Spaces:
Sleeping
Sleeping
File size: 15,851 Bytes
e75a247 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 |
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib
matplotlib.rc("font", size=35)
import matplotlib.pyplot as plt
import torch
from src.utils.inference.inference_metrics import get_sigma_gaussian
from torch_scatter import scatter_sum, scatter_mean
def plot_per_event_metrics(sd, sd_pandora, PATH_store=None):
(
calibrated_list,
calibrated_list_pandora,
reco_list,
reco_list_pandora,
) = calculate_energy_per_event(sd, sd_pandora)
plot_per_event_energy_distribution(
calibrated_list,
calibrated_list_pandora,
reco_list,
reco_list_pandora,
PATH_store,
)
def calculate_energy_per_event(
sd,
sd_pandora,
):
sd = sd.reset_index(drop=True)
sd_pandora = sd_pandora.reset_index(drop=True)
corrected_list = []
reco_list = []
reco_list_pandora = []
corrected_list_pandora = []
for i in range(0, int(np.max(sd.number_batch))):
mask = sd.number_batch == i
event_E_total_reco = np.nansum(sd.reco_showers_E[mask])
event_E_total_true = np.nansum(sd.true_showers_E[mask])
event_E_total_reco_corrected = np.nansum(sd.calibrated_E[mask])
event_ML_total_reco = np.nansum(sd.pred_showers_E[mask])
mask_p = sd_pandora.number_batch == i
event_E_total_reco_p = np.nansum(sd_pandora.reco_showers_E[mask_p])
event_E_total_true_p = np.nansum(sd_pandora.true_showers_E[mask_p])
event_ML_total_reco_p = np.nansum(sd_pandora.pred_showers_E[mask_p])
event_ML_total_reco_p_corrected = np.nansum(
sd_pandora.pandora_calibrated_pfo[mask_p]
)
reco_list.append(event_ML_total_reco / event_E_total_reco)
corrected_list.append(event_E_total_reco_corrected / event_E_total_true)
reco_list_pandora.append(event_ML_total_reco_p / event_E_total_reco_p)
corrected_list_pandora.append(
event_ML_total_reco_p_corrected / event_E_total_true_p
)
return corrected_list, corrected_list_pandora, reco_list, reco_list_pandora
def plot_per_event_energy_distribution(
calibrated_list, calibrated_list_pandora, reco_list, reco_list_pandora, PATH_store
):
fig = plt.figure(figsize=(8, 8))
sns.histplot(
data=np.array(calibrated_list), # + 1 - np.mean(calibrated_list)
stat="percent",
binwidth=0.01,
label="MLPF",
# element="step",
# fill=False,
color="red",
# linewidth=2,
)
sns.histplot(
data=calibrated_list_pandora,
stat="percent",
color="blue",
binwidth=0.01,
label="Pandora",
# element="step",
# fill=False,
# linewidth=2,
)
plt.ylabel("Percent of events")
plt.xlabel("$E_{corrected}/E_{total}$")
# plt.yscale("log")
plt.legend()
plt.xlim([0, 2])
fig.savefig(
PATH_store + "per_event_E.png",
bbox_inches="tight",
)
fig = plt.figure(figsize=(8, 8))
sns.histplot(data=reco_list, stat="percent", binwidth=0.01, label="MLPF")
sns.histplot(
data=reco_list_pandora,
stat="percent",
color="orange",
binwidth=0.01,
label="Pandora",
)
plt.ylabel("Percent of events")
plt.xlabel("$E_{recoML}/E_{reco}$")
plt.legend()
plt.xlim([0.5, 1.5])
# plt.yscale("log")
fig.savefig(
PATH_store + "per_event_E_reco.png",
bbox_inches="tight",
)
particle_masses = {0: 0, 22: 0, 11: 0.00511, 211: 0.13957, 130: 0.493677, 2212: 0.938272, 2112: 0.939565}
particle_masses_4_class = {0: 0.00511, 1: 0.13957, 2: 0.939565, 3: 0.0} # electron, CH, NH, photon
def safeint(x, default_val=0):
if np.isnan(x):
return default_val
return int(x)
def calculate_event_mass_resolution(df, pandora, perfect_pid=False, mass_zero=False, ML_pid=False):
true_e = torch.Tensor(df.true_showers_E.values)
mask_nan_true = np.isnan(df.true_showers_E.values)
true_e[mask_nan_true] = 0
batch_idx = df.number_batch
if pandora:
pred_E = df.pandora_calibrated_pfo.values
nan_mask = np.isnan(df.pandora_calibrated_pfo.values)
pred_E[nan_mask] = 0
pred_e1 = torch.tensor(pred_E).unsqueeze(1).repeat(1, 3)
pred_vect = torch.tensor(np.array(df.pandora_calibrated_pos.values.tolist()))
nan_mask_p = torch.isnan(pred_vect).any(dim=1)
pred_vect[nan_mask_p] = 0
true_vect = torch.tensor(np.array(df.true_pos.values.tolist()))
mask_nan_p = torch.isnan(true_vect).any(dim=1)
true_vect[mask_nan_true] = 0
else:
pred_E = df.calibrated_E.values
nan_mask = np.isnan(df.calibrated_E.values)
print(np.sum(nan_mask))
pred_E[nan_mask] = 0
pred_e1 = torch.tensor(pred_E).unsqueeze(1).repeat(1, 3)
pred_vect = torch.tensor(
np.array(df.pred_pos_matched.values.tolist())
)
pred_vect[nan_mask] = 0
true_vect = torch.tensor(
np.array(df.true_pos.values.tolist())
)
true_vect[mask_nan_true] = 0
if perfect_pid or mass_zero or ML_pid:
pred_vect /= np.linalg.norm(pred_vect, axis=1).reshape(-1, 1)
pred_vect[np.isnan(pred_vect)] = 0
if ML_pid:
#assert pandora is False
if pandora:
print("Perfect PID for Pandora")
m = np.array([particle_masses.get(abs(safeint(i)), 0) for i in df.pid])
else:
m = np.array([particle_masses_4_class.get(safeint(i), 0) for i in df.pred_pid_matched.values])
else:
m = np.array([particle_masses.get(abs(safeint(i)), 0) for i in df.pid])
if mass_zero:
m = np.array([0 for _ in m])
p_squared = (pred_E ** 2 - m ** 2)
p_squared[p_squared < 0] = 0 # they are always like of order -1e-8
pred_vect = np.sqrt(p_squared).reshape(-1, 1) * np.array(pred_vect)
batch_idx = torch.tensor(batch_idx.values).long()
pred_E = torch.tensor(pred_E)
true_jet_vect = scatter_sum(true_vect, batch_idx, dim=0)
pred_jet_vect = scatter_sum(torch.tensor(pred_vect), batch_idx, dim=0)
true_E_jet = scatter_sum(torch.tensor(true_e), batch_idx)
pred_E_jet = scatter_sum(torch.tensor(pred_E), batch_idx)
true_jet_p = torch.norm(true_jet_vect, dim=1) # This is actually momentum resolution
pred_jet_p = torch.norm(pred_jet_vect, dim=1)
mass_true = torch.sqrt(torch.abs(true_E_jet ** 2) - true_jet_p ** 2)
mass_pred_p = torch.sqrt(
torch.abs(pred_E_jet ** 2) - pred_jet_p ** 2) ## TODO: fix the nan values in pred_jet_p!!!!!
# replace nans in these with 0
mass_over_true_p = mass_pred_p / mass_true
E_over_true = pred_E_jet / true_E_jet
p_over_true = pred_jet_p / true_jet_p
p_jet_pandora = pred_jet_p
(
mean_mass,
var_mass,
_,
_,
) = get_sigma_gaussian(mass_over_true_p, np.linspace(0, 4, 300))
return mean_mass, var_mass, mass_over_true_p, mass_true, p_over_true, true_jet_p, E_over_true
def calculate_event_energy_resolution(df, pandora=False, full_vector=False):
if full_vector and pandora:
assert "pandora_calibrated_pos" in df.columns
bins = [0, 700]
binsx = []
mean = []
variance = []
distributions = []
distr_baseline = []
mean_baseline = []
variance_baseline = []
mass_list = []
binning = 1e-2
bins_per_binned_E = np.arange(0, 2, binning)
for i in range(len(bins) - 1):
bin_i = bins[i]
bin_i1 = bins[i + 1]
binsx.append(0.5 * (bin_i + bin_i1))
true_e = df.true_showers_E.values
batch_idx = df.number_batch
if pandora:
pred_e = df.pandora_calibrated_pfo.values
pred_e1 = torch.tensor(pred_e).unsqueeze(1).repeat(1, 3)
if full_vector:
pred_vect = (
np.array(df.pandora_calibrated_pos.values.tolist())
# * pred_e1.numpy()
)
true_vect = (
np.array(df.true_pos.values.tolist())
# * torch.tensor(true_e).unsqueeze(1).repeat(1, 3).numpy()
)
pred_vect = torch.tensor(pred_vect)
true_vect = torch.tensor(true_vect)
else:
pred_e = df.calibrated_E.values
pred_e1 = torch.tensor(pred_e).unsqueeze(1).repeat(1, 3)
if full_vector:
pred_vect = (
np.array(df.pred_pos_matched.values.tolist()) * pred_e1.numpy()
)
true_vect = (
np.array(df.true_pos.values.tolist())
# * torch.tensor(true_e).unsqueeze(1).repeat(1, 3).numpy()
)
pred_vect = torch.tensor(pred_vect)
true_vect = torch.tensor(true_vect)
true_rec = df.reco_showers_E
# pred_e_nocor = df.pred_showers_E[mask]
true_e = torch.tensor(true_e)
batch_idx = torch.tensor(batch_idx.values).long()
pred_e = torch.tensor(pred_e)
true_rec = torch.tensor(true_rec.values)
if full_vector:
true_p_vect = scatter_sum(true_vect, batch_idx, dim=0)
pred_p_vect = scatter_sum(pred_vect, batch_idx, dim=0)
true_e1 = scatter_sum(torch.tensor(true_e), batch_idx)
pred_e1 = scatter_sum(torch.tensor(pred_e), batch_idx)
true_e = torch.norm(
true_p_vect, dim=1
) # This is actually momentum resolution
pred_e = torch.norm(pred_p_vect, dim=1)
else:
true_e = scatter_sum(true_e, batch_idx)
pred_e = scatter_sum(pred_e, batch_idx)
true_rec = scatter_sum(true_rec, batch_idx)
mask_above = true_e <= bin_i1
mask_below = true_e > bin_i
mask_check = true_e > 0
mask = mask_below * mask_above * mask_check
true_e = true_e[mask]
true_rec = true_rec[mask]
pred_e = pred_e[mask]
if torch.sum(mask) > 0: # if the bin is not empty
e_over_true = pred_e / true_e
e_over_reco = true_rec / true_e
distributions.append(e_over_true)
distr_baseline.append(e_over_reco)
(
mean_predtotrue,
var_predtotrue,
err_mean_predtotrue,
err_var_predtotrue,
) = get_sigma_gaussian(e_over_true, bins_per_binned_E)
if full_vector:
mass_true = torch.sqrt(true_e1[mask] ** 2 - true_e**2)
mass_pred = torch.sqrt(pred_e1[mask] ** 2 - pred_e**2)
print(pandora, len(mass_true), len(mass_pred))
mass_over_true = mass_pred / mass_true
(
mean_mass,
var_mass,
_,
_,
) = get_sigma_gaussian(mass_over_true, bins_per_binned_E)
mass_list.append(mass_over_true)
(
mean_reco_true,
var_reco_true,
err_mean_reco_true,
err_var_reco_true,
) = get_sigma_gaussian(e_over_reco, bins_per_binned_E)
mean.append(mean_predtotrue)
variance.append(np.abs(var_predtotrue))
mean_baseline.append(mean_reco_true)
variance_baseline.append(np.abs(var_reco_true))
if full_vector:
mass_list = torch.cat(mass_list)
ret = [
mean,
variance,
distributions,
binsx,
mean_baseline,
variance_baseline,
distr_baseline,
]
if full_vector:
ret += [mass_list]
else:
ret += [None]
return ret
def get_response_for_event_energy(matched_pandora, matched_, perfect_pid=False, mass_zero=False, ML_pid=False):
(
mean_p,
variance_om_p,
distr_p,
x_p,
_,
_,
_,
mass_over_true_pandora,
) = calculate_event_energy_resolution(matched_pandora, True, False)
(
mean,
variance_om,
distr,
x,
mean_baseline,
variance_om_baseline,
_,
mass_over_true_model,
) = calculate_event_energy_resolution(matched_, False, False)
mean_mass_p, var_mass_p, distr_mass_p, mass_true_p, _, _, E_over_true_pandora = calculate_event_mass_resolution(matched_pandora, True, perfect_pid=perfect_pid, mass_zero=mass_zero, ML_pid=ML_pid)
mean_mass, var_mass, distr_mass, mass_true, _, _, E_over_true = calculate_event_mass_resolution(matched_, False, perfect_pid=perfect_pid, mass_zero=mass_zero, ML_pid=ML_pid)
(
mean_energy_over_true,
var_energy_over_true,
_,
_,
) = get_sigma_gaussian(E_over_true, np.linspace(0, 4, 300))
(
mean_energy_over_true_pandora,
var_energy_over_true_pandora,
_,
_,
) = get_sigma_gaussian(E_over_true_pandora, np.linspace(0, 4, 300))
dic = {}
dic["mean_p"] = mean_p
dic["variance_om_p"] = variance_om_p
dic["variance_om"] = variance_om
dic["mean"] = mean
dic["energy_resolutions"] = x
dic["energy_resolutions_p"] = x_p
dic["mean_baseline"] = mean_baseline
dic["variance_om_baseline"] = variance_om_baseline
dic["distributions_pandora"] = distr_p
dic["distributions_model"] = distr
dic["mass_over_true_model"] = distr_mass
dic["mass_over_true_pandora"] = distr_mass_p
dic["mass_model"] = distr_mass * mass_true
dic["mass_pandora"] = distr_mass_p * mass_true_p
dic["mean_mass_model"] = mean_mass
dic["mean_mass_pandora"] = mean_mass_p
dic["var_mass_model"] = var_mass
dic["var_mass_pandora"] = var_mass_p
dic["energy_over_true"] = E_over_true
dic["energy_over_true_pandora"] = E_over_true_pandora
dic["mean_energy_over_true"] = mean_energy_over_true
dic["mean_energy_over_true_pandora"] = mean_energy_over_true_pandora
dic["var_energy_over_true"] = var_energy_over_true
dic["var_energy_over_true_pandora"] = var_energy_over_true_pandora
return dic
def plot_mass_resolution(event_res_dic, PATH_store):
fig, ax = plt.subplots(figsize=(7, 7))
ax.set_xlabel(r"$m_{pred}/m_{true}$")
bins = np.linspace(0, 3, 100)
ax.hist(
event_res_dic["mass_over_true_model"],
bins=bins,
histtype="step",
label="ML $\mu$={} $\sigma/\mu$={}".format(
round((event_res_dic["mean_mass_model"]), 2),
round((event_res_dic["var_mass_model"]), 2),
),
color="red",
density=True,
)
ax.hist(
event_res_dic["mass_over_true_pandora"],
bins=bins,
histtype="step",
label="Pandora $\mu$={} $\sigma/\mu$={}".format(
round((event_res_dic["mean_mass_pandora"]), 2),
round((event_res_dic["var_mass_pandora"]), 2),
),
color="blue",
density=True,
)
ax.grid()
ax.legend()
#ax.set_xlim([0, 10])
fig.tight_layout()
print("Saving mass resolution")
import os
fig.savefig(os.path.join(PATH_store, "mass_resolution.pdf"), bbox_inches="tight")
fig, ax = plt.subplots(figsize=(7, 7))
ax.set_xlabel(r"$M_{reco}$")
bins = np.linspace(0, 3, 100)
ax.hist(
event_res_dic["mass_model"],
bins=bins,
histtype="step",
label="ML",
color="red",
density=True,
)
ax.hist(
event_res_dic["mass_pandora"],
bins=bins,
histtype="step",
label="Pandora",
color="blue",
density=True,
)
ax.grid()
ax.legend()
#ax.set_xlim([0, 10])
fig.tight_layout()
fig.savefig(os.path.join(PATH_store, "mass_reco_absolute.pdf"), bbox_inches="tight")
|