Spaces:
Sleeping
Sleeping
File size: 11,090 Bytes
e75a247 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import dgl
import torch
import os
from sklearn.cluster import DBSCAN
from torch_scatter import scatter_max, scatter_add, scatter_mean
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import linear_sum_assignment
import pandas as pd
import wandb
from src.layers.inference_oc import hfdb_obtain_labels
def evaluate_efficiency_tracks(
batch_g,
model_output,
embedded_outputs,
y,
local_rank,
step,
epoch,
path_save,
store=False,
predict=False,
):
number_of_showers_total = 0
batch_g.ndata["coords"] = model_output[:, 0:3]
batch_g.ndata["beta"] = model_output[:, 3]
batch_g.ndata["embedded_outputs"] = embedded_outputs
graphs = dgl.unbatch(batch_g)
batch_id = y[:, -1].view(-1)
df_list = []
for i in range(0, len(graphs)):
mask = batch_id == i
dic = {}
dic["graph"] = graphs[i]
dic["part_true"] = y[mask]
betas = torch.sigmoid(dic["graph"].ndata["beta"])
X = dic["graph"].ndata["coords"]
clustering_mode = "dbscan"
if clustering_mode == "clustering_normal":
clustering = get_clustering(betas, X)
elif clustering_mode == "dbscan":
labels = hfdb_obtain_labels(X, betas.device, eps=0.05)
particle_ids = torch.unique(dic["graph"].ndata["particle_number"])
shower_p_unique = torch.unique(labels)
shower_p_unique, row_ind, col_ind, i_m_w, iou_matrix = match_showers(
labels,
dic,
particle_ids,
model_output,
local_rank,
i,
path_save,
)
if len(row_ind) > 1:
df_event, number_of_showers_total = generate_showers_data_frame(
labels,
dic,
shower_p_unique,
particle_ids,
row_ind,
col_ind,
i_m_w,
number_of_showers_total=number_of_showers_total,
step=step,
number_in_batch=i,
)
# if len(shower_p_unique) < len(particle_ids):
# print("storing event", local_rank, step, i)
# torch.save(
# dic,
# path_save
# + "/graphs_all_hdb/"
# + str(local_rank)
# + "_"
# + str(step)
# + "_"
# + str(i)
# + ".pt",
# )
df_list.append(df_event)
if len(df_list) > 0:
df_batch = pd.concat(df_list)
else:
df_batch = []
if store:
store_at_batch_end(
path_save, df_batch, local_rank, step, epoch, predict=predict
)
return df_batch
def store_at_batch_end(
path_save,
df_batch,
local_rank=0,
step=0,
epoch=None,
predict=False,
):
path_save_ = (
path_save + "/" + str(local_rank) + "_" + str(step) + "_" + str(epoch) + ".pt"
)
if predict:
print("STORING")
df_batch = pd.concat(df_batch)
df_batch.to_pickle(path_save_)
log_efficiency(df_batch)
def log_efficiency(df):
# take the true showers non nan
if len(df) > 0:
mask = ~np.isnan(df["reco_showers_E"])
eff = np.sum(~np.isnan(df["pred_showers_E"][mask].values)) / len(
df["pred_showers_E"][mask].values
)
wandb.log({"efficiency validation": eff})
def generate_showers_data_frame(
labels,
dic,
shower_p_unique,
particle_ids,
row_ind,
col_ind,
i_m_w,
number_of_showers_total=None,
step=0,
number_in_batch=0,
):
e_pred_showers = 1.0 * scatter_add(
torch.ones_like(labels).view(-1),
labels.long(),
)
e_reco_showers = scatter_add(
torch.ones_like(labels).view(-1),
dic["graph"].ndata["particle_number"].long(),
)
e_reco_showers = e_reco_showers[1:]
e_true_showers = dic["part_true"][:, 5]
row_ind = torch.Tensor(row_ind).to(e_pred_showers.device).long()
col_ind = torch.Tensor(col_ind).to(e_pred_showers.device).long()
pred_showers = shower_p_unique
index_matches = col_ind + 1
index_matches = index_matches.to(e_pred_showers.device).long()
matched_es = torch.zeros_like(e_reco_showers) * (torch.nan)
matched_es = matched_es.to(e_pred_showers.device)
matched_es[row_ind] = e_pred_showers[index_matches]
intersection_E = torch.zeros_like(e_reco_showers) * (torch.nan)
ie_e = obtain_intersection_values(i_m_w, row_ind, col_ind)
intersection_E[row_ind] = ie_e.to(e_pred_showers.device)
pred_showers[index_matches] = -1
pred_showers[
0
] = (
-1
) # this takes into account that the class 0 for pandora and for dbscan is noise
mask = pred_showers != -1
fake_showers_e = e_pred_showers[mask]
fake_showers_showers_e_truw = torch.zeros((fake_showers_e.shape[0])) * (torch.nan)
fake_showers_showers_e_truw = fake_showers_showers_e_truw.to(e_pred_showers.device)
e_reco = torch.cat((e_reco_showers, fake_showers_showers_e_truw), dim=0)
e_true = torch.cat((e_true_showers, fake_showers_showers_e_truw), dim=0)
e_pred = torch.cat((matched_es, fake_showers_e), dim=0)
e_pred_t = torch.cat(
(
intersection_E,
torch.zeros_like(fake_showers_e) * (torch.nan),
),
dim=0,
)
# print(e_reco.shape, e_pred.shape, e_pred_t.shape)
d = {
"reco_showers_E": e_reco.detach().cpu(),
"true_showers_E": e_true.detach().cpu(),
"pred_showers_E": e_pred.detach().cpu(),
"e_pred_and_truth": e_pred_t.detach().cpu(),
}
df = pd.DataFrame(data=d)
if number_of_showers_total is None:
return df
else:
return df, number_of_showers_total
def obtain_intersection_matrix(shower_p_unique, particle_ids, labels, dic, e_hits):
len_pred_showers = len(shower_p_unique)
intersection_matrix = torch.zeros((len_pred_showers, len(particle_ids))).to(
shower_p_unique.device
)
intersection_matrix_w = torch.zeros((len_pred_showers, len(particle_ids))).to(
shower_p_unique.device
)
for index, id in enumerate(particle_ids):
counts = torch.zeros_like(labels)
mask_p = dic["graph"].ndata["particle_number"] == id
h_hits = e_hits.clone()
counts[mask_p] = 1
h_hits[~mask_p] = 0
intersection_matrix[:, index] = scatter_add(counts, labels)
intersection_matrix_w[:, index] = scatter_add(h_hits, labels.to(h_hits.device))
return intersection_matrix, intersection_matrix_w
def obtain_union_matrix(shower_p_unique, particle_ids, labels, dic):
len_pred_showers = len(shower_p_unique)
union_matrix = torch.zeros((len_pred_showers, len(particle_ids)))
for index, id in enumerate(particle_ids):
counts = torch.zeros_like(labels)
mask_p = dic["graph"].ndata["particle_number"] == id
for index_pred, id_pred in enumerate(shower_p_unique):
mask_pred_p = labels == id_pred
mask_union = mask_pred_p + mask_p
union_matrix[index_pred, index] = torch.sum(mask_union)
return union_matrix
def get_clustering(betas: torch.Tensor, X: torch.Tensor, tbeta=0.1, td=0.5):
"""
Returns a clustering of hits -> cluster_index, based on the GravNet model
output (predicted betas and cluster space coordinates) and the clustering
parameters tbeta and td.
Takes torch.Tensors as input.
"""
n_points = betas.size(0)
select_condpoints = betas > tbeta
# Get indices passing the threshold
indices_condpoints = select_condpoints.nonzero()
# Order them by decreasing beta value
indices_condpoints = indices_condpoints[(-betas[select_condpoints]).argsort()]
# Assign points to condensation points
# Only assign previously unassigned points (no overwriting)
# Points unassigned at the end are bkg (-1)
unassigned = torch.arange(n_points)
clustering = -1 * torch.ones(n_points, dtype=torch.long)
for index_condpoint in indices_condpoints:
d = torch.norm(X[unassigned] - X[index_condpoint][0], dim=-1)
assigned_to_this_condpoint = unassigned[d < td]
clustering[assigned_to_this_condpoint] = index_condpoint[0]
unassigned = unassigned[~(d < td)]
return clustering
def obtain_intersection_values(intersection_matrix_w, row_ind, col_ind):
list_intersection_E = []
# intersection_matrix_w = intersection_matrix_w
intersection_matrix_wt = torch.transpose(intersection_matrix_w[1:, :], 1, 0)
for i in range(0, len(col_ind)):
list_intersection_E.append(
intersection_matrix_wt[row_ind[i], col_ind[i]].view(-1)
)
return torch.cat(list_intersection_E, dim=0)
def plot_iou_matrix(iou_matrix, image_path):
iou_matrix = torch.transpose(iou_matrix[1:, :], 1, 0)
fig, ax = plt.subplots()
iou_matrix = iou_matrix.detach().cpu().numpy()
ax.matshow(iou_matrix, cmap=plt.cm.Blues)
for i in range(0, iou_matrix.shape[1]):
for j in range(0, iou_matrix.shape[0]):
c = np.round(iou_matrix[j, i], 1)
ax.text(i, j, str(c), va="center", ha="center")
fig.savefig(image_path, bbox_inches="tight")
wandb.log({"iou_matrix": wandb.Image(image_path)})
def match_showers(
labels,
dic,
particle_ids,
model_output,
local_rank,
i,
path_save,
):
iou_threshold = 0.1
shower_p_unique = torch.unique(labels)
if torch.sum(labels == 0) == 0:
shower_p_unique = torch.cat(
(
torch.Tensor([0]).to(shower_p_unique.device).view(-1),
shower_p_unique.view(-1),
),
dim=0,
)
# all hits weight the same
e_hits = torch.ones_like(labels)
i_m, i_m_w = obtain_intersection_matrix(
shower_p_unique, particle_ids, labels, dic, e_hits
)
i_m = i_m.to(model_output.device)
i_m_w = i_m_w.to(model_output.device)
u_m = obtain_union_matrix(shower_p_unique, particle_ids, labels, dic)
u_m = u_m.to(model_output.device)
iou_matrix = i_m / u_m
iou_matrix_num = (
torch.transpose(iou_matrix[1:, :], 1, 0).clone().detach().cpu().numpy()
)
iou_matrix_num[iou_matrix_num < iou_threshold] = 0
row_ind, col_ind = linear_sum_assignment(-iou_matrix_num)
# next three lines remove solutions where there is a shower that is not associated and iou it's zero (or less than threshold)
mask_matching_matrix = iou_matrix_num[row_ind, col_ind] > 0
row_ind = row_ind[mask_matching_matrix]
col_ind = col_ind[mask_matching_matrix]
if i == 0 and local_rank == 0:
if path_save is not None:
image_path = path_save + "/example_1_clustering.png"
plot_iou_matrix(iou_matrix, image_path)
# row_ind are particles that are matched and col_ind the ind of preds they are matched to
return shower_p_unique, row_ind, col_ind, i_m_w, iou_matrix
|