Spaces:
Sleeping
Sleeping
File size: 12,659 Bytes
e75a247 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
import pickle
import torch
import os
import matplotlib.pyplot as plt
from src.utils.paths import get_path
from src.utils.utils import CPU_Unpickler
from pathlib import Path
from src.dataset.dataset import EventDataset
import numpy as np
from src.plotting.plot_event import plot_event
from pathlib import Path
#%%
def get_properties(name):
if "qcd" in name.lower():
return 0, 0, 0 # Standard Model events
# get mediator mass, dark quark mass, r_inv from the filename
parts = name.strip().strip("/").split("/")[-1].split("_")
try:
mMed = int(parts[1].split("-")[1])
mDark = int(parts[2].split("-")[1])
rinv = float(parts[3].split("-")[1])
except:
# another convention
mMed = int(parts[2].split("-")[1])
mDark = int(parts[3].split("-")[1])
rinv = float(parts[4].split("-")[1])
return mMed, mDark, rinv
#%%
clist = ['#1f78b4', '#b3df8a', '#33a02c', '#fb9a99', '#e31a1c', '#fdbe6f', '#ff7f00', '#cab2d6', '#6a3d9a', '#ffff99', '#b15928']
colors = {
-1: "gray",
0: clist[0],
1: clist[1],
2: clist[2],
3: clist[3],
4: clist[4],
5: clist[5],
6: clist[6],
7: clist[7],
}
#%%
# The 'default' models:
import fastjet
models = {
"GATr_rinv_03_m_900": "train/Test_betaPt_BC_all_datasets_2025_01_07_17_50_45",
"GATr_rinv_07_m_900": "train/Test_betaPt_BC_all_datasets_2025_01_08_10_54_58",
#"LGATr_rinv_03_m_900": "train/Test_LGATr_all_datasets_2025_01_08_19_27_54",
"LGATr_rinv_07_m_900_s31k": "train/Eval_LGATr_SB_spatial_part_only_1_2025_01_13_14_31_58"
}
# Models with the varying R study
models = {
#"R06": "train/Eval_GT_R_lgatr_R06_2025_01_16_13_41_48",
#"R07": "train/Eval_GT_R_lgatr_R07_2025_01_16_13_41_41",
#"R09": "train/Eval_GT_R_lgatr_R09_2025_01_16_13_41_45",
"R=0.8": "train/Test_LGATr_all_datasets_2025_01_08_19_27_54",
"R=1.0": "train/Eval_GT_R_lgatr_R10_2025_01_16_13_41_52",
"R=1.4": "train/Eval_GT_R_lgatr_R14_2025_01_18_13_28_47",
"R=2.0": "train/Eval_GT_R_lgatr_R20_2025_01_22_10_51_30"
}
## Objectness score odels
models = {
"R=2.0,OS_GT=closest_only": "train/Eval_objectness_score_2025_02_14_11_10_14",
"R=2.0,GT=all_in_radius": "train/Eval_objectness_score_2025_02_12_15_34_33",
"R=0.8,GT=all_in_radius": "train/Eval_objectness_score_2025_02_10_14_59_49"
}
# Parton-level, gen-level and scouting PFCands models
models = {
"parton-level": "train/Eval_no_pid_eval_2025_03_04_15_55_38",
"gen-level": "train/Eval_no_pid_eval_2025_03_04_15_54_50",
"scouting": "train/Eval_no_pid_eval_2025_03_04_16_06_57"
}
# Parton-level, gen-level and scouting PFCands models
models = {
"parton-level": "train/Eval_no_pid_eval_1_2025_03_05_14_41_16",
"gen-level": "train/Eval_no_pid_eval_1_2025_03_05_14_40_30",
"scouting": "train/Eval_no_pid_eval_1_2025_03_05_14_41_38"
}
models = {
"parton-level": "train/Eval_no_pid_eval_full_1_2025_03_18_16_56_02",
"scouting": "train/Eval_no_pid_eval_full_1_2025_03_17_21_19_22",
"gen-level": "train/Eval_no_pid_eval_full_1_2025_03_18_16_45_41"
}
# Trained on all data!
models1 = {
"parton-level": "train/Eval_no_pid_eval_full_1_2025_03_17_23_44_49",
"scouting PFCands": "train/Eval_no_pid_eval_full_1_2025_03_18_15_31_41",
"gen-level": "train/Eval_no_pid_eval_full_1_2025_03_18_15_31_58"
}
# Trained on 900_03, but evaluated with eta and pt filters for the particles
models = {
"parton-level": "train/Eval_eval_19March2025_2025_03_19_22_08_15",
"scouting PFCands": "train/Eval_eval_19March2025_2025_03_19_22_08_22",
"gen-level": "train/Eval_eval_19March2025_2025_03_19_22_08_18"
}
import wandb
api = wandb.Api()
def get_eval_run_names(tag):
# from the api, get all the runs with the tag that are finished
runs = api.runs(
path="fcc_ml/svj_clustering",
filters={"tags": {"$in": [tag.strip()]}}
)
return [run.name for run in runs if run.state == "finished"], [run.config for run in runs if run.state == "finished"]
def get_run_by_name(name):
runs = api.runs(
path="fcc_ml/svj_clustering",
filters={"display_name": {"$eq": name.strip()}}
)
runs = api.runs(
path="fcc_ml/svj_clustering",
filters={"display_name": {"$eq": name.strip()}}
)
if runs.length != 1:
return None
return runs[0]
def get_models_from_tag(tag):
models = {}
for run in get_eval_run_names(tag)[0]:
print("Run:", run)
run = get_run_by_name(run)
if run.config["parton_level"]:
name = "parton-level"
elif run.config[("gen_level")]:
name = "gen-level"
else:
name = "sc. "
if run.config["augment_soft_particles"]:
name += " (aug)"
if run.config["gt_radius"]:
name += " GT_R=" + str(run.config["gt_radius"])
if "transformer" in run.config["network_config"]:
name += " (T)"
if run.config["load_from_run"] == "debug_IRC_loss_weighted100_plus_ghosts_2025_04_09_13_48_55_569":
name += " IRC"
elif run.config["load_from_run"] == "LGATr_500part_NOQMin_2025_04_09_21_53_37_210":
name += " NoIRC"
elif run.config["load_from_run"] == "IRC_loss_Split_and_Noise_alternate_NoAug_2025_04_11_16_15_48_955":
name += " IRC S+N"
models[name] = "train/" + run.name
return models
# with pt=1e-2 ghost particles, also trained on this
#models = get_models_from_tag("eval_19March2025_small_aug_vanishing_momentum_Qcap05_p1e-2")
#models = get_models_from_tag("eval_19March2025_small_aug_vanishing_momentum")
#models = get_models_from_tag("SmallDSReprod2")
#models = get_models_from_tag("eval_19March2025_pt1e-2_500particles_NoQMinReprod")
'''
models = {}
#models["PL_aug_working"] = "train/Eval_eval_19March2025_small_aug_FTsoft1_2025_03_27_17_15_24_17" # This one was working ~ok for parton-level, why doesn't it work anymore?
models["reprod1"] = "train/Eval_eval_19March2025_small_aug_vanishing_momentum_Qcap05_p1e-2_reprod_1_2025_03_30_16_20_37_779" # reprod1 is using the same model as above, but eval'd on pt=1e-2 particles
# reprod2 has pt uniform 0.01-50 particles
models["reprod2"] = "train/Eval_eval_19March2025_reprod_2_2025_03_30_17_37_54_193"
# reprod3: hdbscan min_samples set to 0
'''
models = {
"L-GATr": "train/Eval_DelphesPFfix_2025_05_05_08_21_23_380"
}
models = {
"L-GATr": "train/Eval_DelphesPFfix_FullDataset_QCD_2025_05_15_17_42_39_541"
}#
models = {
"LGATrGP": "train/Eval_DelphesPFfix_FullDataset_TrainDSstudy_2025_05_29_09_11_46_534",
#"LGATr": ""
}
#models = {
# "QCD": "train/Eval_DelphesPFfix_FullDataset_TrainDSstudy_QCD_2025_05_18_21_54_43_705",
# "700_07+900_03+QCD": "train/Eval_DelphesPFfix_FullDataset_TrainDSstudy_QCD_2025_05_18_22_18_36_991"
#}
print(models)
# R = 2.0 models
#models = {
# "parton-level": "train/Eval_eval_19March2025_2025_03_19_22_55_48",
# "gen-level": "train/Eval_eval_19March2025_2025_03_19_23_20_01",
# "scouting PFCands": "train/Eval_eval_19March2025_2025_03_19_23_4x3_07"
#}
output_path = get_path("LGATr_model_out_examples_GP", "results")
#output_path=get_path("LGATr_model_output_examples", "results")
Path(output_path).mkdir(parents=1, exist_ok=1)
sz = 3
n_events_per_file = 50
# len(models) columns, n_events_per_file rows
from src.layers.object_cond import calc_eta_phi
for ds in range(25):
print("-------- DS:", ds)
fig, ax = plt.subplots(n_events_per_file, len(models) * 3, # Colored by the model clusters,
figsize=(len(models) * sz * 3, n_events_per_file * sz))
# also one only with real coordinates
fig1, ax1 = plt.subplots(n_events_per_file, len(models)+1,
figsize=(len(models) * sz, n_events_per_file * sz))
for mn, model in enumerate(sorted(models.keys())):
print(" -------- Model:", model)
dataset_path = models[model]
filename = get_path(os.path.join(dataset_path, f"eval_{str(ds)}.pkl"), "results", fallback=1)
clusters_file = get_path(os.path.join(dataset_path, f"clustering_hdbscan_4_05_{str(ds)}.pkl"), "results", fallback=1)
#clusters_file=None
if not os.path.exists(filename):
print("File does not exist:", filename)
continue
result = CPU_Unpickler(open(filename, "rb")).load()
print(result["filename"])
m_med, m_dark, r_inv = get_properties(result["filename"])
if os.path.exists(clusters_file):
clusters = CPU_Unpickler(open(clusters_file, "rb")).load()
else:
clusters = result["model_cluster"].numpy()
clusters_file = None
run_config = get_run_by_name(dataset_path.split("/")[-1]).config
dataset = EventDataset.from_directory(result["filename"], mmap=True, model_output_file=filename,
model_clusters_file=clusters_file, include_model_jets_unfiltered=True,
aug_soft=run_config["augment_soft_particles"], seed=1000000,
parton_level=run_config["parton_level"],
gen_level=run_config["gen_level"], fastjet_R=[0.8])
for e in range(n_events_per_file):
print(" ----- event:", e)
uj = dataset[e].model_jets_unfiltered
fj_jets, assignment = EventDataset.get_fastjet_jets_with_assignment(dataset[e], fastjet.JetDefinition(fastjet.antikt_algorithm, 0.8),
"pfcands", pt_cutoff=30)
cl = clusters[result["event_idx"] == e]
large_pt_clusters = []
for i in np.unique(cl):
if i == -1: continue
if uj.pt[i].item() >= 30:
large_pt_clusters.append(i)
#c = [colors.get(i, "purple") for i in clusters[result["event_idx"] == e]]
c_ak = []
c = []
print("Large pt clusters:", large_pt_clusters)
for i in range(len(cl)):
if i not in assignment:
c_ak.append("purple")
else:
c_ak.append(colors.get(assignment[i], "purple"))
for i in clusters[result["event_idx"] == e]:
if i in large_pt_clusters:
c.append(colors.get(large_pt_clusters.index(i), "purple"))
else:
c.append("purple")
model_coords = result["pred"][result["event_idx"] == e]
if model_coords.shape[1] == 5:
model_coords = model_coords[:, 1:]
model_coords = calc_eta_phi(model_coords, 0)
plot_event(dataset[e], colors=c, ax=ax[e, 3*mn], pfcands=dataset.pfcands_key)
plot_event(dataset[e], colors=c, ax=ax[e, 3*mn+2], custom_coords=model_coords, pfcands=dataset.pfcands_key)
plot_event(dataset[e], colors=c_ak, ax=ax[e, 3*mn+1], pfcands=dataset.pfcands_key)
plot_event(dataset[e], colors=c, ax=ax1[e, mn], pfcands=dataset.pfcands_key)
# print the pt of the jet in the middle of each cluster with font size 12
for j in range(len(fj_jets)):
if fj_jets.pt[j].item() >= 30:
ax[e, 3*mn+1].text(fj_jets.eta[j].item()+0.1, fj_jets.phi[j].item()+0.1, "AK pt="+str(round(fj_jets.pt[j].item(), 1)), color="blue", fontsize=6, alpha=0.5)
for i in range(len(uj.pt)):
if uj.pt[i].item() >= 30:
ax[e, 3*mn].text(uj.eta[i], uj.phi[i], "M pt=" + str(round(uj.pt[i].item(), 1)), color="black", fontsize=6, alpha=0.5)
ax1[e, mn].text(uj.eta[i], uj.phi[i], "M pt=" + str(round(uj.pt[i].item(), 1)), color="black", fontsize=6, alpha=0.5)
#ax[e, 2*mn+1].text(model_coords[0][i], model_coords[1][i], round(uj.pt[i].item(), 1), color="black", fontsize=10, alpha=0.5)
ax[e, 3 * mn].set_title(model)
ax1[e, mn].set_title(model)
ax[e, 3 * mn + 2].set_title(model + " (clust. space)")
ax[e, 3 * mn + 1].set_title(model + " (colored AK clust.)")
fig.tight_layout()
fig1.tight_layout()
fname = os.path.join(output_path, f"m_med_{m_med}_m_dark_{m_dark}_r_inv_{str(r_inv).replace('.','')}.pdf")
fig.savefig(fname)
fig1.savefig(os.path.join(output_path, f"m_med_{m_med}_m_dark_{m_dark}_r_inv_{str(r_inv).replace('.','')}_real_only.pdf"))
print("Saving to", fname)
|