr_QCD": "LGATr", "LGATr_GP_IRC_S_QCD": "LGATr_GP_IRC_S", "LGATr_GP_QCD": "LGATr_GP", "LGATr_GP_IRC_SN_QCD": "LGATr_GP_IRC_SN"}], # 2nd dict in list is rename dict
"LGATr_comparison_GP_training": [
{"LGATr_GP_QCD": "purple", "LGATr_GP_700_07": "red", "LGATr_GP_700_07+900_03": "blue", "LGATr_GP_700_07+900_03+QCD": "green", "LGATr_GP_50k": "orange", "AK8": "gray"},
{"LGATr_GP_QCD": "QCD", "LGATr_GP_700_07": "700_07", "LGATr_GP_700_07+900_03": "700_07+900_03" , "LGATr_GP_50k": "900_03", "LGATr_GP_700_07+900_03+QCD": "700_07+900_03+QCD"} # 2nd dict in list is rename dict
],
"LGATr_comparison_GP_IRC_S_training": [
{"LGATr_GP_IRC_S_QCD": "purple", "LGATr_GP_IRC_S_700_07": "red", "LGATr_GP_IRC_S_700_07+900_03": "blue", "LGATr_GP_IRC_S_700_07+900_03+QCD": "green", "LGATr_GP_IRC_S_50k": "orange", "AK8": "gray"},
{"LGATr_GP_IRC_S_QCD": "QCD", "LGATr_GP_IRC_S_700_07": "700_07", "LGATr_GP_IRC_S_700_07+900_03": "700_07+900_03", "LGATr_GP_IRC_S_50k": "900_03", "LGATr_GP_IRC_S_700_07+900_03+QCD": "700_07+900_03+QCD"} # 2nd dict in list is rename dict
],
"LGATr_comparison_GP_IRC_SN_training": [
{"LGATr_GP_IRC_SN_QCD": "purple", "LGATr_GP_IRC_SN_700_07": "red", "LGATr_GP_IRC_SN_700_07+900_03": "blue", "LGATr_GP_IRC_SN_700_07+900_03+QCD": "green", "LGATr_GP_IRC_SN_50k": "orange", "AK8": "gray"},
{"LGATr_GP_IRC_SN_QCD": "QCD", "LGATr_GP_IRC_SN_700_07": "700_07", "LGATr_GP_IRC_SN_700_07+900_03": "700_07+900_03", "LGATr_GP_IRC_SN_50k": "900_03", "LGATr_GP_IRC_SN_700_07+900_03+QCD": "700_07+900_03+QCD"} # 2nd dict in list is rename dict
]
}
'''
"GP_LGATr_training_NoPID_Delphes_PU_PFfix_QCD_events_10_16_64_0.8_2025_05_19_21_29_06_946": "LGATr_GP_QCD",
"GP_LGATr_training_NoPID_Delphes_PU_PFfix_700_07_10_16_64_0.8_2025_05_19_21_38_20_376": "LGATr_GP_700_07",
"GP_LGATr_training_NoPID_Delphes_PU_PFfix_700_07_AND_900_03_AND_QCD_10_16_64_0.8_2025_05_20_13_12_54_359": "LGATr_GP_700_07+900_03+QCD",
"GP_LGATr_training_NoPID_Delphes_PU_PFfix_700_07_AND_900_03_10_16_64_0.8_2025_05_20_13_13_00_503": "LGATr_GP_700_07+900_03",
"GP_IRC_S_LGATr_training_NoPID_Delphes_PU_PFfix_700_07_AND_900_03_10_16_64_0.8_2025_05_20_15_29_30_29": "LGATr_GP_IRC_S_700_07+900_03",
"GP_IRC_S_LGATr_training_NoPID_Delphes_PU_PFfix_700_07_AND_900_03_AND_QCD_10_16_64_0.8_2025_05_20_15_29_28_959": "LGATr_GP_IRC_S_700_07+900_03+QCD",
"GP_IRC_S_LGATr_training_NoPID_Delphes_PU_PFfix_700_07_10_16_64_0.8_2025_05_20_15_11_35_476": "LGATr_GP_IRC_S_700_07",
"GP_IRC_S_LGATr_training_NoPID_Delphes_PU_PFfix_QCD_events_10_16_64_0.8_2025_05_20_15_11_20_735": "LGATr_GP_IRC_S_QCD",
'''
parser = argparse.ArgumentParser()
parser.add_argument("--input", type=str, required=False, default="scouting_PFNano_signals2/SVJ_hadronic_std/batch_eval/objectness_score")
parser.add_argument("--threshold-obj-score", "-os-threshold", type=float, default=-1)
thresholds = np.linspace(0.1, 1, 20)
# also add 100 points between 0 and 0.1 at the beginning
thresholds = np.concatenate([np.linspace(0, 0.1, 100), thresholds])
args = parser.parse_args()
path = get_path(args.input, "results")
models = sorted([x for x in os.listdir(path) if not os.path.isfile(os.path.join(path, x))])
models = [x for x in models if "AKX" not in x]
figures_all = {} # title to the f1 score figure to plot
figures_all_sorted = {} # model used -> step -> level -> f1 figure
print("Models:", models)
radius = {
"LGATr_R10": 1.0,
"LGATr_R09": 0.9,
"LGATr_rinv_03_m_900": 0.8,
"LGATr_R06": 0.6,
"LGATr_R07": 0.7,
"LGATr_R11": 1.1,
"LGATr_R12": 1.2,
"LGATr_R13": 1.3,
"LGATr_R14": 1.4,
"LGATr_R20": 2.0,
"LGATr_R25": 2.5
}
comments = {
"Eval_params_study_2025_02_17_13_30_50": ", tr. on 07_700",
"Eval_objectness_score_2025_02_12_15_34_33": ", tr. on 03_900, GT=all",
"Eval_objectness_score_2025_02_18_08_48_13": ", tr. on 03_900, GT=closest",
"Eval_objectness_score_2025_02_14_11_10_14": ", tr. on 03_900, GT=closest",
"Eval_objectness_score_2025_02_21_14_51_07": ", tr. on 07_700",
"Eval_objectness_score_2025_02_10_14_59_49": ", tr. on 03_900, GT=all",
"Eval_objectness_score_2025_02_23_19_26_25": ", tr. on all, GT=closest",
"Eval_objectness_score_2025_02_23_21_04_33": ", tr. on 03_900, GT=closest"
}
out_file_PR = os.path.join(get_path(args.input, "results"), "precision_recall.pdf")
out_file_PRf1 = os.path.join(get_path(args.input, "results"), "f1_score_sorted.pdf")
out_file_PG = os.path.join(get_path(args.input, "results"), "PLoverGL.pdf")
if args.threshold_obj_score != -1:
out_file_PR_OS = os.path.join(get_path(args.input, "results"), f"precision_recall_with_obj_score.pdf")
out_file_avg_number_matched_quarks = os.path.join(get_path(args.input, "results"), "avg_number_matched_quarks.pdf")
def get_plots_for_params(mMed, mDark, rInv, result_PR_thresholds):
precisions = []
recalls = []
f1_scores = []
for i in range(len(thresholds)):
if result_PR_thresholds[mMed][mDark][rInv][i][1] == 0:
precisions.append(0)
else:
precisions.append(
result_PR_thresholds[mMed][mDark][rInv][i][0] / result_PR_thresholds[mMed][mDark][rInv][i][1])
if result_PR_thresholds[mMed][mDark][rInv][i][2] == 0:
recalls.append(0)
else:
recalls.append(
result_PR_thresholds[mMed][mDark][rInv][i][0] / result_PR_thresholds[mMed][mDark][rInv][i][2])
for i in range(len(thresholds)):
if precisions[i] + recalls[i] == 0:
f1_scores.append(0)
else:
f1_scores.append(2 * precisions[i] * recalls[i] / (precisions[i] + recalls[i]))
return precisions, recalls, f1_scores
sz = 5
nplots = 9
# Now make 3 plots, one for mMed=700,r_inv=0.7; one for mMed=700,r_inv=0.5; one for mMed=700,r_inv=0.3
###fig, ax = plt.subplots(3, 3, figsize=(3 * sz, 3 * sz))
'''fig, ax = plt.subplots(3, nplots, figsize=(nplots*sz, 3*sz))
for mi, mass in enumerate([700, 900, 1500]):
start_idx = mi*3
for i0, rinv in enumerate([0.3, 0.5, 0.7]):
i = start_idx + i0
# 0 is precision, 1 is recall, 2 is f1 score
ax[0, i].set_title(f"r_inv={rinv}, m_med={mass} GeV")
ax[1, i].set_title(f"r_inv={rinv}, m_med={mass} GeV")
ax[2, i].set_title(f"r_inv={rinv}, m_med={mass} GeV")
ax[0, i].set_ylabel("Precision")
ax[1, i].set_ylabel("Recall")
ax[2, i].set_ylabel("F1 score")
ax[0, i].grid()
ax[1, i].grid()
ax[2, i].grid()
ylims = {} # key: j and i
default_ylims = [1, 0]
for j, model in enumerate(models):
result_PR_thresholds = os.path.join(path, model, "count_matched_quarks", "result_PR_thresholds.pkl")
if not os.path.exists(result_PR_thresholds):
continue
run_config = pickle.load(open(os.path.join(path, model, "run_config.pkl"), "rb"))
result_PR_thresholds = pickle.load(open(result_PR_thresholds, "rb"))
if mass not in result_PR_thresholds:
continue
if rinv not in result_PR_thresholds[mass]:
continue6
precisions, recalls, f1_scores = get_plots_for_params(mass, 20, rinv, result_PR_thresholds)
if not run_config["gt_radius"] == 0.8:
continue
label = "R={} gl.f.={} {}".format(run_config["gt_radius"], run_config.get("global_features_obj_score", False), comments.get(run_config["run_name"], run_config["run_name"]))
scatter_plot(ax[0, i], thresholds, precisions, label=label)
scatter_plot(ax[1, i], thresholds, recalls, label=label)
scatter_plot(ax[2, i], thresholds, f1_scores, label=label)
#ylims[0] = [min(ylims[0][0], min(precisions)), max(ylims[0][1], max(precisions))]
#ylims[1] = [min(ylims[1][0], min(recalls)), max(ylims[1][1], max(recalls))]
#ylims[2] = [min(ylims[2][0], min(f1_scores)), max(ylims[2][1], max(f1_scores))]
filt = thresholds < 0.2
precisions = np.array(precisions)[filt]
recalls = np.array(recalls)[filt]
f1_scores = np.array(f1_scores)[filt]
if (i, 0) not in ylims:
ylims[(i, 0)] = default_ylims
upper_factor = 1.01
lower_factor = 0.99
ylims[(i, 0)] = [min(ylims[(i, 0)][0], min(precisions)*lower_factor), max(ylims[(i, 0)][1], max(precisions)*upper_factor)]
if (i, 1) not in ylims:
ylims[(i, 1)] = default_ylims
ylims[(i, 1)] = [min(ylims[(i, 1)][0], min(recalls)*lower_factor), max(ylims[(i, 1)][1], max(recalls)*upper_factor)]
if (i, 2) not in ylims:
ylims[(i, 2)] = default_ylims
ylims[(i, 2)] = [min(ylims[(i, 2)][0], min(f1_scores)*lower_factor), max(ylims[(i, 2)][1], max(f1_scores)*upper_factor)]
for j in range(3):
ax[j, i].set_ylim(ylims[(i, j)])
ax[j, i].legend()
ax[j, i].set_xlim([0, 0.2])
ax[j, i].set_xlim([0, 0.2])
ax[j, i].set_xlim([0, 0.2])
# now adjust the ylim so that the plots are more readable
fig.tight_layout()
fig.savefig(os.path.join(get_path(args.input, "results"), "precision_recall_thresholds.pdf"))
print("Saved to", os.path.join(get_path(args.input, "results"), "precision_recall_thresholds.pdf"))'''
import wandb
api = wandb.Api()
def get_run_by_name(name):
clust_suffix = ""
if name.endswith("FT"):
#remove FT from the end
name = name[:-2]
clust_suffix = "FT"
if name.endswith("FT1"):
#remove FT from the end # min-samples 1 min-cluster-size 2 epsilon 0.3
name = name[:-3]
clust_suffix = "FT1"
if name.endswith("10_5"):
name = name[:-4]
clust_suffix = "10_5"
runs = api.runs(
path="fcc_ml/svj_clustering",
filters={"display_name": {"$eq": name.strip()}}
)
runs = api.runs(
path="fcc_ml/svj_clustering",
filters={"display_name": {"$eq": name.strip()}}
)
if runs.length != 1:
return None
return runs[0], clust_suffix
def get_run_config(run_name):
r, clust_suffix = get_run_by_name(run_name)
if r is None:
print("Getting info from run", run_name, "failed")
return None, None
config = r.config
result = {}
if config["parton_level"]:
prefix = "PL"
result["level"] = "PL"
result["level_idx"] = 0
elif config["gen_level"]:
prefix = "GL"
result["level"] = "GL"
result["level_idx"] = 2
else:
prefix = "sc."
result["level"] = "scouting"
result["level_idx"] = 1
if config["augment_soft_particles"]:
result["ghosts"] = True
#result["level"] += "+ghosts"
gt_r = config["gt_radius"]
if config.get("augment_soft_particles", False):
prefix += " (aug)" # ["LGATr_training_NoPID_10_16_64_0.8_Aug_Finetune_vanishing_momentum_QCap05_2025_03_28_17_12_25_820", "LGATr_training_NoPID_10_16_64_2.0_Aug_Finetune_vanishing_momentum_QCap05_2025_03_28_17_12_26_400"]
training_datasets = {
"LGATr_training_NoPID_10_16_64_0.8_AllData_2025_02_28_13_42_59": "all",
"LGATr_training_NoPID_10_16_64_0.8_2025_02_28_12_42_59": "900_03",
"LGATr_training_NoPID_10_16_64_2.0_2025_02_28_12_48_58": "900_03",
"LGATr_training_NoPID_10_16_64_0.8_700_07_2025_02_28_13_01_59": "700_07",
"LGATr_training_NoPIDGL_10_16_64_0.8_2025_03_17_20_05_04": "900_03_GenLevel",
"LGATr_training_NoPIDGL_10_16_64_2.0_2025_03_17_20_05_04": "900_03_GenLevel",
"Transformer_training_NoPID_10_16_64_2.0_2025_03_03_17_00_38": "900_03_T",
"Transformer_training_NoPID_10_16_64_0.8_2025_03_03_15_55_50": "900_03_T",
"LGATr_training_NoPID_10_16_64_0.8_Aug_Finetune_2025_03_27_12_46_12_740": "900_03+SoftAug",
"LGATr_training_NoPID_10_16_64_2.0_Aug_Finetune_vanishing_momentum_2025_03_28_10_43_36_81": "900_03+SoftAugVM",
"LGATr_training_NoPID_10_16_64_0.8_Aug_Finetune_vanishing_momentum_2025_03_28_10_43_37_44": "900_03+SoftAugVM",
"LGATr_training_NoPID_10_16_64_0.8_Aug_Finetune_vanishing_momentum_QCap05_2025_03_28_17_12_25_820": "900_03+qcap05",
"LGATr_training_NoPID_10_16_64_2.0_Aug_Finetune_vanishing_momentum_QCap05_2025_03_28_17_12_26_400": "900_03+qcap05",
"LGATr_training_NoPID_10_16_64_2.0_Aug_Finetune_vanishing_momentum_QCap05_1e-2_2025_03_29_14_58_38_650": "pt 1e-2",
"LGATr_training_NoPID_10_16_64_0.8_Aug_Finetune_vanishing_momentum_QCap05_1e-2_2025_03_29_14_58_36_446": "pt 1e-2",
"LGATr_pt_1e-2_500part_2025_04_01_16_49_08_406": "500_pt_1e-2_PLFT",
"LGATr_pt_1e-2_500part_2025_04_01_21_14_07_350": "500_pt_1e-2_PLFT",
"LGATr_pt_1e-2_500part_NoQMin_2025_04_03_23_15_17_745": "500_1e-2_scFT",
"LGATr_pt_1e-2_500part_NoQMin_2025_04_03_23_15_35_810": "500_1e-2_scFT",
"LGATr_pt_1e-2_500part_NoQMin_10_to_1000p_2025_04_04_12_57_51_536": "10_1000_1e-2_scFT",
"LGATr_pt_1e-2_500part_NoQMin_10_to_1000p_2025_04_04_12_57_47_788": "10_1000_1e-2_scFT",
"LGATr_pt_1e-2_500part_NoQMin_10_to_1000p_CW0_2025_04_04_15_30_16_839": "10_1000_1e-2_CW0",
"LGATr_pt_1e-2_500part_NoQMin_10_to_1000p_CW0_2025_04_04_15_30_20_113": "10_1000_1e-2_CW0",
"debug_IRC_loss_weighted100_plus_ghosts_2025_04_08_22_40_33_972": "IRC_short_debug",
"debug_IRC_loss_weighted100_plus_ghosts_2025_04_09_13_48_55_569": "IRC",
"debug_IRC_loss_weighted100_plus_ghosts_Qmin05_2025_04_09_14_45_51_381": "IRC_qmin05",
"LGATr_500part_NOQMin_2025_04_09_21_53_37_210": "500part_NOQMin_reprod",
"IRC_loss_Split_and_Noise_alternate_Aug_2025_04_14_11_10_21_788": "IRC_Aug_S+N",
"IRC_loss_Split_and_Noise_alternate_NoAug_2025_04_11_16_15_48_955": "IRC_S+N",
"LGATr_training_NoPID_Delphes_10_16_64_0.8_2025_04_17_18_07_38_405": "DelphesTrain",
"Delphes_IRC_aug_2025_04_19_11_16_17_130": "DelphesTrain+IRC",
"LGATr_500part_NOQMin_Delphes_2025_04_19_11_15_24_417": "DelphesTrain+ghosts",
"Delphes_IRC_aug_SplitOnly_2025_04_20_15_50_33_553": "DelphesTrain+IRC_SplitOnly",
"Delphes_IRC_NOAug_SplitOnly_2025_04_21_12_58_36_99": "Delphes_IRC_NoAug_SplitOnly",
"Delphes_IRC_NOAug_SplitAndNoise_2025_04_21_19_32_08_865": "Delphes_IRC_NoAug_S+N",
"CONT_Delphes_IRC_aug_SplitOnly_2025_04_21_12_53_27_730": "IRC_aug_SplitOnly_ContFrom14k",
"Transformer_training_NoPID_Delphes_PU_10_16_64_0.8_2025_05_03_18_37_01_188": "base_Tr_Old",
"LGATr_training_NoPID_Delphes_PU_PFfix_10_16_64_0.8_2025_05_03_18_35_53_134": "base_LGATr",
"GATr_training_NoPID_Delphes_PU_10_16_64_0.8_2025_05_03_18_35_48_163": "base_GATr_Old",
"Transformer_training_NoPID_Delphes_PU_CoordFix_10_16_64_0.8_2025_05_05_13_05_20_755": "base_Tr",
"GATr_training_NoPID_Delphes_PU_CoordFix_SmallDS_10_16_64_0.8_2025_05_05_16_24_13_579": "base_GATr_SD",
"GATr_training_NoPID_Delphes_PU_CoordFix_10_16_64_0.8_2025_05_05_13_06_27_898": "base_GATr",
"LGATr_Aug_2025_05_06_10_08_05_956": "LGATr_GP",
"Delphes_Aug_IRCSplit_CONT_2025_05_07_11_00_18_422": "LGATr_GP_IRC_S",
"Delphes_Aug_IRC_Split_and_Noise_2025_05_07_14_43_13_968": "LGATr_GP_IRC_SN",
"Transformer_training_NoPID_Delphes_PU_CoordFix_SmallDS_10_16_64_0.8_2025_05_05_16_24_19_936": "base_Tr_SD",
"LGATr_training_NoPID_Delphes_PU_PFfix_SmallDS_10_16_64_0.8_2025_05_05_16_24_16_127": "base_LGATr_SD",
"Delphes_Aug_IRCSplit_2025_05_06_10_09_00_567": "LGATr_GP_IRC_S",
"GATr_training_NoPID_Delphes_PU_CoordFix_SmallDS_10_16_64_0.8_2025_05_09_15_34_13_531": "base_GATr_SD",
"Transformer_training_NoPID_Delphes_PU_CoordFix_SmallDS_10_16_64_0.8_2025_05_09_15_56_50_216": "base_Tr_SD",
"LGATr_training_NoPID_Delphes_PU_PFfix_SmallDS_10_16_64_0.8_2025_05_09_15_56_50_875": "base_LGATr_SD",
"Delphes_Aug_IRCSplit_50k_from10k_2025_05_11_14_08_49_675": "LGATr_GP_IRC_S_50k",
"LGATr_Aug_50k_2025_05_09_15_25_32_34": "LGATr_GP_50k",
"Delphes_Aug_IRCSplit_50k_2025_05_09_15_22_38_956": "LGATr_GP_IRC_S_50k",
"LGATr_training_NoPID_Delphes_PU_PFfix_700_07_AND_900_03_AND_QCD_10_16_64_0.8_2025_05_16_21_04_26_937": "LGATr_700_07+900_03+QCD",
"LGATr_training_NoPID_Delphes_PU_PFfix_700_07_AND_900_03_10_16_64_0.8_2025_05_16_21_04_26_991": "LGATr_700_07+900_03",
"LGATr_training_NoPID_Delphes_PU_PFfix_QCD_events_10_16_64_0.8_2025_05_16_19_46_57_48": "LGATr_QCD",
"LGATr_training_NoPID_Delphes_PU_PFfix_700_07_10_16_64_0.8_2025_05_16_19_44_46_795": "LGATr_700_07",
"Delphes_Aug_IRCSplit_50k_SN_from3kFT_2025_05_16_14_07_29_474": "LGATr_GP_IRC_SN_50k",
"GP_LGATr_training_NoPID_Delphes_PU_PFfix_QCD_events_10_16_64_0.8_2025_05_19_21_29_06_946": "LGATr_GP_QCD",
"GP_LGATr_training_NoPID_Delphes_PU_PFfix_700_07_10_16_64_0.8_2025_05_19_21_38_20_376": "LGATr_GP_700_07",
"GP_LGATr_training_NoPID_Delphes_PU_PFfix_700_07_AND_900_03_AND_QCD_10_16_64_0.8_2025_05_20_13_12_54_359": "LGATr_GP_700_07+900_03+QCD",
"GP_LGATr_training_NoPID_Delphes_PU_PFfix_700_07_AND_900_03_10_16_64_0.8_2025_05_20_13_13_00_503": "LGATr_GP_700_07+900_03",
"GP_IRC_S_LGATr_training_NoPID_Delphes_PU_PFfix_700_07_AND_900_03_10_16_64_0.8_2025_05_20_15_29_30_29": "LGATr_GP_IRC_S_700_07+900_03",
"GP_IRC_S_LGATr_training_NoPID_Delphes_PU_PFfix_700_07_AND_900_03_AND_QCD_10_16_64_0.8_2025_05_20_15_29_28_959": "LGATr_GP_IRC_S_700_07+900_03+QCD",
"GP_IRC_S_LGATr_training_NoPID_Delphes_PU_PFfix_700_07_10_16_64_0.8_2025_05_20_15_11_35_476": "LGATr_GP_IRC_S_700_07",
"GP_IRC_S_LGATr_training_NoPID_Delphes_PU_PFfix_QCD_events_10_16_64_0.8_2025_05_20_15_11_20_735": "LGATr_GP_IRC_S_QCD",
"GP_IRC_S_LGATr_training_NoPID_Delphes_PU_PFfix_QCD_events_10_16_64_0.8_2025_05_24_23_00_54_948": "LGATr_GP_IRC_SN_QCD",
"GP_IRC_S_LGATr_training_NoPID_Delphes_PU_PFfix_700_07_AND_900_03_AND_QCD_10_16_64_0.8_2025_05_24_23_00_56_910": "LGATr_GP_IRC_SN_700_07+900_03+QCD",
"GP_IRC_S_LGATr_training_NoPID_Delphes_PU_PFfix_700_07_AND_900_03_10_16_64_0.8_2025_05_24_23_01_01_212": "LGATr_GP_IRC_SN_700_07+900_03",
"GP_IRC_S_LGATr_training_NoPID_Delphes_PU_PFfix_700_07_10_16_64_0.8_2025_05_24_23_01_07_703": "LGATr_GP_IRC_SN_700_07",
}
train_name = config["load_from_run"]
ckpt_step = config["ckpt_step"]
print("train name", train_name)
if train_name not in training_datasets:
print("!! unknown run", train_name)
training_dataset = training_datasets.get(train_name, train_name) + "_s" + str(ckpt_step) + clust_suffix
if "plptfilt01" in run_name.lower():
training_dataset += "_PLPtFiltMinPt01" # min pt 0.1
elif "noplfilter" in run_name.lower():
training_dataset += "_noPLFilter"
elif "noplptfilter" in run_name.lower():
training_dataset += "_noPLPtFilter" # actually there was a 0.5 pt cut in the ntuplizer, removed by plptfilt01
elif "nopletafilter" in run_name.lower():
training_dataset += "_noPLEtaFilter"
result["GT_R"] = gt_r
result["training_dataset"] = training_dataset
result["training_dataset_nostep"] = training_datasets.get(train_name, train_name) + clust_suffix
result["ckpt_step"] = ckpt_step
return f"GT_R={gt_r} {training_dataset}, {prefix}", result
def flatten_list(lst):# lst is like [[0,0],[1,1]...]
#return [item for sublist in lst for item in sublist]
return list(chain.from_iterable(lst))
sz = 5
ak_path = os.path.join(path, "AKX", "count_matched_quarks")
result_PR_AKX = pickle.load(open(os.path.join(ak_path, "result_PR_AKX.pkl"), "rb"))
result_jet_props_akx = pickle.load(open(os.path.join(ak_path, "result_jet_properties_AKX.pkl"), "rb"))
result_qj_akx = pickle.load(open(os.path.join(ak_path, "result_quark_to_jet.pkl"), "rb"))
result_dq_pt_akx = pickle.load(open(os.path.join(ak_path, "result_pt_dq.pkl"), "rb"))
result_dq_mc_pt_akx = pickle.load(open(os.path.join(ak_path, "result_pt_mc_gt.pkl"), "rb"))
result_dq_props_akx = pickle.load(open(os.path.join(ak_path, "result_props_dq.pkl"), "rb"))
try:
result_PR_AKX_PL = pickle.load(open(os.path.join(os.path.join(path, "AKX_PL", "count_matched_quarks"), "result_PR_AKX.pkl"), "rb"))
result_qj_akx_PL = pickle.load(open(os.path.join(os.path.join(path, "AKX_PL", "count_matched_quarks"), "result_quark_to_jet.pkl"), "rb"))
result_dq_mc_pt_akx_PL = pickle.load(open(os.path.join(os.path.join(path, "AKX_PL", "count_matched_quarks"), "result_pt_mc_gt.pkl"), "rb"))
result_dq_pt_akx_PL = pickle.load(open(os.path.join(os.path.join(path, "AKX_PL", "count_matched_quarks"), "result_pt_dq.pkl"), "rb"))
result_dq_props_akx_PL = pickle.load(open(os.path.join(os.path.join(path, "AKX_PL", "count_matched_quarks"), "result_props_dq.pkl"), "rb"))
except FileNotFoundError:
print("FileNotFoundError")
result_PR_AKX_PL = result_PR_AKX
try:
result_PR_AKX_GL = pickle.load(open(os.path.join(os.path.join(path, "AKX_GL", "count_matched_quarks"), "result_PR_AKX.pkl"), "rb"))
result_qj_akx_GL = pickle.load(open(os.path.join(os.path.join(path, "AKX_GL", "count_matched_quarks"), "result_quark_to_jet.pkl"), "rb"))
result_dq_mc_pt_akx_GL = pickle.load(
open(os.path.join(os.path.join(path, "AKX_GL", "count_matched_quarks"), "result_pt_mc_gt.pkl"), "rb"))
result_dq_pt_akx_GL = pickle.load(
open(os.path.join(os.path.join(path, "AKX_GL", "count_matched_quarks"), "result_pt_dq.pkl"), "rb"))
result_dq_props_akx_GL = pickle.load(
open(os.path.join(os.path.join(path, "AKX_GL", "count_matched_quarks"), "result_props_dq.pkl"), "rb"))
except FileNotFoundError:
print("FileNotFoundError")
result_PR_AKX_GL = result_PR_AKX
#plot_only = ["LGATr_GP", "LGATr_GP_IRC_S", "LGATr_GP_IRC_SN", "LGATr_GP_50k", "LGATr_GP_IRC_S_50k"]
plot_only = []
radius = [0.8]
def select_radius(d, radius, depth=3):
# from the dictionary, select radius at the level
if depth == 0:
return d[radius]
return {key: select_radius(d[key], radius, depth - 1) for key in d}
if len(models): # temporarily do not plot this one
#fig, ax = plt.subplots(3, len(plot_only) + len(radius)*2, figsize=(sz * (len(plot_only)+len(radius)*2), sz * 3))
# three columns: PL, GL, scouting for each model
for i, model in tqdm(enumerate(sorted(models))):
output_path = os.path.join(path, model, "count_matched_quarks")
if not os.path.exists(os.path.join(output_path, "result.pkl")):
print("Result not exists for model", model)
continue
result = pickle.load(open(os.path.join(output_path, "result.pkl"), "rb"))
#result_unmatched = pickle.load(open(os.path.join(output_path, "result_unmatched.pkl"), "rb"))
#result_fakes = pickle.load(open(os.path.join(output_path, "result_fakes.pkl"), "rb"))
result_bc = pickle.load(open(os.path.join(output_path, "result_bc.pkl"), "rb"))
result_PR = pickle.load(open(os.path.join(output_path, "result_PR.pkl"), "rb"))
#matrix_plot(result, "Blues", "Avg. matched dark quarks / event").savefig(os.path.join(output_path, "avg_matched_dark_quarks.pdf"), ax=ax[0, i])
#matrix_plot(result_fakes, "Greens", "Avg. unmatched jets / event").savefig(os.path.join(output_path, "avg_unmatched_jets.pdf"), ax=ax[1, i])
#matrix_plot(result_PR, "Oranges", "Precision (N matched dark quarks / N predicted jets)", metric_comp_func = lambda r: r[0], ax=ax[0, i])
#matrix_plot(result_PR, "Reds", "Recall (N matched dark quarks / N dark quarks)", metric_comp_func = lambda r: r[1], ax=ax[1, i])
#matrix_plot(result_PR, "Purples", r"$F_1$ score", metric_comp_func = lambda r: 2 * r[0] * r[1] / (r[0] + r[1]), ax=ax[2, i])
print("Getting run config for model", model)
run_config_title, run_config = get_run_config(model)
print("RC title", run_config_title)
if run_config is None:
print("Skipping", model)
continue
#ax[0, i].set_title(run_config_title)
#ax[1, i].set_title(run_config_title)
#ax[2, i].set_title(run_config_title)
li = run_config["level_idx"]
#ax_f1[i, li].set_title(run_config_title)
#matrix_plot(result_PR, "Purples", r"$F_1$ score", metric_comp_func = lambda r: 2 * r[0] * r[1] / (r[0] + r[1]), ax=ax_f1[i, li])
figures_all[run_config_title] = result_PR
print(model, run_config_title)
td, gtr, level, tdns = run_config["training_dataset"], run_config["GT_R"], run_config["level_idx"], run_config["training_dataset_nostep"]
if tdns in plot_only or not len(plot_only):
td = "R=" + str(gtr) + " " + td
if td not in figures_all_sorted:
figures_all_sorted[td] = {}
figures_all_sorted[td][level] = figures_all[run_config_title]
result_AKX_current = select_radius(result_PR_AKX, 0.8)
result_AKX_PL = select_radius(result_PR_AKX_PL, 0.8)
result_AKX_GL = select_radius(result_PR_AKX_GL, 0.8)
figures_all_sorted["AK8"]: {
0: result_AKX_PL,
1: result_AKX_current,
2: result_AKX_GL
}
for i, R in enumerate(radius):
result_PR_AKX_current = select_radius(result_PR_AKX, R)
#matrix_plot(result_PR_AKX_current, "Oranges", "Precision (N matched dark quarks / N predicted jets)",
# metric_comp_func=lambda r: r[0], ax=ax[0, i+len(models)])
#matrix_plot(result_PR_AKX_current, "Reds", "Recall (N matched dark quarks / N dark quarks)",
# metric_comp_func=lambda r: r[1], ax=ax[1, i+len(models)])
#matrix_plot(result_PR_AKX_current, "Purples", r"$F_1$ score", metric_comp_func=lambda r: 2 * r[0] * r[1] / (r[0] + r[1]),
# ax=ax[2, i+len(models)])
#ax[0, i+len(models)].set_title(f"AK, R={R}")
#ax[1, i+len(models)].set_title(f"AK, R={R}")
#ax[2, i+len(models)].set_title(f"AK, R={R}")
t = f"AK, R={R}"
figures_all[t] = result_PR_AKX_current
for i, R in enumerate(radius):
result_PR_AKX_current = select_radius(result_PR_AKX_PL, R)
#matrix_plot(result_PR_AKX_current, "Oranges", "Precision (N matched dark quarks / N predicted jets)",
# metric_comp_func=lambda r: r[0], ax=ax[0, i+len(models)+len(radius)])
#matrix_plot(result_PR_AKX_current, "Reds", "Recall (N matched dark quarks / N dark quarks)",
# metric_comp_func=lambda r: r[1], ax=ax[1, i+len(models)+len(radius)])
#matrix_plot(result_PR_AKX_current, "Purples", r"$F_1$ score", metric_comp_func=lambda r: 2 * r[0] * r[1] / (r[0] + r[1]),
# ax=ax[2, i+len(models)+len(radius)])
#ax[0, i+len(models)+len(radius)].set_title(f"AK PL, R={R}")
#ax[1, i+len(models)+len(radius)].set_title(f"AK PL, R={R}")
#ax[2, i+len(models)+len(radius)].set_title(f"AK PL, R={R}")
figures_all[f"AK PL, R={R}"] = result_PR_AKX_current
for i, R in enumerate(radius):
result_PR_AKX_current = select_radius(result_PR_AKX_GL, R)
figures_all[f"AK GL, R={R}"] = result_PR_AKX_current
#fig.tight_layout()
#fig.savefig(out_file_PR)
#print("Saved to", out_file_PR)
#fig_f1.tight_layout().463
#fig_f1.savefig(out_file_PRf1)
pickle.dump(figures_all, open(out_file_PR.replace(".pdf", ".pkl"), "wb"))
figures_all_sorted["AK8"] = {
0: select_radius(result_PR_AKX_PL, 0.8),
1: select_radius(result_PR_AKX, 0.8),
2: select_radius(result_PR_AKX_GL, 0.8)
}
text_level = ["PL", "PFCands", "GL"]
fig_f1, ax_f1 = plt.subplots(len(figures_all_sorted), 3, figsize=(sz * 2.5, sz * len(figures_all_sorted)))
if len(figures_all_sorted) == 1:
ax_f1 = np.array([ax_f1])
for i in range(len(figures_all_sorted)):
model = list(figures_all_sorted.keys())[i]
renames = {
"R=0.8 base_LGATr_s50000": "LGATr",
"R=0.8 LGATr_GP_50k_s25020": "LGATr_GP",
"R=0.8 LGATr_GP_IRC_S_50k_s12900": "LGATr_GP_IRC_S",
"AK8": "AK8",
"R=0.8 LGATr_GP_IRC_SN_50k_s22020": "LGATr_GP_IRC_SN"
}
for j in range(3):
if j in figures_all_sorted[model]:
if j in figures_all_sorted[model]:
matrix_plot(figures_all_sorted[model][j], "Purples", r"$F_1$ score",
metric_comp_func=lambda r: 2 * r[0] * r[1] / (r[0] + r[1]), ax=ax_f1[i, j], is_qcd="qcd" in path.lower())
ax_f1[i, j].set_title(renames.get(model, model) + " "+ text_level[j])
ax_f1[i, j].set_xlabel("$m_{Z'}$")
ax_f1[i, j].set_ylabel("$r_{inv.}$")
fig_f1.tight_layout()
fig_f1.savefig(out_file_PRf1)
import pandas as pd
# plot QCD results:
def get_qcd_results(i):
# i=0: precision, i=1: recall, i=2: f1 score
qcd_results = {}
for model in figures_all_sorted:
qcd_results[model] = {}
for level in figures_all_sorted[model]:
r = figures_all_sorted[model][level][0][0][0]
r = [float(x) for x in r] # append f1 score
r.append(r[0]*2*r[1] / (r[0]+r[1]))
qcd_results[model][text_level[level]] = r[i]
return pd.DataFrame(qcd_results).T
if "qcd" in path.lower():
print("Precision:")
print(get_qcd_results(0))
print("----------------")
print("Recall:")
print(get_qcd_results(1))
print("----------------")
print("F1 score:")
print(get_qcd_results(2))
## Now do the GT R vs metrics plots
oranges = plt.get_cmap("Oranges")
reds = plt.get_cmap("Reds")
purples = plt.get_cmap("Purples")
mDark = 20
if "qcd" in path.lower():
print("QCD events")
mDark=0
to_plot = {} # training dataset -> rInv -> mMed -> level -> "f1score" -> value
to_plot_steps = {} # training dataset -> rInv -> mMed -> level -> step -> value
to_plot_v2 = {} # level -> rInv -> mMed -> {"model": [P,R]}
quark_to_jet = {} # level -> rInv -> mMed -> model -> quark to jet assignment list
mc_gt_pt_of_dq = {}
pt_of_dq = {}
props_of_dq = {"eta": {}, "phi": {}} # Properties of dark quarks: eta and phi
results_all = {}
results_all_ak = {}
jet_properties = {} # training dataset -> rInv -> mMed -> level -> step -> jet property dict
jet_properties_ak = {} # rInv -> mMed -> level -> radius
plotting_hypotheses = [[700, 0.7], [700, 0.5], [700, 0.3], [900, 0.3], [900, 0.7]]
if "qcd" in path.lower():
plotting_hypotheses = [[0,0]]
sz_small = 5
for j, model in enumerate(models):
_, rc = get_run_config(model)
if rc is None or model in ["Eval_eval_19March2025_pt1e-2_500particles_FT_PL_2025_04_02_14_28_33_421FT", "Eval_eval_19March2025_pt1e-2_500particles_FT_PL_2025_04_02_14_47_23_671FT", "Eval_eval_19March2025_small_aug_vanishing_momentum_2025_03_28_11_45_16_582", "Eval_eval_19March2025_small_aug_vanishing_momentum_2025_03_28_11_46_26_326"]:
print("Skipping", model)
continue
td = rc["training_dataset"]
td_raw = rc["training_dataset_nostep"]
level = rc["level"]
r = rc["GT_R"]
output_path = os.path.join(path, model, "count_matched_quarks")
if not os.path.exists(os.path.join(output_path, "result_PR.pkl")):
continue
result_PR = pickle.load(open(os.path.join(output_path, "result_PR.pkl"), "rb"))
result_QJ = pickle.load(open(os.path.join(output_path, "result_quark_to_jet.pkl"), "rb"))
result_jet_props = pickle.load(open(os.path.join(output_path, "result_jet_properties.pkl"), "rb"))
result_MC_PT = pickle.load(open(os.path.join(output_path, "result_pt_mc_gt.pkl"), "rb"))
result_PT_DQ = pickle.load(open(os.path.join(output_path, "result_pt_dq.pkl"), "rb"))
result_DQ_props = pickle.load(open(os.path.join(output_path, "result_props_dq.pkl"), "rb"))
print(level)
if td not in to_plot:
to_plot[td] = {}
results_all[td] = {}
if td_raw not in to_plot_steps:
to_plot_steps[td_raw] = {}
jet_properties[td_raw] = {}
level_idx = ["PL", "scouting", "GL"].index(level)
if level_idx not in to_plot_v2:
to_plot_v2[level_idx] = {}
quark_to_jet[level_idx] = {}
pt_of_dq[level_idx] = {}
mc_gt_pt_of_dq[level_idx] = {}
for prop in props_of_dq:
props_of_dq[prop][level_idx] = {}
for mMed_h in result_PR:
if mMed_h not in to_plot_v2[level_idx]:
to_plot_v2[level_idx][mMed_h] = {}
quark_to_jet[level_idx][mMed_h] = {}
pt_of_dq[level_idx][mMed_h] = {}
mc_gt_pt_of_dq[level_idx][mMed_h] = {}
for prop in props_of_dq:
props_of_dq[prop][level_idx][mMed_h] = {}
if mMed_h not in to_plot_steps[td_raw]:
to_plot_steps[td_raw][mMed_h] = {}
jet_properties[td_raw][mMed_h] = {}
if mMed_h not in results_all[td]:
results_all[td][mMed_h] = {mDark: {}}
for rInv_h in result_PR[mMed_h][mDark]:
if rInv_h not in to_plot_v2[level_idx][mMed_h]:
to_plot_v2[level_idx][mMed_h][rInv_h] = {}
quark_to_jet[level_idx][mMed_h][rInv_h] = {}
pt_of_dq[level_idx][mMed_h][rInv_h] = {}
mc_gt_pt_of_dq[level_idx][mMed_h][rInv_h] = {}
for prop in props_of_dq:
props_of_dq[prop][level_idx][mMed_h][rInv_h] = {}
if rInv_h not in to_plot_steps[td_raw][mMed_h]:
to_plot_steps[td_raw][mMed_h][rInv_h] = {}
jet_properties[td_raw][mMed_h][rInv_h] = {}
if level not in to_plot_steps[td_raw][mMed_h][rInv_h]:
to_plot_steps[td_raw][mMed_h][rInv_h][level] = {}
jet_properties[td_raw][mMed_h][rInv_h][level] = {}
if rInv_h not in results_all[td][mMed_h][mDark]:
results_all[td][mMed_h][mDark][rInv_h] = {}
#for level in ["PL+ghosts", "GL+ghosts", "scouting+ghosts"]:
if level not in results_all[td][mMed_h][mDark][rInv_h]:
results_all[td][mMed_h][mDark][rInv_h][level] = {}
precision = result_PR[mMed_h][mDark][rInv_h][0]
recall = result_PR[mMed_h][mDark][rInv_h][1]
f1score = 2 * precision * recall / (precision + recall)
to_plot_v2[level_idx][mMed_h][rInv_h][td_raw] = [precision, recall]
quark_to_jet[level_idx][mMed_h][rInv_h][td_raw] = result_QJ[mMed_h][mDark][rInv_h]
pt_of_dq[level_idx][mMed_h][rInv_h][td_raw] = flatten_list(result_PT_DQ[mMed_h][mDark][rInv_h])
mc_gt_pt_of_dq[level_idx][mMed_h][rInv_h][td_raw] = flatten_list(result_MC_PT[mMed_h][mDark][rInv_h])
for prop in props_of_dq:
props_of_dq[prop][level_idx][mMed_h][rInv_h][td_raw] = flatten_list(result_DQ_props[prop][mMed_h][mDark][rInv_h])
#print("qj", quark_to_jet[level_idx][mMed_h][rInv_h][td_raw])
if r not in results_all[td][mMed_h][mDark][rInv_h][level]:
results_all[td][mMed_h][mDark][rInv_h][level][r] = f1score
ckpt_step = rc["ckpt_step"]
to_plot_steps[td_raw][mMed_h][rInv_h][level][ckpt_step] = f1score
jet_properties[td_raw][mMed_h][rInv_h][level][ckpt_step] = result_jet_props[mMed_h][mDark][rInv_h]
m_Meds = []
r_invs = []
for key in to_plot_steps:
m_Meds += list(to_plot_steps[key].keys())
for key2 in to_plot_steps[key]:
r_invs += list(to_plot_steps[key][key2].keys())
m_Meds = sorted(list(set(m_Meds)))
r_invs = sorted(list(set(r_invs)))
result_AKX_current = select_radius(result_PR_AKX, 0.8)
result_AKX_PL = select_radius(result_PR_AKX_PL, 0.8)
result_AKX_GL = select_radius(result_PR_AKX_GL, 0.8)
result_AKX_jet_properties = select_radius(result_jet_props_akx, 0.8)
jet_properties["AK8"] = {}
result_AKX_current_QJ = select_radius(result_qj_akx, 0.8)
result_AKX_PL_QJ = select_radius(result_qj_akx_PL, 0.8)
result_AKX_GL_QJ = select_radius(result_qj_akx_GL, 0.8)
result_AKX_current_pt_dq = select_radius(result_dq_pt_akx, 0.8)
result_AKX_PL_pt_dq = select_radius(result_dq_pt_akx_PL, 0.8)
result_AKX_GL_pt_dq = select_radius(result_dq_pt_akx_GL, 0.8)
result_AKX_current_MCpt_dq = select_radius(result_dq_mc_pt_akx, 0.8)
result_AKX_PL_MCpt_dq = select_radius(result_dq_mc_pt_akx_PL, 0.8)
result_AKX_GL_MCpt_dq = select_radius(result_dq_mc_pt_akx_GL, 0.8)
result_AKX_current_props_dq = select_radius(result_dq_props_akx, 0.8, depth=4)
result_AKX_PL_props_dq = select_radius(result_dq_props_akx_PL, 0.8, depth=4)
result_AKX_GL_props_dq = select_radius(result_dq_props_akx_GL, 0.8, depth=4)
from tqdm import tqdm
for mMed_h in result_AKX_jet_properties:
for rInv_h in result_AKX_jet_properties[mMed_h][mDark]:
if 0 in to_plot_v2:
to_plot_v2[0][mMed_h][rInv_h]["AK8"] = result_AKX_PL[mMed_h][mDark][rInv_h]
to_plot_v2[1][mMed_h][rInv_h]["AK8"] = result_AKX_current[mMed_h][mDark][rInv_h]
to_plot_v2[2][mMed_h][rInv_h]["AK8"] = result_AKX_GL[mMed_h][mDark][rInv_h]
quark_to_jet[0][mMed_h][rInv_h]["AK8"] = result_AKX_PL_QJ[mMed_h][mDark][rInv_h]
quark_to_jet[1][mMed_h][rInv_h]["AK8"] = result_AKX_current_QJ[mMed_h][mDark][rInv_h]
quark_to_jet[2][mMed_h][rInv_h]["AK8"] = result_AKX_GL_QJ[mMed_h][mDark][rInv_h]
pt_of_dq[0][mMed_h][rInv_h]["AK8"] = flatten_list(result_AKX_PL_pt_dq[mMed_h][mDark][rInv_h])
pt_of_dq[1][mMed_h][rInv_h]["AK8"] = flatten_list(result_AKX_current_pt_dq[mMed_h][mDark][rInv_h])
pt_of_dq[2][mMed_h][rInv_h]["AK8"] = flatten_list(result_AKX_GL_pt_dq[mMed_h][mDark][rInv_h])
mc_gt_pt_of_dq[0][mMed_h][rInv_h]["AK8"] = flatten_list(result_AKX_PL_MCpt_dq[mMed_h][mDark][rInv_h])
mc_gt_pt_of_dq[1][mMed_h][rInv_h]["AK8"] = flatten_list(result_AKX_current_MCpt_dq[mMed_h][mDark][rInv_h])
mc_gt_pt_of_dq[2][mMed_h][rInv_h]["AK8"] = flatten_list(result_AKX_GL_MCpt_dq[mMed_h][mDark][rInv_h])
for k in props_of_dq:
props_of_dq[k][0][mMed_h][rInv_h]["AK8"] = flatten_list(result_AKX_PL_props_dq[k][mMed_h][mDark][rInv_h])
props_of_dq[k][1][mMed_h][rInv_h]["AK8"] = flatten_list(result_AKX_current_props_dq[k][mMed_h][mDark][rInv_h])
props_of_dq[k][2][mMed_h][rInv_h]["AK8"] = flatten_list(result_AKX_GL_props_dq[k][mMed_h][mDark][rInv_h])
if mMed_h not in jet_properties["AK8"]:
jet_properties["AK8"][mMed_h] = {}
if rInv_h not in jet_properties["AK8"][mMed_h]:
jet_properties["AK8"][mMed_h][rInv_h] = {}
jet_properties["AK8"][mMed_h][rInv_h] = {"scouting": {50000: result_AKX_jet_properties[mMed_h][mDark][rInv_h]}}
rename_results_dict = {
"LGATr_comparison_DifferentTrainingDS": "base",
"LGATr_comparison_GP_training": "GP",
"LGATr_comparison_GP_IRC_S_training": "GP_IRC_S",
"LGATr_comparison_GP_IRC_SN_training": "GP_IRC_SN"
}
hypotheses_to_plot = [[0,0],[700,0.7],[700,0.5],[700,0.3]]
def powerset(iterable):
"powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
s = list(iterable)
return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))
def get_label_from_superset(lbl, labels_rename, labels):
if lbl == '':
return "Missed by all"
r = [labels[int(i)] for i in lbl]
r = [labels_rename.get(l,l) for l in r]
if len(r) == 2 and "QCD" in r and "900_03" in r:
return "Found by both models but not AK"
if len(r) == 3:
return "Found by all"
return ", ".join(r)
for hyp_m, hyp_rinv in hypotheses_to_plot:
if 0 not in to_plot_v2:
continue # Not for the lower-pt thresholds, where only GL and PL are available
if hyp_m not in to_plot_v2[0] or hyp_rinv not in to_plot_v2[0][hyp_m]:
continue
# plot here the venn diagrams
labels = ["LGATr_GP_IRC_S_QCD", "AK8", "LGATr_GP_IRC_S_50k"]
labels_global = ["LGATr_GP_IRC_S_QCD", "AK8", "LGATr_GP_IRC_S_50k"]
labels_rename = {"LGATr_GP_IRC_S_QCD": "QCD", "LGATr_GP_IRC_S_50k": "900_03"}
fig_venn, ax_venn = plt.subplots(6, 3, figsize=(5 * 3, 5 * 6)) # the bottom ones are for pt of the DQ, pt of the MC GT, pt of MC GT / pt of DQ, eta, and phi distributions
fig_venn1, ax_venn1 = plt.subplots(6, 2, figsize=(5*2, 5*6)) # Only the PFCands-level, with full histogram on the left and density on the right
for level in range(3):
#labels = list(results_dict["LGATr_comparison_GP_IRC_S_training"][0].keys())
label_combination_to_number = {} # fill it with all possible label combinations e.g. if there are 3 labels: "NA", "0", "1", "2", "01", "012", "12", "02"
powerset_str = ["".join([str(x) for x in sorted(list(a))]) for a in powerset(range(len(labels)))]
set_to_count = {key: 0 for key in powerset_str}
set_to_stats = {key: {"pt_dq": [], "pt_mc_t": [], "pt_mc_t_dq_ratio": [], "eta": [], "phi": []} for key in powerset_str}
label_to_result = {}
#label_to_stats = {"pt_dq": , "pt_mc_t": [], "pt_mc_t_dq_ratio": [], "eta": [], "phi": []}
n_dq = 999999999
for j, label in enumerate(labels):
r = flatten_list(quark_to_jet[level][hyp_m][hyp_rinv][label])
n_dq = min(n_dq, len(r)) # Find the minimum number of dark quarks in all labels
for j, label in enumerate(labels):
r = torch.tensor(flatten_list(quark_to_jet[level][hyp_m][hyp_rinv][label]))
r = (r != -1) # Whether quark no. X is caught or not
label_to_result[j] = r.tolist()[:n_dq]
#r = torch.tensor(flatten_list(pt_of_dq[level][hyp_m][hyp_rinv][label]))
#r = r[:n_dq]
#label_to_stats["pt_dq"].append(r.tolist())
#r1 = torch.tensor(flatten_list(mc_gt_pt_of_dq[level][hyp_m][hyp_rinv][label]))
#r1 = r1[:n_dq]
#label_to_stats["pt_mc_t"].append(r1.tolist())
#r2 = r1 / r
#r2 = r2[:n_dq]
#label_to_stats["pt_mc_t_dq_ratio"].append(r2.tolist())
#r_eta = torch.tensor(flatten_list(props_of_dq["eta"][level][hyp_m][hyp_rinv][label]))
#r_eta = r_eta[:n_dq]
#label_to_stats["eta"].append(r_eta.tolist())
##r_phi = torch.tensor(flatten_list(props_of_dq["phi"][level][hyp_m][hyp_rinv][label]))
#r_phi = r_phi[:n_dq]
#label_to_stats["phi"].append(r_phi.tolist())
assert len(label_to_result[j]) == n_dq, f"Label {label} has different number of quarks than others {n_dq} != {len(label_to_result[j])}"
#n_dq = min(n_dq, len(r))
#for j, label in enumerate(labels):
# assert len(label_to_result[j]) == n_dq, f"Label {label} has different number of quarks than others {n_dq} != {len(label_to_result[j])}"
for c in tqdm(range(n_dq)):
belonging_to_set = ""
for j, label in enumerate(labels):
if label_to_result[j][c] == 1:
belonging_to_set += str(j)
set_to_count[belonging_to_set] += 1
#for key in label_to_stats:
# for idx in belonging_to_set:
# idx_int = int(idx) # e.g. "0", "1" etc.
# set_to_stats[belonging_to_set]
for j, label in enumerate(labels):
current_dq_pt = pt_of_dq[level][hyp_m][hyp_rinv][label][c]
current_mc_gt_pt = mc_gt_pt_of_dq[level][hyp_m][hyp_rinv][label][c]
current_dq_eta = props_of_dq["eta"][level][hyp_m][hyp_rinv][label][c]
current_dq_phi = props_of_dq["phi"][level][hyp_m][hyp_rinv][label][c]
set_to_stats[belonging_to_set]["pt_dq"].append(current_dq_pt)
set_to_stats[belonging_to_set]["pt_mc_t"].append(current_mc_gt_pt)
set_to_stats[belonging_to_set]["pt_mc_t_dq_ratio"].append(current_mc_gt_pt/current_dq_pt)
set_to_stats[belonging_to_set]["eta"].append(current_dq_eta)
set_to_stats[belonging_to_set]["phi"].append(current_dq_phi)
#print("set_to_count for level", level, ":", set_to_count, "labels:", labels)
title = f"$m_{{Z'}}={hyp_m}$ GeV, $r_{{inv.}}={hyp_rinv}$, {text_level[level]} (missed by all: {set_to_count['']}) "
if hyp_m == 0 and hyp_rinv == 0:
title = f"QCD, {text_level[level]} (missed by all: {set_to_count['']})"
ax_venn[0, level].set_title(title)
plot_venn3_from_index_dict(ax_venn[0, level], set_to_count, set_labels=[labels_rename.get(l,l) for l in labels], set_colors=["orange", "gray", "red"])
if level == 1: #reco-level
plot_venn3_from_index_dict(ax_venn1[0, 1], set_to_count,
set_labels=[labels_rename.get(l,l) for l in labels],
set_colors=["orange", "gray", "red"])
bins = {
"pt_dq": np.linspace(90, 250, 50),
"pt_mc_t": np.linspace(0, 200, 50),
"pt_mc_t_dq_ratio": np.linspace(0, 1.3, 30),
"eta": np.linspace(-4, 4, 20),
"phi": np.linspace(-np.pi, np.pi, 20)
}
# 10 random colors
clrs = ["green", "red", "orange", "pink", "blue", "purple", "cyan", "magenta"]
key_rename_dict = {"pt_dq": "$p_T$ of quark", "pt_mc_t": "$p_T$ of particles within radius of R=0.8 of quark", "pt_mc_t_dq_ratio": "$p_T$ (part. within R=0.8 of quark) / $p_T$ (quark) ", "eta": "$\eta$ of quark", "phi": "$\phi$ of quark" }
for k, key in enumerate(["pt_dq", "pt_mc_t", "pt_mc_t_dq_ratio", "eta", "phi"]):
for s_idx, s in enumerate(sorted(set_to_stats.keys())):
if len(set_to_stats[s][key]) == 0:
continue
lbl = s
#if s == "":
# lbl = "none"
lbl1 = get_label_from_superset(lbl, labels_rename, labels)
if lbl1 not in ["Missed by all", "Found by both models but not AK", "AK8", "Found by all"]:
continue
if level == 1:
ax_venn1[k + 1, 1].hist(set_to_stats[s][key], bins=bins[key], histtype="step",
label=lbl1, color=clrs[s_idx], density=True)
ax_venn1[k + 1, 0].set_title(f"{key_rename_dict[key]}")
ax_venn1[k+1, 1].set_title(f"{key_rename_dict[key]}")
ax_venn1[k + 1, 1].set_ylabel("Density")
if lbl not in ["", "012"]:
# We are only interested in the differences...
ax_venn[k+1, level].hist(set_to_stats[s][key], bins=bins[key], histtype="step", label=lbl1, color=clrs[s_idx])
ax_venn[k+1, level].set_title(f"{key_rename_dict[key]}")
if level == 1:
ax_venn1[k + 1, 0].hist(set_to_stats[s][key], bins=bins[key], histtype="step",
label=lbl1,
color=clrs[s_idx])
#ax_venn[k+1, level].set_xlabel(key)
#ax_venn[k+1, level].set_ylabel("Count")
for k in range(5):
ax_venn[k+1, level].legend()
fig_venn.tight_layout()
for k in range(5):
ax_venn1[k+1, 0].legend()
ax_venn1[k+1, 1].legend()
fig_venn1.tight_layout()
f = os.path.join(get_path(args.input, "results"), f"venn_diagram_{hyp_m}_{hyp_rinv}.pdf")
fig_venn.savefig(f)
f1 = os.path.join(get_path(args.input, "results"), f"venn_diagram_{hyp_m}_{hyp_rinv}_reco_level_only.pdf")
fig_venn1.savefig(f1)
for i, lbl in enumerate(["precision", "recall", "F1"]): # 0=precision, 1=recall, 2=F1
sz_small1 = 2.5
fig, ax = plt.subplots(len(rename_results_dict), 3, figsize=(sz_small1 * 3, sz_small1 * len(rename_results_dict)))
for i1, key in enumerate(list(rename_results_dict.keys())):
for level in range(3):
level_text = text_level[level]
labels = list(results_dict[key][0].keys())
colors = [results_dict[key][0][l] for l in labels]
res_precision = np.array([to_plot_v2[level][hyp_m][hyp_rinv][l][0] for l in labels])
res_recall = np.array([to_plot_v2[level][hyp_m][hyp_rinv][l][1] for l in labels])
res_f1 = 2 * res_precision * res_recall / (res_precision + res_recall)
if i == 0:
values = res_precision
elif i == 1:
values = res_recall
else:
values = res_f1
rename_dict = results_dict[key][1]
labels_renamed = [rename_dict.get(l,l) for l in labels]
print(i1, level)
ax_tiny_histogram(ax[i1, level], labels_renamed, colors, values)
ax[i1, level].set_title(f"{rename_results_dict[key]} {level_text}")
fig.tight_layout()
fig.savefig(os.path.join(get_path(args.input, "results"), f"{lbl}_results_by_level_{hyp_m}_{hyp_rinv}_{key}.pdf"))
for hyp_m, hyp_rinv in hypotheses_to_plot:
if 0 not in to_plot_v2:
continue # Not for the lower-pt thresholds, where only GL and PL are available
if hyp_m not in to_plot_v2[0] or hyp_rinv not in to_plot_v2[0][hyp_m]:
continue
# plot here the venn diagrams
labels = ["LGATr_GP_IRC_S_QCD", "AK8", "LGATr_GP_IRC_S_50k"]
labels_global = ["LGATr_GP_IRC_S_QCD", "AK8", "LGATr_GP_IRC_S_50k"]
labels_rename = {"LGATr_GP_IRC_S_QCD": "QCD", "LGATr_GP_IRC_S_50k": "900_03"}
fig_venn2, ax_venn2 = plt.subplots(1, len(labels), figsize=(4*len(labels), 4)) # the bottom ones are for pt of the DQ, pt of the MC GT, pt of MC GT / pt of DQ, eta, and phi distributions
for j, label in enumerate(labels):
#labels = list(results_dict["LGATr_comparison_GP_IRC_S_training"][0].keys())
label_combination_to_number = {} # fill it with all possible label combinations e.g. if there are 3 labels: "NA", "0", "1", "2", "01", "012", "12", "02"
powerset_str = ["".join([str(x) for x in sorted(list(a))]) for a in powerset(range(3))]
set_to_count = {key: 0 for key in powerset_str}
label_to_result = {}
n_dq = 99999999 # Sometimes, the last batch gets cut off etc. ...
for level in range(3):
r = flatten_list(quark_to_jet[level][hyp_m][hyp_rinv][label])
n_dq = min(n_dq, len(r))
for level in range(3):
r = torch.tensor(flatten_list(quark_to_jet[level][hyp_m][hyp_rinv][label]))
r = (r != -1)
label_to_result[level] = r.tolist()[:n_dq]
assert len(label_to_result[level]) == n_dq, f"Label {label} has different number of quarks than others {n_dq} != {len(label_to_result[level])}"
for c in tqdm(range(n_dq)):
belonging_to_set = ""
for lvl in range(3):
if label_to_result[lvl][c] == 1:
belonging_to_set += str(lvl)
set_to_count[belonging_to_set] += 1
if hyp_m == 0 and hyp_rinv == 0:
title = f"QCD, {label} (missed by all: {set_to_count['']}) "
else:
title = f"$m_{{Z'}}={hyp_m}$ GeV, $r_{{inv.}}={hyp_rinv}$, {label} (miss: {set_to_count['']}) "
ax_venn2[j].set_title(title)
plot_venn3_from_index_dict(ax_venn2[j], set_to_count, set_labels=text_level, set_colors=["orange", "gray", "red"], remove_max=1)
fig_venn2.tight_layout()
f = os.path.join(get_path(args.input, "results"), f"venn_diagram_{hyp_m}_{hyp_rinv}_Agreement_between_levels.pdf")
fig_venn2.savefig(f)
for key in results_dict:
for level in range(3):
level_text = text_level[level]
labels = list(results_dict[key][0].keys())
if level in to_plot_v2:
f, a = multiple_matrix_plot(to_plot_v2[level], labels=labels, colors=[results_dict[key][0][l] for l in labels], rename_dict=results_dict[key][1])
if f is None:
print("No figure for", key, level)
continue
#f.suptitle(f"{level_text} $F_1$ score")
out_file = f"grid_stack_F1_{level_text}_{key}.pdf"
out_file = os.path.join(get_path(args.input, "results"), out_file)
f.savefig(out_file)
print("Saved to", out_file)
from matplotlib.lines import Line2D
# Define custom legend handles
custom_lines = [
Line2D([0], [0], color='orange', linestyle='-', label='LGATr'),
Line2D([0], [0], color='green', linestyle='-', label='GATr'),
Line2D([0], [0], color='blue', linestyle='-', label='Transformer'),
Line2D([0], [0], color='gray', linestyle='-', label='AK8'),
Line2D([0], [0], color='black', linestyle='-', label='reco'),
Line2D([0], [0], color='black', linestyle=':', label='gen'),
Line2D([0], [0], color='black', linestyle='--', label='parton'),
]
if len(models):
fig_steps, ax_steps = plt.subplots(len(m_Meds), len(r_invs), figsize=(sz_small * len(r_invs), sz_small * len(m_Meds)))
if len(m_Meds) == 1 and len(r_invs) == 1:
ax_steps = np.array([[ax_steps]])
histograms = {}
for key in histograms_dict:
if key not in histograms:
histograms[key] = {}
for i in ["pt", "eta", "phi"]:
f, a = plt.subplots(len(m_Meds), len(r_invs), figsize=(sz_small * len(r_invs), sz_small * len(m_Meds)))
if len(r_invs) == 1 and len(m_Meds) == 1:
a = np.array([[a]])
histograms[key][i] = f, a
colors = {"base_LGATr": "orange", "base_Tr": "blue", "base_GATr": "green", "AK8": "gray"} # THE COLORS FOR THE STEP VS. F1 SCORE
#colors_small_dataset = {"base_LGATr_SD": "orange", "base_Tr_SD": "blue", "base_GATr_SD": "green", "AK8": "gray"}
#colors = colors_small_dataset
level_styles = {"scouting": "solid", "PL": "dashed", "GL": "dotted"}
#step_to_plot_histograms = 50000 # phi, eta, pt histograms...
level_to_plot_histograms = "scouting"
for i, mMed_h in enumerate(m_Meds):
for j, rInv_h in enumerate(r_invs):
ax_steps[i, j].set_title("$m_{{Z'}} = {}$ GeV, $r_{{inv.}} = {}$".format(mMed_h, rInv_h))
ax_steps[i, j].set_xlabel("Training step")
ax_steps[i, j].set_ylabel("Test $F_1$ score")
#if j == 0:
#ax_steps[i, j].set_ylabel("$m_{{Z'}} = {}$".format(mMed_h))
#for subset in histograms:
#for key in histograms[subset]:
#histograms[subset][key][1][i, j].set_ylabel("$m_{{Z'}} = {}$".format(mMed_h))
if i == len(m_Meds)-1:
ax_steps[i, j].set_xlabel("$r_{{inv.}} = {}$".format(rInv_h))
for subset in histograms:
for key in histograms[subset]:
histograms[subset][key][1][i, j].set_xlabel("$r_{{inv.}} = {}$".format(rInv_h))
for model in jet_properties:
if level_to_plot_histograms not in jet_properties[model][mMed_h][rInv_h]:
print("Skipping", model, level_to_plot_histograms, " - levels:", jet_properties[model][mMed_h][rInv_h].keys())
continue
for subset in histograms:
for key in histograms[subset]:
if model not in histograms_dict[subset][1]:
continue
step_to_plot_histograms = histograms_dict[subset][0][model]
if step_to_plot_histograms not in jet_properties[model][mMed_h][rInv_h][level_to_plot_histograms]:
print("Swapping the step to plot histograms", jet_properties[model][mMed_h][rInv_h][level_to_plot_histograms].keys())
step_to_plot_histograms = sorted(list(jet_properties[model][mMed_h][rInv_h][level_to_plot_histograms].keys()))[0]
pred = np.array(jet_properties[model][mMed_h][rInv_h][level_to_plot_histograms][step_to_plot_histograms][key + "_pred"])
truth = np.array(jet_properties[model][mMed_h][rInv_h][level_to_plot_histograms][step_to_plot_histograms][key + "_gen_particle"])
if key.startswith("pt"):
q = pred/truth
symbol = "/" # division instead of subtraction symbol for pt
quantity = "p_{T,pred}/p_{T,true}"
bins = np.linspace(0, 2.5, 100)
elif key.startswith("eta"):
q = (pred - truth)
symbol = "-"
quantity="\eta_{pred}-\eta_{true}"
bins = np.linspace(-0.8, 0.8, 50)
elif key.startswith("phi"):
q = pred - truth
symbol = "-"
quantity = "\phi_{pred}-\phi_{true}"
q[q > np.pi] -= 2 * np.pi
q[q< -np.pi] += 2 * np.pi
bins = np.linspace(-0.8, 0.8, 50)
print("Max", np.max(q), "Min", np.min(q))
rename = {"base_LGATr": "LGATr",
"LGATr_GP_IRC_S_50k": "LGATr_GP_IRC_S",
"AK8": "AK8",
"LGATr_GP_50k": "LGATr_GP"}
histograms[subset][key][1][i, j].hist(q, histtype="step", color=histograms_dict[subset][1][model], label=rename.get(model, model), bins=bins, density=True)
if mMed_h > 0:
histograms[subset][key][1][i, j].set_title(f"${quantity}$ $m_{{Z'}}={mMed_h}$ GeV, $r_{{inv.}}={rInv_h}$")
else:
histograms[subset][key][1][i, j].set_title(f"${quantity}$")
histograms[subset][key][1][i, j].legend()
histograms[subset][key][1][i, j].grid(True)
for model in to_plot_steps:
for lvl in to_plot_steps[model][mMed_h][rInv_h]:
if model not in colors:
print("Skipping", model)
continue
print(model)
ls = level_styles[lvl]
plt_dict = to_plot_steps[model][mMed_h][rInv_h][lvl]
x_pts = sorted(list(plt_dict.keys()))
y_pts = [plt_dict[k] for k in x_pts]
if ls == "solid":
ax_steps[i, j].plot(x_pts, y_pts, label=model, marker=".", linestyle=ls, color=colors[model])
else:
# No label
ax_steps[i, j].plot(x_pts, y_pts, marker=".", linestyle=ls, color=colors[model])
ax_steps[i, j].legend(handles=custom_lines)
# now plot a horizontal line for the AKX same level
if lvl == "scouting":
rc = result_AKX_current
elif lvl == "PL":
rc = result_AKX_PL
elif lvl == "GL":
rc = result_AKX_GL
else:
raise Exception
pr = rc[mMed_h][mDark][rInv_h][0]
rec = rc[mMed_h][mDark][rInv_h][1]
f1ak = 2 * pr * rec / (pr + rec)
ax_steps[i, j].axhline(f1ak, color="gray", linestyle=ls, alpha=0.5)
ax_steps[i, j].grid(1)
path_steps_fig = os.path.join(get_path(args.input, "results"), "score_vs_step_plots.pdf")
fig_steps.tight_layout()
fig_steps.savefig(path_steps_fig)
for subset in histograms:
for key in histograms[subset]:
fig = histograms[subset][key][0]
fig.tight_layout()
fig.savefig(os.path.join(get_path(args.input, "results"), "histogram_{}_{}.pdf".format(key, subset)))
print("Saved to", path_steps_fig)
'''for i, h in enumerate(plotting_hypotheses):
mMed_h, rInv_h = h
if rInv_h not in to_plot[td]:
to_plot[td][rInv_h] = {}
print("Model", model)
if mMed_h not in to_plot[td][rInv_h]:
to_plot[td][rInv_h][mMed_h] = {} # level
if level not in to_plot[td][rInv_h][mMed_h]:
to_plot[td][rInv_h][mMed_h][level] = {"precision": [], "recall": [], "f1score": [], "R": []}
precision = result_PR[mMed_h][mDark][rInv_h][0]
recall = result_PR[mMed_h][mDark][rInv_h][1]
f1score = 2 * precision * recall / (precision + recall)
to_plot[td][rInv_h][mMed_h][level]["precision"].append(precision)
to_plot[td][rInv_h][mMed_h][level]["recall"].append(recall)
to_plot[td][rInv_h][mMed_h][level]["f1score"].append(f1score)
to_plot[td][rInv_h][mMed_h][level]["R"].append(r)
'''
to_plot_ak = {} # level ("scouting"/"GL"/"PL") -> rInv -> mMed -> {"f1score": [], "R": []}
for j, model in enumerate(["AKX", "AKX_PL", "AKX_GL"]):
print(model)
if os.path.exists(os.path.join(path, model, "count_matched_quarks", "result_PR_AKX.pkl")):
result_PR_AKX = pickle.load(open(os.path.join(path, model, "count_matched_quarks", "result_PR_AKX.pkl"), "rb"))
else:
print("Skipping", model)
continue
level = "scouting"
if "PL" in model:
level = "PL"
elif "GL" in model:
level = "GL"
if level not in to_plot_ak:
to_plot_ak[level] = {}
for mMed_h in result_PR_AKX:
if mMed_h not in results_all_ak:
results_all_ak[mMed_h] = {mDark: {}}
for rInv_h in result_PR_AKX[mMed_h][mDark]:
if rInv_h not in results_all_ak[mMed_h][mDark]:
results_all_ak[mMed_h][mDark][rInv_h] = {}
if level not in results_all_ak[mMed_h][mDark][rInv_h]:
results_all_ak[mMed_h][mDark][rInv_h][level] = {}
for ridx, R in enumerate(result_PR_AKX[mMed_h][mDark][rInv_h]):
if R not in results_all_ak[mMed_h][mDark][rInv_h][level]:
precision = result_PR_AKX[mMed_h][mDark][rInv_h][R][0]
recall = result_PR_AKX[mMed_h][mDark][rInv_h][R][1]
f1score = 2 * precision * recall / (precision + recall)
results_all_ak[mMed_h][mDark][rInv_h][level][R] = f1score
for i, h in enumerate(plotting_hypotheses):
mMed_h, rInv_h = h
if rInv_h not in to_plot_ak[level]:
to_plot_ak[level][rInv_h] = {}
print("Model", model)
if mMed_h not in to_plot_ak[level][rInv_h]:
to_plot_ak[level][rInv_h][mMed_h] = {"precision": [], "recall": [], "f1score": [], "R": []}
rs = sorted(result_PR_AKX[mMed_h][mDark][rInv_h].keys())
precision = np.array([result_PR_AKX[mMed_h][mDark][rInv_h][i][0] for i in rs])
recall = np.array([result_PR_AKX[mMed_h][mDark][rInv_h][i][1] for i in rs])
f1score = 2 * precision * recall / (precision + recall)
to_plot_ak[level][rInv_h][mMed_h]["precision"] = precision
to_plot_ak[level][rInv_h][mMed_h]["recall"] = recall
to_plot_ak[level][rInv_h][mMed_h]["f1score"] = f1score
to_plot_ak[level][rInv_h][mMed_h]["R"] = rs
print("AK:", to_plot_ak)
fig, ax = plt.subplots(len(to_plot) + 1, len(plotting_hypotheses), figsize=(sz_small * len(plotting_hypotheses), sz_small * len(to_plot))) # also add AKX as last plot
if len(to_plot) == 0:
ax = np.array([ax])
colors = {
#"PL": "green",
#"GL": "blue",
#"scouting": "red",
"PL+ghosts": "green",
"GL+ghosts": "blue",
"scouting+ghosts": "red"
}
ak_colors = {
"PL": "green",
"GL": "blue",
"scouting": "red",
}
'''
for i, td in enumerate(to_plot):
# for each training dataset
for j, h in enumerate(plotting_hypotheses):
ax[i, j].set_title(f"r_inv={h[1]}, m={h[0]}, tr. on {td}")
ax[i, j].set_ylabel("F1 score")
ax[i, j].set_xlabel("GT R")
ax[i, j].grid()
for level in sorted(list(to_plot[td][h[1]][h[0]].keys())):
print("level", level)
print("Plotting", td, h[1], h[0], level)
if level in colors:
ax[i, j].plot(to_plot[td][h[1]][h[0]][level]["R"], to_plot[td][h[1]][h[0]][level]["f1score"], ".-", label=level, color=colors[level])
ax[i, j].legend()
for j, h in enumerate(plotting_hypotheses): # for to_plot_AK
ax[-1, j].set_title(f"r_inv={h[1]}, m={h[0]}, AK baseline")
ax[-1, j].set_ylabel("F1 score")
ax[-1, j].set_xlabel("GT R")
ax[-1, j].grid()
for i, ak_level in enumerate(sorted(list(to_plot_ak.keys()))):
mMed_h, rInv_h = h
if ak_level in ak_colors:
ax[-1, j].plot(to_plot_ak[ak_level][rInv_h][mMed_h]["R"], to_plot_ak[ak_level][rInv_h][mMed_h]["f1score"], ".-", label=ak_level, color=ak_colors[ak_level])
ax[-1, j].legend()
fig.tight_layout()
fig.savefig(os.path.join(get_path(args.input, "results"), "score_vs_GT_R_plots_1.pdf"))
print("Saved to", os.path.join(get_path(args.input, "results"), "score_vs_GT_R_plots_1.pdf"))
'''
fig, ax = plt.subplots(1, len(results_all)*len(radius) + len(radius), figsize=(7 * len(results_all)*len(radius)+len(radius), 5))
for i, model in enumerate(results_all):
for j, R in enumerate(radius):
#if r not in results_all[model][700][20][0.3]["scouting"]:
# continue
# for each training dataset
index = len(radius)*i + j
ax[index].set_title(model + " R={}".format(R))
matrix_plot(results_all[model], "Greens", r"PL/GL F1 score", ax=ax[index], metric_comp_func=lambda r: r["PL+ghosts"][R]/r["scouting+ghosts"][R])
for i, R in enumerate(radius):
index = len(radius)*len(results_all) + i
ax[index].set_title("AK R={}".format(R))
matrix_plot(results_all_ak, "Greens", r"PL/GL F1 score", ax=ax[index], metric_comp_func=lambda r: r["PL"][R]/r["GL"][R])
fig.tight_layout()
fig.savefig(out_file_PG)
print("Saved to", out_file_PG)
1/0
#print("Saved to", os.path.join(get_path(args.input, "results"), "score_vs_GT_R_plots_AK.pdf"))
#print("Saved to", os.path.join(get_path(args.input, "results"), "score_vs_GT_R_plots_AK_ratio.pdf"))
########### Now save the above plot with objectness score applied
if args.threshold_obj_score != -1:
fig, ax = plt.subplots(3, len(models), figsize=(sz * len(models), sz * 3))
for i, model in tqdm(enumerate(models)):
output_path = os.path.join(path, model, "count_matched_quarks")
if not os.path.exists(os.path.join(output_path, "result.pkl")):
continue
result = pickle.load(open(os.path.join(output_path, "result.pkl"), "rb"))
#result_unmatched = pickle.load(open(os.path.join(output_path, "result_unmatched.pkl"), "rb"))
result_fakes = pickle.load(open(os.path.join(output_path, "result_fakes.pkl"), "rb"))
result_bc = pickle.load(open(os.path.join(output_path, "result_bc.pkl"), "rb"))
result_PR = pickle.load(open(os.path.join(output_path, "result_PR.pkl"), "rb"))
result_PR_thresholds = pickle.load(open(os.path.join(output_path, "result_PR_thresholds.pkl"), "rb"))
#thresholds = sorted(list(result_PR_thresholds[900][20][0.3].keys()))
#thresholds = np.array(thresholds)
# now linearly interpolate the thresholds and set the j according to args.threshold_obj_score
j = np.argmin(np.abs(thresholds - args.threshold_obj_score))
print("Thresholds", thresholds)
print("Chose j=", j, "for threshold", args.threshold_obj_score, "(effectively it's", thresholds[j], ")")
def wrap(r):
# compute [precision, recall] array from [n_relevant_retrieved, all_retrieved, all_relevant]
if r[1] == 0 or r[2] == 0:
return [0, 0]
return [r[0] / r[1], r[0] / r[2]]
matrix_plot(result_PR_thresholds, "Oranges", "Precision (N matched dark quarks / N predicted jets)", metric_comp_func = lambda r: wrap(r[j])[0], ax=ax[0, i])
matrix_plot(result_PR_thresholds, "Reds", "Recall (N matched dark quarks / N dark quarks)", metric_comp_func = lambda r: wrap(r[j])[1], ax=ax[1, i])
matrix_plot(result_PR_thresholds, "Purples", r"$F_1$ score", metric_comp_func = lambda r: 2 * wrap(r[j])[0] * wrap(r[j])[1] / (wrap(r[j])[0] + wrap(r[j])[1]), ax=ax[2, i])
ax[0, i].set_title(model)
ax[1, i].set_title(model)
ax[2, i].set_title(model)
fig.tight_layout()
fig.savefig(out_file_PR_OS)
print("Saved to", out_file_PR_OS)
################
# UNUSED PLOTS #
################
'''fig, ax = plt.subplots(2, len(models), figsize=(sz * len(models), sz * 2))
for i, model in tqdm(enumerate(models)):
output_path = os.path.join(path, model, "count_matched_quarks")
if not os.path.exists(os.path.join(output_path, "result.pkl")):
continue
result = pickle.load(open(os.path.join(output_path, "result.pkl"), "rb"))
#result_unmatched = pickle.load(open(os.path.join(output_path, "result_unmatched.pkl"), "rb"))
result_fakes = pickle.load(open(os.path.join(output_path, "result_fakes.pkl"), "rb"))
result_bc = pickle.load(open(os.path.join(output_path, "result_bc.pkl"), "rb"))
result_PR = pickle.load(open(os.path.join(output_path, "result_PR.pkl"), "rb"))
matrix_plot(result, "Blues", "Avg. matched dark quarks / event", ax=ax[0, i])
matrix_plot(result_fakes, "Greens", "Avg. unmatched jets / event", ax=ax[1, i])
ax[0, i].set_title(model)
ax[1, i].set_title(model)
fig.tight_layout()
fig.savefig(out_file_avg_number_matched_quarks)
print("Saved to", out_file_avg_number_matched_quarks)'''
rinvs = [0.3, 0.5, 0.7]
sz = 4
fig, ax = plt.subplots(len(rinvs), 3, figsize=(3*sz, sz*len(rinvs)))
fig_AK, ax_AK = plt.subplots(len(rinvs), 3, figsize=(3*sz, sz*len(rinvs)))
fig_AK_ratio, ax_AK_ratio = plt.subplots(len(rinvs), 3, figsize=(3*sz, sz*len(rinvs)))
to_plot = {} # r_inv -> m_med -> precision, recall, R
to_plot_ak = {} # plotting for the AK baseline
### Plotting the score vs GT R plots
oranges = plt.get_cmap("Oranges")
reds = plt.get_cmap("Reds") # Plot a plot for each mass at given r_inv of the precision, recall, F1 score
purples = plt.get_cmap("Purples")
mDark = 20
for i, rinv in enumerate(rinvs):
if rinv not in to_plot:
to_plot[rinv] = {}
to_plot_ak[rinv] = {}
for j, model in enumerate(models):
print("Model", model)
if model not in radius:
continue
r = radius[model]
output_path = os.path.join(path, model, "count_matched_quarks")
if not os.path.exists(os.path.join(output_path, "result_PR.pkl")):
continue
result_PR = pickle.load(open(os.path.join(output_path, "result_PR.pkl"), "rb"))
#if radius not in to_plot[rinv]:
# to_plot[rinv][radius] = {}
for k, mMed in enumerate(sorted(result_PR.keys())):
if mMed not in to_plot[rinv]:
to_plot[rinv][mMed] = {"precision": [], "recall": [], "f1score": [], "R": []}
precision = result_PR[mMed][mDark][rinv][0]
recall = result_PR[mMed][mDark][rinv][1]
f1score = 2 * precision * recall / (precision + recall)
to_plot[rinv][mMed]["precision"].append(precision)
to_plot[rinv][mMed]["recall"].append(recall)
to_plot[rinv][mMed]["f1score"].append(f1score)
to_plot[rinv][mMed]["R"].append(r)
for mMed in sorted(to_plot[rinv].keys()):
# normalize mmed between 0 and 1 (originally between 700 and 3000)
mmed = (mMed - 500) / (3000 - 500)
r = to_plot[rinv][mMed]
print("Model R", r["R"])
scatter_plot(ax[0, i], r["R"], r["precision"], label="m={} GeV".format(round(mMed)), color=oranges(mmed))
scatter_plot(ax[1, i], r["R"], r["recall"], label="m={} GeV".format(round(mMed)), color=reds(mmed))
scatter_plot(ax[2, i], r["R"], r["f1score"], label="m={} GeV".format(round(mMed)), color=purples(mmed))
if not os.path.exists(os.path.join(ak_path, "result_PR_AKX.pkl")):
continue
result_PR_AKX = pickle.load(open(os.path.join(ak_path, "result_PR_AKX.pkl"), "rb"))
result_jet_props_akx = pickle.load(open(os.path.join(ak_path, "result_jet_properties_AKX.pkl"), "rb"))
#if radius not in to_plot[rinv]:
# to_plot[rinv][radius] = {}
for k, mMed in enumerate(sorted(result_PR_AKX.keys())):
if mMed not in to_plot_ak[rinv]:
to_plot_ak[rinv][mMed] = {"precision": [], "recall": [], "f1score": [], "R": []}
rs = sorted(result_PR_AKX[mMed][mDark][rinv].keys())
precision = np.array([result_PR_AKX[mMed][mDark][rinv][k][0] for k in rs])
recall = np.array([result_PR_AKX[mMed][mDark][rinv][k][1] for k in rs])
f1score = 2 * precision * recall / (precision + recall)
to_plot_ak[rinv][mMed]["precision"] += list(precision)
to_plot_ak[rinv][mMed]["recall"] += list(recall)
to_plot_ak[rinv][mMed]["f1score"] += list(f1score)
to_plot_ak[rinv][mMed]["R"] += rs
for mMed in sorted(to_plot_ak[rinv].keys()):
# Normalize mmed between 0 and 1 (originally between 700 and 3000)
mmed = (mMed - 500) / (3000 - 500)
r = to_plot_ak[rinv][mMed]
r_model = to_plot[rinv][mMed]
print("AK R", r["R"])
scatter_plot(ax_AK[0, i], r["R"], r["precision"], label="m={} GeV AK".format(round(mMed)), color=oranges(mmed), pattern=".--")
scatter_plot(ax_AK[1, i], r["R"], r["recall"], label="m={} GeV AK".format(round(mMed)), color=reds(mmed), pattern=".--")
scatter_plot(ax_AK[2, i], r["R"], r["f1score"], label="m={} GeV AK".format(round(mMed)), color=purples(mmed), pattern=".--")
# r["R"] has more points than r_model["R"] - pick those from r["R"] that are in r_model["R"]
r["R"] = np.array(r["R"])
r["precision"] = np.array(r["precision"])
r["recall"] = np.array(r["recall"])
r["f1score"] = np.array(r["f1score"])
filt = np.isin(r["R"], r_model["R"])
r["R"] = r["R"][filt]
r["precision"] = r["precision"][filt]
r["recall"] = r["recall"][filt]
r["f1score"] = r["f1score"][filt]
scatter_plot(ax_AK_ratio[0, i], r["R"], r["precision"]/np.array(r_model["precision"]), label="m={} GeV AK".format(round(mMed)), color=oranges(mmed), pattern=".--")
scatter_plot(ax_AK_ratio[1, i], r["R"], r["recall"]/np.array(r_model["recall"]), label="m={} GeV AK".format(round(mMed)), color=reds(mmed), pattern=".--")
scatter_plot(ax_AK_ratio[2, i], r["R"], r["f1score"]/np.array(r_model["f1score"]), label="m={} GeV AK".format(round(mMed)), color=purples(mmed), pattern=".--")
for ax1 in [ax, ax_AK, ax_AK_ratio]:
ax1[0, i].set_title(f"Precision r_inv = {rinv}")
ax1[1, i].set_title(f"Recall r_inv = {rinv}")
ax1[2, i].set_title(f"F1 score r_inv = {rinv}")
ax1[2, i].legend()
ax1[1, i].legend()
ax1[0, i].legend()
ax1[0, i].grid()
ax1[1, i].grid()
ax1[2, i].grid()
ax1[0, i].set_xlabel("GT R")
ax1[1, i].set_xlabel("GT R")
ax1[2, i].set_xlabel("GT R")
ax_AK_ratio[0, i].set_ylabel("Precision (model=1)")
ax_AK_ratio[1, i].set_ylabel("Recall (model=1)")
ax_AK_ratio[2, i].set_ylabel("F1 score (model=1)")
fig.tight_layout()
fig_AK.tight_layout()
fig.savefig(os.path.join(get_path(args.input, "results"), "score_vs_GT_R_plots.pdf"))
fig_AK.savefig(os.path.join(get_path(args.input, "results"), "score_vs_GT_R_plots_AK.pdf"))
fig_AK_ratio.tight_layout()
fig_AK_ratio.savefig(os.path.join(get_path(args.input, "results"), "score_vs_GT_R_plots_AK_ratio.pdf"))
print("Saved to", os.path.join(get_path(args.input, "results"), "score_vs_GT_R_plots_AK.pdf"))
print("Saved to", os.path.join(get_path(args.input, "results"), "score_vs_GT_R_plots_AK_ratio.pdf"))
|