File size: 15,851 Bytes
e75a247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib

matplotlib.rc("font", size=35)
import matplotlib.pyplot as plt
import torch
from src.utils.inference.inference_metrics import get_sigma_gaussian
from torch_scatter import scatter_sum, scatter_mean

def plot_per_event_metrics(sd, sd_pandora, PATH_store=None):
    (
        calibrated_list,
        calibrated_list_pandora,
        reco_list,
        reco_list_pandora,
    ) = calculate_energy_per_event(sd, sd_pandora)
    plot_per_event_energy_distribution(
        calibrated_list,
        calibrated_list_pandora,
        reco_list,
        reco_list_pandora,
        PATH_store,
    )


def calculate_energy_per_event(
    sd,
    sd_pandora,
):
    sd = sd.reset_index(drop=True)
    sd_pandora = sd_pandora.reset_index(drop=True)
    corrected_list = []
    reco_list = []
    reco_list_pandora = []
    corrected_list_pandora = []
    for i in range(0, int(np.max(sd.number_batch))):
        mask = sd.number_batch == i
        event_E_total_reco = np.nansum(sd.reco_showers_E[mask])
        event_E_total_true = np.nansum(sd.true_showers_E[mask])
        event_E_total_reco_corrected = np.nansum(sd.calibrated_E[mask])
        event_ML_total_reco = np.nansum(sd.pred_showers_E[mask])
        mask_p = sd_pandora.number_batch == i
        event_E_total_reco_p = np.nansum(sd_pandora.reco_showers_E[mask_p])
        event_E_total_true_p = np.nansum(sd_pandora.true_showers_E[mask_p])
        event_ML_total_reco_p = np.nansum(sd_pandora.pred_showers_E[mask_p])
        event_ML_total_reco_p_corrected = np.nansum(
            sd_pandora.pandora_calibrated_pfo[mask_p]
        )

        reco_list.append(event_ML_total_reco / event_E_total_reco)
        corrected_list.append(event_E_total_reco_corrected / event_E_total_true)
        reco_list_pandora.append(event_ML_total_reco_p / event_E_total_reco_p)
        corrected_list_pandora.append(
            event_ML_total_reco_p_corrected / event_E_total_true_p
        )
    return corrected_list, corrected_list_pandora, reco_list, reco_list_pandora


def plot_per_event_energy_distribution(
    calibrated_list, calibrated_list_pandora, reco_list, reco_list_pandora, PATH_store
):
    fig = plt.figure(figsize=(8, 8))
    sns.histplot(
        data=np.array(calibrated_list),  # + 1 - np.mean(calibrated_list)
        stat="percent",
        binwidth=0.01,
        label="MLPF",
        # element="step",
        # fill=False,
        color="red",
        # linewidth=2,
    )
    sns.histplot(
        data=calibrated_list_pandora,
        stat="percent",
        color="blue",
        binwidth=0.01,
        label="Pandora",
        # element="step",
        # fill=False,
        # linewidth=2,
    )
    plt.ylabel("Percent of events")
    plt.xlabel("$E_{corrected}/E_{total}$")
    # plt.yscale("log")
    plt.legend()
    plt.xlim([0, 2])
    fig.savefig(
        PATH_store + "per_event_E.png",
        bbox_inches="tight",
    )
    fig = plt.figure(figsize=(8, 8))
    sns.histplot(data=reco_list, stat="percent", binwidth=0.01, label="MLPF")
    sns.histplot(
        data=reco_list_pandora,
        stat="percent",
        color="orange",
        binwidth=0.01,
        label="Pandora",
    )
    plt.ylabel("Percent of events")
    plt.xlabel("$E_{recoML}/E_{reco}$")
    plt.legend()
    plt.xlim([0.5, 1.5])
    # plt.yscale("log")
    fig.savefig(
        PATH_store + "per_event_E_reco.png",
        bbox_inches="tight",
    )

particle_masses = {0: 0, 22: 0, 11: 0.00511, 211: 0.13957, 130: 0.493677, 2212: 0.938272, 2112: 0.939565}
particle_masses_4_class = {0: 0.00511, 1: 0.13957, 2: 0.939565, 3: 0.0} # electron, CH, NH, photon

def safeint(x, default_val=0):
    if np.isnan(x):
        return default_val
    return int(x)



def calculate_event_mass_resolution(df, pandora, perfect_pid=False, mass_zero=False, ML_pid=False):
    true_e = torch.Tensor(df.true_showers_E.values)
    mask_nan_true = np.isnan(df.true_showers_E.values)
    true_e[mask_nan_true] = 0
    batch_idx = df.number_batch
    if pandora:
        pred_E = df.pandora_calibrated_pfo.values
        nan_mask = np.isnan(df.pandora_calibrated_pfo.values)
        pred_E[nan_mask] = 0
        pred_e1 = torch.tensor(pred_E).unsqueeze(1).repeat(1, 3)
        pred_vect = torch.tensor(np.array(df.pandora_calibrated_pos.values.tolist()))
        nan_mask_p = torch.isnan(pred_vect).any(dim=1)
        pred_vect[nan_mask_p] = 0
        true_vect = torch.tensor(np.array(df.true_pos.values.tolist()))
        mask_nan_p = torch.isnan(true_vect).any(dim=1)
        true_vect[mask_nan_true] = 0
    else:
        pred_E = df.calibrated_E.values
        nan_mask = np.isnan(df.calibrated_E.values)
        print(np.sum(nan_mask))
        pred_E[nan_mask] = 0
        pred_e1 = torch.tensor(pred_E).unsqueeze(1).repeat(1, 3)
        pred_vect = torch.tensor(
            np.array(df.pred_pos_matched.values.tolist())
        )
        pred_vect[nan_mask] = 0
        true_vect = torch.tensor(
            np.array(df.true_pos.values.tolist())
        )
        true_vect[mask_nan_true] = 0
    if perfect_pid or mass_zero or ML_pid:
        pred_vect /= np.linalg.norm(pred_vect, axis=1).reshape(-1, 1)
        pred_vect[np.isnan(pred_vect)] = 0
        if ML_pid:
            #assert pandora is False
            if pandora:
                print("Perfect PID for Pandora")
                m = np.array([particle_masses.get(abs(safeint(i)), 0) for i in df.pid])
            else:
                m = np.array([particle_masses_4_class.get(safeint(i), 0) for i in df.pred_pid_matched.values])
        else:
            m = np.array([particle_masses.get(abs(safeint(i)), 0) for i in df.pid])
        if mass_zero:
            m = np.array([0 for _ in m])
        p_squared = (pred_E ** 2 - m ** 2)
        p_squared[p_squared < 0] = 0 # they are always like of order -1e-8
        pred_vect = np.sqrt(p_squared).reshape(-1, 1) * np.array(pred_vect)
    batch_idx = torch.tensor(batch_idx.values).long()
    pred_E = torch.tensor(pred_E)
    true_jet_vect = scatter_sum(true_vect, batch_idx, dim=0)
    pred_jet_vect = scatter_sum(torch.tensor(pred_vect), batch_idx, dim=0)
    true_E_jet = scatter_sum(torch.tensor(true_e), batch_idx)
    pred_E_jet = scatter_sum(torch.tensor(pred_E), batch_idx)
    true_jet_p = torch.norm(true_jet_vect, dim=1)  # This is actually momentum resolution
    pred_jet_p = torch.norm(pred_jet_vect, dim=1)
    mass_true = torch.sqrt(torch.abs(true_E_jet ** 2) - true_jet_p ** 2)
    mass_pred_p = torch.sqrt(
        torch.abs(pred_E_jet ** 2) - pred_jet_p ** 2)  ## TODO: fix the nan values in pred_jet_p!!!!!
    # replace nans in these with 0
    mass_over_true_p = mass_pred_p / mass_true
    E_over_true = pred_E_jet / true_E_jet
    p_over_true = pred_jet_p / true_jet_p
    p_jet_pandora = pred_jet_p
    (
        mean_mass,
        var_mass,
        _,
        _,
    ) = get_sigma_gaussian(mass_over_true_p, np.linspace(0, 4, 300))
    return mean_mass, var_mass, mass_over_true_p, mass_true, p_over_true, true_jet_p, E_over_true


def calculate_event_energy_resolution(df, pandora=False, full_vector=False):
    if full_vector and pandora:
        assert "pandora_calibrated_pos" in df.columns
    bins = [0, 700]
    binsx = []
    mean = []
    variance = []
    distributions = []
    distr_baseline = []
    mean_baseline = []
    variance_baseline = []
    mass_list = []
    binning = 1e-2
    bins_per_binned_E = np.arange(0, 2, binning)
    for i in range(len(bins) - 1):
        bin_i = bins[i]
        bin_i1 = bins[i + 1]
        binsx.append(0.5 * (bin_i + bin_i1))
        true_e = df.true_showers_E.values
        batch_idx = df.number_batch
        if pandora:
            pred_e = df.pandora_calibrated_pfo.values
            pred_e1 = torch.tensor(pred_e).unsqueeze(1).repeat(1, 3)
            if full_vector:
                pred_vect = (
                    np.array(df.pandora_calibrated_pos.values.tolist())
                    # * pred_e1.numpy()
                )
                true_vect = (
                    np.array(df.true_pos.values.tolist())
                    # * torch.tensor(true_e).unsqueeze(1).repeat(1, 3).numpy()
                )
                pred_vect = torch.tensor(pred_vect)
                true_vect = torch.tensor(true_vect)
        else:
            pred_e = df.calibrated_E.values
            pred_e1 = torch.tensor(pred_e).unsqueeze(1).repeat(1, 3)
            if full_vector:
                pred_vect = (
                    np.array(df.pred_pos_matched.values.tolist()) * pred_e1.numpy()
                )
                true_vect = (
                    np.array(df.true_pos.values.tolist())
                    # * torch.tensor(true_e).unsqueeze(1).repeat(1, 3).numpy()
                )
                pred_vect = torch.tensor(pred_vect)
                true_vect = torch.tensor(true_vect)
        true_rec = df.reco_showers_E
        # pred_e_nocor = df.pred_showers_E[mask]
        true_e = torch.tensor(true_e)
        batch_idx = torch.tensor(batch_idx.values).long()
        pred_e = torch.tensor(pred_e)
        true_rec = torch.tensor(true_rec.values)
        if full_vector:
            true_p_vect = scatter_sum(true_vect, batch_idx, dim=0)
            pred_p_vect = scatter_sum(pred_vect, batch_idx, dim=0)
            true_e1 = scatter_sum(torch.tensor(true_e), batch_idx)
            pred_e1 = scatter_sum(torch.tensor(pred_e), batch_idx)
            true_e = torch.norm(
                true_p_vect, dim=1
            )  # This is actually momentum resolution
            pred_e = torch.norm(pred_p_vect, dim=1)
        else:
            true_e = scatter_sum(true_e, batch_idx)
            pred_e = scatter_sum(pred_e, batch_idx)
        true_rec = scatter_sum(true_rec, batch_idx)
        mask_above = true_e <= bin_i1
        mask_below = true_e > bin_i
        mask_check = true_e > 0
        mask = mask_below * mask_above * mask_check
        true_e = true_e[mask]
        true_rec = true_rec[mask]
        pred_e = pred_e[mask]
        if torch.sum(mask) > 0:  # if the bin is not empty
            e_over_true = pred_e / true_e
            e_over_reco = true_rec / true_e
            distributions.append(e_over_true)
            distr_baseline.append(e_over_reco)
            (
                mean_predtotrue,
                var_predtotrue,
                err_mean_predtotrue,
                err_var_predtotrue,
            ) = get_sigma_gaussian(e_over_true, bins_per_binned_E)
            if full_vector:
                mass_true = torch.sqrt(true_e1[mask] ** 2 - true_e**2)
                mass_pred = torch.sqrt(pred_e1[mask] ** 2 - pred_e**2)
                print(pandora, len(mass_true), len(mass_pred))
                mass_over_true = mass_pred / mass_true

                (
                    mean_mass,
                    var_mass,
                    _,
                    _,
                ) = get_sigma_gaussian(mass_over_true, bins_per_binned_E)
                mass_list.append(mass_over_true)
            (
                mean_reco_true,
                var_reco_true,
                err_mean_reco_true,
                err_var_reco_true,
            ) = get_sigma_gaussian(e_over_reco, bins_per_binned_E)
            mean.append(mean_predtotrue)
            variance.append(np.abs(var_predtotrue))
            mean_baseline.append(mean_reco_true)
            variance_baseline.append(np.abs(var_reco_true))
    if full_vector:
        mass_list = torch.cat(mass_list)
    ret = [
        mean,
        variance,
        distributions,
        binsx,
        mean_baseline,
        variance_baseline,
        distr_baseline,
    ]
    if full_vector:
        ret += [mass_list]
    else:
        ret += [None]
    return ret


def get_response_for_event_energy(matched_pandora, matched_, perfect_pid=False, mass_zero=False, ML_pid=False):
    (
        mean_p,
        variance_om_p,
        distr_p,
        x_p,
        _,
        _,
        _,
        mass_over_true_pandora,
    ) = calculate_event_energy_resolution(matched_pandora, True, False)
    (
        mean,
        variance_om,
        distr,
        x,
        mean_baseline,
        variance_om_baseline,
        _,
        mass_over_true_model,
    ) = calculate_event_energy_resolution(matched_, False, False)
    mean_mass_p, var_mass_p, distr_mass_p, mass_true_p, _, _, E_over_true_pandora = calculate_event_mass_resolution(matched_pandora, True, perfect_pid=perfect_pid, mass_zero=mass_zero, ML_pid=ML_pid)
    mean_mass, var_mass, distr_mass, mass_true, _, _, E_over_true = calculate_event_mass_resolution(matched_, False, perfect_pid=perfect_pid, mass_zero=mass_zero, ML_pid=ML_pid)
    (
        mean_energy_over_true,
        var_energy_over_true,
        _,
        _,
    ) = get_sigma_gaussian(E_over_true, np.linspace(0, 4, 300))
    (
        mean_energy_over_true_pandora,
        var_energy_over_true_pandora,
        _,
        _,
    ) = get_sigma_gaussian(E_over_true_pandora, np.linspace(0, 4, 300))
    dic = {}
    dic["mean_p"] = mean_p
    dic["variance_om_p"] = variance_om_p
    dic["variance_om"] = variance_om
    dic["mean"] = mean
    dic["energy_resolutions"] = x
    dic["energy_resolutions_p"] = x_p
    dic["mean_baseline"] = mean_baseline
    dic["variance_om_baseline"] = variance_om_baseline
    dic["distributions_pandora"] = distr_p
    dic["distributions_model"] = distr
    dic["mass_over_true_model"] = distr_mass
    dic["mass_over_true_pandora"] = distr_mass_p
    dic["mass_model"] = distr_mass * mass_true
    dic["mass_pandora"] = distr_mass_p * mass_true_p
    dic["mean_mass_model"] = mean_mass
    dic["mean_mass_pandora"] = mean_mass_p
    dic["var_mass_model"] = var_mass
    dic["var_mass_pandora"] = var_mass_p
    dic["energy_over_true"] = E_over_true
    dic["energy_over_true_pandora"] = E_over_true_pandora
    dic["mean_energy_over_true"] = mean_energy_over_true
    dic["mean_energy_over_true_pandora"] = mean_energy_over_true_pandora
    dic["var_energy_over_true"] = var_energy_over_true
    dic["var_energy_over_true_pandora"] = var_energy_over_true_pandora
    return dic

def plot_mass_resolution(event_res_dic, PATH_store):
    fig, ax = plt.subplots(figsize=(7, 7))
    ax.set_xlabel(r"$m_{pred}/m_{true}$")
    bins = np.linspace(0, 3, 100)
    ax.hist(
        event_res_dic["mass_over_true_model"],
        bins=bins,
        histtype="step",
        label="ML $\mu$={} $\sigma/\mu$={}".format(
            round((event_res_dic["mean_mass_model"]), 2),
            round((event_res_dic["var_mass_model"]), 2),
        ),
        color="red",
        density=True,
    )
    ax.hist(
        event_res_dic["mass_over_true_pandora"],
        bins=bins,
        histtype="step",
        label="Pandora $\mu$={} $\sigma/\mu$={}".format(
            round((event_res_dic["mean_mass_pandora"]), 2),
            round((event_res_dic["var_mass_pandora"]), 2),
        ),
        color="blue",
        density=True,
    )
    ax.grid()
    ax.legend()
    #ax.set_xlim([0, 10])
    fig.tight_layout()
    print("Saving mass resolution")
    import os
    fig.savefig(os.path.join(PATH_store, "mass_resolution.pdf"), bbox_inches="tight")
    fig, ax = plt.subplots(figsize=(7, 7))
    ax.set_xlabel(r"$M_{reco}$")
    bins = np.linspace(0, 3, 100)
    ax.hist(
        event_res_dic["mass_model"],
        bins=bins,
        histtype="step",
        label="ML",
        color="red",
        density=True,
    )
    ax.hist(
        event_res_dic["mass_pandora"],
        bins=bins,
        histtype="step",
        label="Pandora",
        color="blue",
        density=True,
    )
    ax.grid()
    ax.legend()
    #ax.set_xlim([0, 10])
    fig.tight_layout()
    fig.savefig(os.path.join(PATH_store, "mass_reco_absolute.pdf"), bbox_inches="tight")