Spaces:
Sleeping
Sleeping
File size: 5,669 Bytes
e75a247 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import os
from tqdm import tqdm
import argparse
import pickle
from src.plotting.eval_matrix import matrix_plot, scatter_plot
from src.utils.paths import get_path
import matplotlib.pyplot as plt
import numpy as np
parser = argparse.ArgumentParser()
parser.add_argument("--input", type=str, required=False, default="scouting_PFNano_signals2/SVJ_hadronic_std/all_models_eval_FT_R")
args = parser.parse_args()
path = get_path(args.input, "results")
models = sorted([x for x in os.listdir(path) if not os.path.isfile(os.path.join(path, x))])
radius = {
"LGATr_R10": 1.0,
"LGATr_R09": 0.9,
"LGATr_rinv_03_m_900": 0.8,
"LGATr_R08": 0.8,
"LGATr_R06": 0.6,
"LGATr_R07": 0.7,
"LGATr_R11": 1.1,
"LGATr_R12": 1.2,
"LGATr_R13": 1.3,
"LGATr_R14": 1.4,
"LGATr_R20": 2.0,
"LGATr_R25": 2.5
}
out_file = {}
sz = 5
fig, ax = plt.subplots(len(models), 2, figsize=(sz * 2, sz/2 * len(models)))
bins = np.linspace(0, 2, 100)
for i, model in tqdm(enumerate(models)):
output_path = os.path.join(path, model, "count_matched_quarks")
f = os.path.join(output_path, "result_m.pkl")
if not os.path.isfile(f):
continue
result = pickle.load(open(f, "rb"))
f1 = os.path.join(output_path, "result_PR.pkl")
r = result[900][20][0.3]
ax[i, 0].hist(r["m_pred"] / r["m_true"], bins=bins, histtype="step", label="all")
ax[i, 1].hist(r["mt_pred"] / r["mt_true"], bins=bins, histtype="step", label="all")
if "n_jets" in r:
m_pred_over_true = r["m_pred"] / r["m_true"]
mt_pred_over_true = r["mt_pred"] / r["mt_true"]
ax[i, 0].hist(m_pred_over_true[r["n_jets"] == 0], bins=bins, histtype="step", label="0 jets")
ax[i, 1].hist(mt_pred_over_true[r["n_jets"] == 0], bins=bins, histtype="step", label="0 jets")
ax[i, 0].hist(m_pred_over_true[r["n_jets"] == 1], bins=bins, histtype="step", label="1 jet")
ax[i, 1].hist(mt_pred_over_true[r["n_jets"] == 1], bins=bins, histtype="step", label="1 jet")
# 2+ jets
ax[i, 0].hist(m_pred_over_true[r["n_jets"] > 1], bins=bins, histtype="step", label="2+ jets")
ax[i, 1].hist(mt_pred_over_true[r["n_jets"] > 1], bins=bins, histtype="step", label="2+ jets")
ax[i, 0].legend()
ax[i, 1].legend()
ax[i, 0].set_title(model)
ax[i, 1].set_title(model)
ax[i, 0].set_xlabel("m_pred / m_true")
ax[i, 1].set_xlabel("mt_pred / mt_true")
ax[i, 0].set_yscale("log")
ax[i, 1].set_yscale("log")
fig.tight_layout()
fig.savefig(os.path.join(path, "mass_histograms.pdf"))
#######
sz = 5
r_invs = {"03": 0.3, "07": 0.7, "05": 0.5}
c = {}
for r_inv in r_invs:
fig, ax = plt.subplots(len(result), 2, figsize=(sz * 2, sz/2 * len(models)))
bins = np.linspace(0, 2, 100)
for i, mmed in tqdm(enumerate(sorted(result.keys()))):
for j, model in enumerate(models):
output_path = os.path.join(path, model, "count_matched_quarks")
f = os.path.join(output_path, "result_m.pkl")
if not os.path.isfile(f):
continue
if f not in c:
c[f] = pickle.load(open(f, "rb"))
result = c[f]
r = result[mmed][20][r_invs[r_inv]]
ax[i, 0].hist(r["m_pred"] / r["m_true"], bins=bins, histtype="step", label=model)
ax[i, 1].hist(r["mt_pred"] / r["mt_true"], bins=bins, histtype="step", label=model)
ax[i, 0].set_title("m_med = " + str(mmed))
ax[i, 1].set_title("m_med = " + str(mmed))
ax[i, 0].set_xlabel("m_pred / m_true")
ax[i, 1].set_xlabel("mt_pred / mt_true")
ax[i, 0].set_yscale("log")
ax[i, 1].set_yscale("log")
ax[i, 0].legend()
ax[i, 1].legend()
fig.tight_layout()
fig.savefig(os.path.join(path, "mass_histograms_model_comparison_{}.pdf".format(r_inv)))
##########
blues = plt.get_cmap("Blues")
def get_color(model):
if model == "AK8":
return "gray"
if model == "AK8_GenJets":
return "black"
# else, get the radius
R = radius[model]
# normalize R between 0 and 1 (originally between 0.3 and 1.4)
r = (R - 0.3) / (2.5 - 0.3)
return blues(r)
sz = 5
r_invs = {"03": 0.3, "07": 0.7, "05": 0.5}
c = {}
for r_inv in r_invs:
fig, ax = plt.subplots(len(result), 2, figsize=(sz * 2, sz/2 * len(models)))
bins = np.linspace(0, 2, 100)
bins2 = np.linspace(0, 2, 50)
for i, mmed in tqdm(enumerate(sorted(result.keys()))):
for j, model in enumerate(models):
output_path = os.path.join(path, model, "count_matched_quarks")
f = os.path.join(output_path, "result_m.pkl")
if not os.path.isfile(f):
continue
if f not in c:
c[f] = pickle.load(open(f, "rb"))
result = c[f]
r = result[mmed][20][r_invs[r_inv]]
if "n_jets" in r and (model in radius or model in ["AK8", "AK8_GenJets"]):
ax[i, 0].hist((r["m_pred"] / r["m_true"])[r["n_jets"] == 2], bins=bins2, histtype="step", label=model, color=get_color(model))
ax[i, 1].hist((r["mt_pred"] / r["mt_true"])[r["n_jets"] == 2], bins=bins2, histtype="step", label=model, color=get_color(model))
ax[i, 0].set_title("m_med = " + str(mmed))
ax[i, 1].set_title("m_med = " + str(mmed))
ax[i, 0].set_xlabel("m_pred / m_true")
ax[i, 1].set_xlabel("mt_pred / mt_true")
ax[i, 0].set_yscale("log")
ax[i, 1].set_yscale("log")
ax[i, 0].legend()
ax[i, 1].legend()
fig.tight_layout()
fig.savefig(os.path.join(path, "mass_histograms_model_comparison_2jets_{}.pdf".format(r_inv)))
|