Spaces:
Sleeping
Sleeping
File size: 16,518 Bytes
b085dea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 |
# File copied from https://raw.githubusercontent.com/heidelberg-hepml/lorentz-gatr/refs/heads/main/experiments/baselines/transformer.py
from functools import partial
from typing import Optional, Tuple
import torch
from einops import rearrange
from torch import nn
from torch.utils.checkpoint import checkpoint
from lgatr.layers import ApplyRotaryPositionalEncoding
from lgatr.primitives.attention import scaled_dot_product_attention
def to_nd(tensor, d):
"""Make tensor n-dimensional, group extra dimensions in first."""
return tensor.view(
-1, *(1,) * (max(0, d - 1 - tensor.dim())), *tensor.shape[-(d - 1) :]
)
class BaselineLayerNorm(nn.Module):
"""Baseline layer norm over all dimensions except the first."""
@staticmethod
def forward(inputs: torch.Tensor) -> torch.Tensor:
"""Forward pass.
Parameters
----------
inputs : Tensor
Input data
Returns
-------
outputs : Tensor
Normalized inputs.
"""
return torch.nn.functional.layer_norm(
inputs, normalized_shape=inputs.shape[-1:]
)
class MultiHeadQKVLinear(nn.Module):
"""Compute queries, keys, and values via multi-head attention.
Parameters
----------
in_channels : int
Number of input channels.
hidden_channels : int
Number of hidden channels = size of query, key, and value.
num_heads : int
Number of attention heads.
"""
def __init__(self, in_channels, hidden_channels, num_heads):
super().__init__()
self.num_heads = num_heads
self.linear = nn.Linear(in_channels, 3 * hidden_channels * num_heads)
def forward(self, inputs):
"""Forward pass.
Returns
-------
q : Tensor
Queries
k : Tensor
Keys
v : Tensor
Values
"""
qkv = self.linear(inputs) # (..., num_items, 3 * hidden_channels * num_heads)
q, k, v = rearrange(
qkv,
"... items (qkv hidden_channels num_heads) -> qkv ... num_heads items hidden_channels",
num_heads=self.num_heads,
qkv=3,
)
return q, k, v
class MultiQueryQKVLinear(nn.Module):
"""Compute queries, keys, and values via multi-query attention.
Parameters
----------
in_channels : int
Number of input channels.
hidden_channels : int
Number of hidden channels = size of query, key, and value.
num_heads : int
Number of attention heads.
"""
def __init__(self, in_channels, hidden_channels, num_heads):
super().__init__()
self.num_heads = num_heads
self.q_linear = nn.Linear(in_channels, hidden_channels * num_heads)
self.k_linear = nn.Linear(in_channels, hidden_channels)
self.v_linear = nn.Linear(in_channels, hidden_channels)
def forward(self, inputs):
"""Forward pass.
Parameters
----------
inputs : Tensor
Input data
Returns
-------
q : Tensor
Queries
k : Tensor
Keys
v : Tensor
Values
"""
q = rearrange(
self.q_linear(inputs),
"... items (hidden_channels num_heads) -> ... num_heads items hidden_channels",
num_heads=self.num_heads,
)
k = self.k_linear(inputs)[
..., None, :, :
] # (..., head=1, item, hidden_channels)
v = self.v_linear(inputs)[..., None, :, :]
return q, k, v
class BaselineSelfAttention(nn.Module):
"""Baseline self-attention layer.
Parameters
----------
in_channels : int
Number of input channels.
out_channels : int
Number of input channels.
hidden_channels : int
Number of hidden channels = size of query, key, and value.
num_heads : int
Number of attention heads.
pos_encoding : bool
Whether to apply rotary positional embeddings along the item dimension to the scalar keys
and queries.
pos_enc_base : int
Maximum frequency used in positional encodings. (The minimum frequency is always 1.)
multi_query : bool
Use multi-query attention instead of multi-head attention.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
hidden_channels: int,
num_heads: int = 8,
pos_encoding: bool = False,
pos_enc_base: int = 4096,
multi_query: bool = True,
dropout_prob=None,
) -> None:
super().__init__()
# Store settings
self.num_heads = num_heads
self.hidden_channels = hidden_channels
# Linear maps
qkv_class = MultiQueryQKVLinear if multi_query else MultiHeadQKVLinear
self.qkv_linear = qkv_class(in_channels, hidden_channels, num_heads)
self.out_linear = nn.Linear(hidden_channels * num_heads, out_channels)
# Optional positional encoding
if pos_encoding:
self.pos_encoding = ApplyRotaryPositionalEncoding(
hidden_channels, item_dim=-2, base=pos_enc_base
)
else:
self.pos_encoding = None
if dropout_prob is not None:
self.dropout = nn.Dropout(dropout_prob)
else:
self.dropout = None
def forward(
self,
inputs: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
is_causal: bool = False,
) -> torch.Tensor:
"""Forward pass.
Parameters
----------
inputs : Tensor
Input data
attention_mask : None or Tensor or xformers.ops.AttentionBias
Optional attention mask
Returns
-------
outputs : Tensor
Outputs
"""
q, k, v = self.qkv_linear(
inputs
) # each: (..., num_heads, num_items, num_channels, 16)
# Rotary positional encoding
if self.pos_encoding is not None:
q = self.pos_encoding(q)
k = self.pos_encoding(k)
# Attention layer
h = self._attend(q, k, v, attention_mask, is_causal=is_causal)
# Concatenate heads and transform linearly
h = rearrange(
h,
"... num_heads num_items hidden_channels -> ... num_items (num_heads hidden_channels)",
)
outputs = self.out_linear(h) # (..., num_items, out_channels)
if self.dropout is not None:
outputs = self.dropout(outputs)
return outputs
@staticmethod
def _attend(q, k, v, attention_mask=None, is_causal=False):
"""Scaled dot-product attention."""
# Add batch dimension if needed
bh_shape = q.shape[:-2]
q = to_nd(q, 4)
k = to_nd(k, 4)
v = to_nd(v, 4)
# SDPA
outputs = scaled_dot_product_attention(
q.contiguous(),
k.expand_as(q).contiguous(),
v.expand_as(q).contiguous(),
attn_mask=attention_mask,
is_causal=is_causal,
)
# Return batch dimensions to inputs
outputs = outputs.view(*bh_shape, *outputs.shape[-2:])
return outputs
class BaselineTransformerBlock(nn.Module):
"""Baseline transformer block.
Inputs are first processed by a block consisting of LayerNorm, multi-head self-attention, and
residual connection. Then the data is processed by a block consisting of another LayerNorm, an
item-wise two-layer MLP with GeLU activations, and another residual connection.
Parameters
----------
channels : int
Number of input and output channels.
num_heads : int
Number of attention heads.
pos_encoding : bool
Whether to apply rotary positional embeddings along the item dimension to the scalar keys
and queries.
pos_encoding_base : int
Maximum frequency used in positional encodings. (The minimum frequency is always 1.)
increase_hidden_channels : int
Factor by which the key, query, and value size is increased over the default value of
hidden_channels / num_heads.
multi_query : bool
Use multi-query attention instead of multi-head attention.
"""
def __init__(
self,
channels,
num_heads: int = 8,
pos_encoding: bool = False,
pos_encoding_base: int = 4096,
increase_hidden_channels=1,
multi_query: bool = True,
dropout_prob=None,
) -> None:
super().__init__()
self.norm = BaselineLayerNorm()
# When using positional encoding, the number of scalar hidden channels needs to be even.
# It also should not be too small.
hidden_channels = channels // num_heads * increase_hidden_channels
if pos_encoding:
hidden_channels = (hidden_channels + 1) // 2 * 2
hidden_channels = max(hidden_channels, 16)
self.attention = BaselineSelfAttention(
channels,
channels,
hidden_channels,
num_heads=num_heads,
pos_encoding=pos_encoding,
pos_enc_base=pos_encoding_base,
multi_query=multi_query,
dropout_prob=dropout_prob,
)
self.mlp = nn.Sequential(
nn.Linear(channels, 2 * channels),
nn.Dropout(dropout_prob) if dropout_prob is not None else nn.Identity(),
nn.GELU(),
nn.Linear(2 * channels, channels),
nn.Dropout(dropout_prob) if dropout_prob is not None else nn.Identity(),
)
def forward(
self, inputs: torch.Tensor, attention_mask=None, is_causal=False
) -> torch.Tensor:
"""Forward pass.
Parameters
----------
inputs : Tensor
Input data
attention_mask : None or Tensor or xformers.ops.AttentionBias
Optional attention mask
Returns
-------
outputs : Tensor
Outputs
"""
# Residual attention
h = self.norm(inputs)
h = self.attention(h, attention_mask=attention_mask, is_causal=is_causal)
outputs = inputs + h
# Residual MLP
h = self.norm(outputs)
h = self.mlp(h)
outputs = outputs + h
return outputs
class Transformer(nn.Module):
"""Baseline transformer.
Combines num_blocks transformer blocks, each consisting of multi-head self-attention layers, an
MLP, residual connections, and normalization layers.
Parameters
----------
in_channels : int
Number of input channels.
out_channels : int
Number of output channels.
hidden_channels : int
Number of hidden channels.
num_blocks : int
Number of transformer blocks.
num_heads : int
Number of attention heads.
pos_encoding : bool
Whether to apply rotary positional embeddings along the item dimension to the scalar keys
and queries.
pos_encoding_base : int
Maximum frequency used in positional encodings. (The minimum frequency is always 1.)
increase_hidden_channels : int
Factor by which the key, query, and value size is increased over the default value of
hidden_channels / num_heads.
multi_query : bool
Use multi-query attention instead of multi-head attention.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
hidden_channels: int,
num_blocks: int = 10,
num_heads: int = 8,
pos_encoding: bool = False,
pos_encoding_base: int = 4096,
checkpoint_blocks: bool = False,
increase_hidden_channels=1,
multi_query: bool = False,
dropout_prob=None,
) -> None:
super().__init__()
self.checkpoint_blocks = checkpoint_blocks
self.linear_in = nn.Linear(in_channels, hidden_channels)
self.blocks = nn.ModuleList(
[
BaselineTransformerBlock(
hidden_channels,
num_heads=num_heads,
pos_encoding=pos_encoding,
pos_encoding_base=pos_encoding_base,
increase_hidden_channels=increase_hidden_channels,
multi_query=multi_query,
dropout_prob=dropout_prob,
)
for _ in range(num_blocks)
]
)
self.linear_out = nn.Linear(hidden_channels, out_channels)
def forward(
self, inputs: torch.Tensor, attention_mask=None, is_causal=False
) -> torch.Tensor:
"""Forward pass.
Parameters
----------
inputs : Tensor with shape (..., num_items, num_channels)
Input data
attention_mask : None or Tensor or xformers.ops.AttentionBias
Optional attention mask
is_causal: bool
Returns
-------
outputs : Tensor with shape (..., num_items, num_channels)
Outputs
"""
h = self.linear_in(inputs)
for block in self.blocks:
if self.checkpoint_blocks:
fn = partial(block, attention_mask=attention_mask, is_causal=is_causal)
h = checkpoint(fn, h)
else:
h = block(h, attention_mask=attention_mask, is_causal=is_causal)
outputs = self.linear_out(h)
return outputs
class AxialTransformer(nn.Module):
"""Baseline axial transformer for data with two token dimensions.
Combines num_blocks transformer blocks, each consisting of multi-head self-attention layers, an
MLP, residual connections, and normalization layers.
Assumes input data with shape `(..., num_items_1, num_items_2, num_channels, [16])`.
The first, third, fifth, ... block computes attention over the `items_2` axis. The other blocks
compute attention over the `items_1` axis. Positional encoding can be specified separately for
both axes.
Parameters
----------
in_channels : int
Number of input channels.
out_channels : int
Number of output channels.
hidden_channels : int
Number of hidden channels.
num_blocks : int
Number of transformer blocks.
num_heads : int
Number of attention heads.
pos_encodings : tuple of bool
Whether to apply rotary positional embeddings along the item dimensions to the scalar keys
and queries.
pos_encoding_base : int
Maximum frequency used in positional encodings. (The minimum frequency is always 1.)
"""
def __init__(
self,
in_channels: int,
out_channels: int,
hidden_channels: int,
num_blocks: int = 20,
num_heads: int = 8,
pos_encodings: Tuple[bool, bool] = (False, False),
pos_encoding_base: int = 4096,
) -> None:
super().__init__()
self.linear_in = nn.Linear(in_channels, hidden_channels)
self.blocks = nn.ModuleList(
[
BaselineTransformerBlock(
hidden_channels,
num_heads=num_heads,
pos_encoding=pos_encodings[(block + 1) % 2],
pos_encoding_base=pos_encoding_base,
)
for block in range(num_blocks)
]
)
self.linear_out = nn.Linear(hidden_channels, out_channels)
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
"""Forward pass.
Parameters
----------
inputs : Tensor with shape (..., num_items1, num_items2, num_channels)
Input data
Returns
-------
outputs : Tensor with shape (..., num_items1, num_items2, num_channels)
Outputs
"""
rearrange_pattern = "... i j c -> ... j i c"
h = self.linear_in(inputs)
for i, block in enumerate(self.blocks):
# For first, third, ... block, we want to perform attention over the first token
# dimension. We implement this by transposing the two item dimensions.
if i % 2 == 1:
h = rearrange(h, rearrange_pattern)
h = block(h)
# Transposing back to standard axis order
if i % 2 == 1:
h = rearrange(h, rearrange_pattern)
outputs = self.linear_out(h)
return outputs |