File size: 12,659 Bytes
e75a247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import pickle
import torch
import os
import matplotlib.pyplot as plt
from src.utils.paths import get_path
from src.utils.utils import CPU_Unpickler
from pathlib import Path
from src.dataset.dataset import EventDataset
import numpy as np
from src.plotting.plot_event import plot_event
from pathlib import Path

#%%

def get_properties(name):
    if "qcd" in name.lower():
        return 0, 0, 0 # Standard Model events
    # get mediator mass, dark quark mass, r_inv from the filename
    parts = name.strip().strip("/").split("/")[-1].split("_")
    try:
        mMed = int(parts[1].split("-")[1])
        mDark = int(parts[2].split("-")[1])
        rinv = float(parts[3].split("-")[1])
    except:
        # another convention
        mMed = int(parts[2].split("-")[1])
        mDark = int(parts[3].split("-")[1])
        rinv = float(parts[4].split("-")[1])
    return mMed, mDark, rinv


#%%

clist = ['#1f78b4', '#b3df8a', '#33a02c', '#fb9a99', '#e31a1c', '#fdbe6f', '#ff7f00', '#cab2d6', '#6a3d9a', '#ffff99', '#b15928']
colors = {
    -1: "gray",
    0: clist[0],
    1: clist[1],
    2: clist[2],
    3: clist[3],
    4: clist[4],
    5: clist[5],
    6: clist[6],
    7: clist[7],
}

#%%
# The 'default' models:
import fastjet
models = {
    "GATr_rinv_03_m_900": "train/Test_betaPt_BC_all_datasets_2025_01_07_17_50_45",
    "GATr_rinv_07_m_900": "train/Test_betaPt_BC_all_datasets_2025_01_08_10_54_58",
    #"LGATr_rinv_03_m_900": "train/Test_LGATr_all_datasets_2025_01_08_19_27_54",
    "LGATr_rinv_07_m_900_s31k": "train/Eval_LGATr_SB_spatial_part_only_1_2025_01_13_14_31_58"
}

# Models with the varying R study

models = {
    #"R06": "train/Eval_GT_R_lgatr_R06_2025_01_16_13_41_48",
    #"R07": "train/Eval_GT_R_lgatr_R07_2025_01_16_13_41_41",
    #"R09": "train/Eval_GT_R_lgatr_R09_2025_01_16_13_41_45",
    "R=0.8": "train/Test_LGATr_all_datasets_2025_01_08_19_27_54",
    "R=1.0": "train/Eval_GT_R_lgatr_R10_2025_01_16_13_41_52",
    "R=1.4": "train/Eval_GT_R_lgatr_R14_2025_01_18_13_28_47",
    "R=2.0": "train/Eval_GT_R_lgatr_R20_2025_01_22_10_51_30"
}


## Objectness score odels

models = {
    "R=2.0,OS_GT=closest_only": "train/Eval_objectness_score_2025_02_14_11_10_14",
    "R=2.0,GT=all_in_radius": "train/Eval_objectness_score_2025_02_12_15_34_33",
    "R=0.8,GT=all_in_radius": "train/Eval_objectness_score_2025_02_10_14_59_49"
}

# Parton-level, gen-level and scouting PFCands models
models = {
    "parton-level": "train/Eval_no_pid_eval_2025_03_04_15_55_38",
    "gen-level": "train/Eval_no_pid_eval_2025_03_04_15_54_50",
    "scouting": "train/Eval_no_pid_eval_2025_03_04_16_06_57"
}

# Parton-level, gen-level and scouting PFCands models
models = {
    "parton-level": "train/Eval_no_pid_eval_1_2025_03_05_14_41_16",
    "gen-level": "train/Eval_no_pid_eval_1_2025_03_05_14_40_30",
    "scouting": "train/Eval_no_pid_eval_1_2025_03_05_14_41_38"
}

models = {
    "parton-level": "train/Eval_no_pid_eval_full_1_2025_03_18_16_56_02",
    "scouting": "train/Eval_no_pid_eval_full_1_2025_03_17_21_19_22",
    "gen-level": "train/Eval_no_pid_eval_full_1_2025_03_18_16_45_41"
}

# Trained on all data!

models1 = {
    "parton-level": "train/Eval_no_pid_eval_full_1_2025_03_17_23_44_49",
    "scouting PFCands": "train/Eval_no_pid_eval_full_1_2025_03_18_15_31_41",
    "gen-level": "train/Eval_no_pid_eval_full_1_2025_03_18_15_31_58"
}


# Trained on 900_03, but evaluated with eta and pt filters for the particles
models = {
    "parton-level": "train/Eval_eval_19March2025_2025_03_19_22_08_15",
    "scouting PFCands": "train/Eval_eval_19March2025_2025_03_19_22_08_22",
    "gen-level": "train/Eval_eval_19March2025_2025_03_19_22_08_18"
}

import wandb
api = wandb.Api()

def get_eval_run_names(tag):
    # from the api, get all the runs with the tag that are finished
    runs = api.runs(
        path="fcc_ml/svj_clustering",
        filters={"tags": {"$in": [tag.strip()]}}
    )
    return [run.name for run in runs if run.state == "finished"], [run.config for run in runs if run.state == "finished"]

def get_run_by_name(name):
    runs = api.runs(
        path="fcc_ml/svj_clustering",
        filters={"display_name": {"$eq": name.strip()}}
    )
    runs = api.runs(
        path="fcc_ml/svj_clustering",
        filters={"display_name": {"$eq": name.strip()}}
    )
    if runs.length != 1:
        return None
    return runs[0]

def get_models_from_tag(tag):
    models = {}
    for run in get_eval_run_names(tag)[0]:
        print("Run:", run)
        run = get_run_by_name(run)
        if run.config["parton_level"]:
            name = "parton-level"
        elif run.config[("gen_level")]:
            name = "gen-level"
        else:
            name = "sc. "
            if run.config["augment_soft_particles"]:
                name += " (aug)"
            if run.config["gt_radius"]:
                name += " GT_R=" + str(run.config["gt_radius"])
            if "transformer" in run.config["network_config"]:
                name += " (T)"
        if run.config["load_from_run"] == "debug_IRC_loss_weighted100_plus_ghosts_2025_04_09_13_48_55_569":
            name += " IRC"
        elif run.config["load_from_run"] == "LGATr_500part_NOQMin_2025_04_09_21_53_37_210":
            name += " NoIRC"
        elif run.config["load_from_run"] == "IRC_loss_Split_and_Noise_alternate_NoAug_2025_04_11_16_15_48_955":
            name += " IRC S+N"
        models[name] = "train/" + run.name
    return models

# with pt=1e-2 ghost particles, also trained on this

#models = get_models_from_tag("eval_19March2025_small_aug_vanishing_momentum_Qcap05_p1e-2")

#models = get_models_from_tag("eval_19March2025_small_aug_vanishing_momentum")
#models = get_models_from_tag("SmallDSReprod2")
#models  = get_models_from_tag("eval_19March2025_pt1e-2_500particles_NoQMinReprod")

'''
models = {}
#models["PL_aug_working"] = "train/Eval_eval_19March2025_small_aug_FTsoft1_2025_03_27_17_15_24_17" # This one was working ~ok for parton-level, why doesn't it work anymore?
models["reprod1"] = "train/Eval_eval_19March2025_small_aug_vanishing_momentum_Qcap05_p1e-2_reprod_1_2025_03_30_16_20_37_779" # reprod1 is using the same model as above, but eval'd on pt=1e-2 particles
# reprod2 has pt uniform 0.01-50 particles
models["reprod2"] = "train/Eval_eval_19March2025_reprod_2_2025_03_30_17_37_54_193"
# reprod3: hdbscan min_samples set to 0

'''

models = {
    "L-GATr": "train/Eval_DelphesPFfix_2025_05_05_08_21_23_380"
}

models = {
    "L-GATr": "train/Eval_DelphesPFfix_FullDataset_QCD_2025_05_15_17_42_39_541"
}#

models = {
    "LGATrGP": "train/Eval_DelphesPFfix_FullDataset_TrainDSstudy_2025_05_29_09_11_46_534",
    #"LGATr": ""
}

#models = {
#    "QCD": "train/Eval_DelphesPFfix_FullDataset_TrainDSstudy_QCD_2025_05_18_21_54_43_705",
#    "700_07+900_03+QCD": "train/Eval_DelphesPFfix_FullDataset_TrainDSstudy_QCD_2025_05_18_22_18_36_991"
#}

print(models)

# R = 2.0 models
#models = {
#    "parton-level": "train/Eval_eval_19March2025_2025_03_19_22_55_48",
#    "gen-level": "train/Eval_eval_19March2025_2025_03_19_23_20_01",
#    "scouting PFCands": "train/Eval_eval_19March2025_2025_03_19_23_4x3_07"
#}


output_path = get_path("LGATr_model_out_examples_GP", "results")
#output_path=get_path("LGATr_model_output_examples", "results")
Path(output_path).mkdir(parents=1, exist_ok=1)

sz = 3
n_events_per_file = 50
# len(models) columns, n_events_per_file rows
from src.layers.object_cond import calc_eta_phi

for ds in range(25):
    print("-------- DS:", ds)
    fig, ax = plt.subplots(n_events_per_file, len(models) * 3, # Colored by the model clusters,
                           figsize=(len(models) * sz * 3, n_events_per_file * sz))
    # also one only with real coordinates
    fig1, ax1 = plt.subplots(n_events_per_file, len(models)+1,
                            figsize=(len(models) * sz, n_events_per_file * sz))
    for mn, model in enumerate(sorted(models.keys())):
        print("    -------- Model:", model)
        dataset_path = models[model]
        filename = get_path(os.path.join(dataset_path, f"eval_{str(ds)}.pkl"), "results", fallback=1)
        clusters_file = get_path(os.path.join(dataset_path, f"clustering_hdbscan_4_05_{str(ds)}.pkl"), "results", fallback=1)
        #clusters_file=None
        if not os.path.exists(filename):
            print("File does not exist:", filename)
            continue
        result = CPU_Unpickler(open(filename, "rb")).load()
        print(result["filename"])
        m_med, m_dark, r_inv = get_properties(result["filename"])
        if os.path.exists(clusters_file):
            clusters = CPU_Unpickler(open(clusters_file, "rb")).load()
        else:
            clusters = result["model_cluster"].numpy()
            clusters_file = None
        run_config = get_run_by_name(dataset_path.split("/")[-1]).config
        dataset = EventDataset.from_directory(result["filename"], mmap=True, model_output_file=filename,
                                              model_clusters_file=clusters_file, include_model_jets_unfiltered=True,
                                              aug_soft=run_config["augment_soft_particles"], seed=1000000,
                                              parton_level=run_config["parton_level"],
                                              gen_level=run_config["gen_level"], fastjet_R=[0.8])
        for e in range(n_events_per_file):
            print("            ----- event:", e)
            uj = dataset[e].model_jets_unfiltered
            fj_jets, assignment = EventDataset.get_fastjet_jets_with_assignment(dataset[e], fastjet.JetDefinition(fastjet.antikt_algorithm, 0.8),
                                                                                "pfcands", pt_cutoff=30)
            cl = clusters[result["event_idx"] == e]
            large_pt_clusters = []
            for i in np.unique(cl):
                if i == -1: continue
                if uj.pt[i].item() >= 30:
                    large_pt_clusters.append(i)
            #c = [colors.get(i, "purple") for i in clusters[result["event_idx"] == e]]
            c_ak = []
            c = []
            print("Large pt clusters:", large_pt_clusters)
            for i in range(len(cl)):
                if i not in assignment:
                    c_ak.append("purple")
                else:
                    c_ak.append(colors.get(assignment[i], "purple"))

            for i in clusters[result["event_idx"] == e]:
                if i in large_pt_clusters:
                    c.append(colors.get(large_pt_clusters.index(i), "purple"))
                else:
                    c.append("purple")
            model_coords = result["pred"][result["event_idx"] == e]
            if model_coords.shape[1] == 5:
                model_coords = model_coords[:, 1:]
            model_coords = calc_eta_phi(model_coords, 0)
            plot_event(dataset[e], colors=c, ax=ax[e, 3*mn], pfcands=dataset.pfcands_key)
            plot_event(dataset[e], colors=c, ax=ax[e, 3*mn+2], custom_coords=model_coords, pfcands=dataset.pfcands_key)
            plot_event(dataset[e], colors=c_ak, ax=ax[e, 3*mn+1], pfcands=dataset.pfcands_key)
            plot_event(dataset[e], colors=c, ax=ax1[e, mn], pfcands=dataset.pfcands_key)

            # print the pt of the jet in the middle of each cluster with font size 12
            for j in range(len(fj_jets)):
                if fj_jets.pt[j].item() >= 30:
                    ax[e, 3*mn+1].text(fj_jets.eta[j].item()+0.1, fj_jets.phi[j].item()+0.1, "AK pt="+str(round(fj_jets.pt[j].item(), 1)), color="blue", fontsize=6, alpha=0.5)
            for i in range(len(uj.pt)):
                if uj.pt[i].item() >= 30:
                    ax[e, 3*mn].text(uj.eta[i], uj.phi[i], "M pt=" + str(round(uj.pt[i].item(), 1)), color="black", fontsize=6, alpha=0.5)
                    ax1[e, mn].text(uj.eta[i], uj.phi[i], "M pt=" + str(round(uj.pt[i].item(), 1)), color="black", fontsize=6, alpha=0.5)
                #ax[e, 2*mn+1].text(model_coords[0][i], model_coords[1][i], round(uj.pt[i].item(), 1), color="black", fontsize=10, alpha=0.5)
            ax[e, 3 * mn].set_title(model)
            ax1[e, mn].set_title(model)
            ax[e, 3 * mn + 2].set_title(model + " (clust. space)")
            ax[e, 3 * mn + 1].set_title(model + " (colored AK clust.)")
        fig.tight_layout()
        fig1.tight_layout()
        fname = os.path.join(output_path, f"m_med_{m_med}_m_dark_{m_dark}_r_inv_{str(r_inv).replace('.','')}.pdf")
        fig.savefig(fname)
        fig1.savefig(os.path.join(output_path, f"m_med_{m_med}_m_dark_{m_dark}_r_inv_{str(r_inv).replace('.','')}_real_only.pdf"))
        print("Saving to", fname)