Spaces:
Sleeping
Sleeping
File size: 10,322 Bytes
e75a247 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
# from https://github.com/graeme-a-stewart/antikt-python/tree/main/src/pyantikt
from src.jetfinder.basicjetfinder_types import NPHistory
from src.jetfinder.basicjetfinder_types import PseudoJet
from src.jetfinder.basicjetfinder_types import NPPseudoJets
import logging
import numpy as np
import numpy.typing as npt
logger = logging.getLogger("jetfinder")
from numba import njit
from copy import deepcopy
Invalid = -3
NonexistentParent = -2
BeamJet = -1
def find_closest_jets(akt_dist: npt.ArrayLike, nn: npt.ArrayLike):
'''Look over active jets and find the closest'''
closest = akt_dist.argmin()
return akt_dist[closest], closest
def scan_for_all_nearest_neighbours(phi: npt.ArrayLike, rap: npt.ArrayLike, inv_pt2: npt.ArrayLike,
dist: npt.ArrayLike, akt_dist: npt.ArrayLike,
nn: npt.ArrayLike, mask: npt.ArrayLike, R2: float):
'''Do a full scan for nearest (geometrical) neighbours'''
for ijet in range(phi.size):
if mask[ijet]:
continue
_dphi = np.pi - np.abs(np.pi - np.abs(phi - phi[ijet]))
_drap = rap - rap[ijet]
_dist = _dphi * _dphi + _drap * _drap
_dist[ijet] = R2 # Avoid measuring the distance 0 to myself!
_dist[mask] = 1e20 # Don't consider any masked jets
iclosejet = _dist.argmin()
dist[ijet] = _dist[iclosejet]
if iclosejet == ijet:
nn[ijet] = -1
akt_dist[ijet] = dist[ijet] * inv_pt2[ijet]
else:
nn[ijet] = iclosejet
akt_dist[ijet] = dist[ijet] * (inv_pt2[ijet] if inv_pt2[ijet] < inv_pt2[iclosejet] else inv_pt2[iclosejet])
def scan_for_my_nearest_neighbours(ijet: int, phi: npt.ArrayLike,
rap: npt.ArrayLike, inv_pt2: npt.ArrayLike,
dist: npt.ArrayLike, akt_dist: npt.ArrayLike, nn: npt.ArrayLike,
mask: npt.ArrayLike, R2: float):
'''Retest all other jets against the target jet'''
nn[ijet] = -1
dist[ijet] = R2
_dphi = np.pi - np.abs(np.pi - np.abs(phi - phi[ijet]))
_drap = rap - rap[ijet]
_dist = _dphi * _dphi + _drap * _drap
_dist[ijet] = R2 # Avoid measuring the distance 0 to myself!
_dist[mask] = 1e20 # Don't consider any masked jets
iclosejet = _dist.argmin()
dist[ijet] = _dist[iclosejet]
if iclosejet == ijet:
nn[ijet] = -1
akt_dist[ijet] = dist[ijet] * inv_pt2[ijet]
else:
nn[ijet] = iclosejet
akt_dist[ijet] = dist[ijet] * (inv_pt2[ijet] if inv_pt2[ijet] < inv_pt2[iclosejet] else inv_pt2[iclosejet])
# As this function is called on new PseudoJets it's possible
# that we are now the NN of our NN
if dist[iclosejet] > dist[ijet]:
dist[iclosejet] = dist[ijet]
nn[iclosejet] = ijet
akt_dist[iclosejet] = dist[iclosejet] * (
inv_pt2[ijet] if inv_pt2[ijet] < inv_pt2[iclosejet] else inv_pt2[iclosejet])
def compare_status(working: NPPseudoJets, test: NPPseudoJets):
'''Test two different copies of numpy pseudojet containers that should be equal'''
dist_diff = working.akt_dist != test.akt_dist
idist_diff = np.where(dist_diff)
if len(idist_diff[0]) > 0:
print(f"Differences found after full scan of NNs: {idist_diff[0]}")
for ijet in idist_diff[0]:
print(f"{ijet}\nW: {working.print_jet(ijet)}\nT: {test.print_jet(ijet)}")
raise RuntimeError("Jet sets are not the same and they should be!")
def add_step_to_history(history: NPHistory, jets: list[PseudoJet],
parent1: int, parent2: int, jetp_index: int, distance: float):
'''Add a merging step to the history of clustering
history - list of HistoryElement entities
jets - list of pseudojets
parent1 - the *history* element which is the parent of this merger
parent2 - the *history* element which is the parent of this merger (can be Invalid)
jetp_index - the new pseudojet that results from this merger (if both parents exist)
distance - the distance metric for this merge step
'''
max_dij_so_far = max(distance, history.max_dij_so_far[history.size - 1])
history.append(parent1=parent1, parent2=parent2, jetp_index=jetp_index, dij=distance,
max_dij_so_far=max_dij_so_far)
local_step = history.next - 1
logger.debug(f"Added history step {local_step}: {history.parent1[local_step]}")
if parent1 >= 0:
if history.child[parent1] != -1:
raise (
RuntimeError(
f"Internal error. Trying to recombine a parent1 object that has previsously been recombined: {parent1}"
)
)
history.child[parent1] = local_step
if parent2 >= 0:
if history.child[parent2] != -1:
raise (
RuntimeError(
f"Internal error. Trying to recombine a parent1 object that has previsously been recombined: {parent2}"
)
)
history.child[parent2] = local_step
# get cross-referencing right from PseudoJets
if jetp_index >= 0:
jets[jetp_index].cluster_history_index = local_step
def inclusive_jets(jets: list[PseudoJet], history: NPHistory, ptmin: float = 0.0):
'''return all inclusive jets of a ClusterSequence with pt > ptmin'''
dcut = ptmin * ptmin
jets_local = list()
# For inclusive jets with a plugin algorithm, we make no
# assumptions about anything (relation of dij to momenta,
# ordering of the dij, etc.)
for elt in range(history.size - 1, -1, -1):
if history.parent2[elt] != BeamJet:
continue
iparent_jet = history.jetp_index[history.parent1[elt]]
jet = jets[iparent_jet]
if jet.pt2 >= dcut:
jets_local.append(jet)
return jets_local
def basicjetfinder(initial_particles: list[PseudoJet], Rparam: float = 0.8, ptmin: float = 0.0, return_raw=False):
"""Basic AntiKt Jet finding code"""
R2 = Rparam * Rparam
invR2 = 1.0 / R2
# Create a container of PseudoJet objects
history = NPHistory(2 * len(initial_particles))
Qtot = history.fill_initial_history(initial_particles)
# Was doing a deepcopy here, but that turns out to be
# 1. unnecessary
# 2. extremely expensive
jets = initial_particles
# Create the numpy arrays corresponding to the pseudojets that will be used
# for fast calculations
npjets = NPPseudoJets(len(jets))
npjets.set_jets(jets)
# Setup the nearest neighbours, which is an expensive
# initial operation (N^2 scaling here)
scan_for_all_nearest_neighbours(npjets.phi, npjets.rap, npjets.inv_pt2,
npjets.dist, npjets.akt_dist, npjets.nn,
npjets.mask, R2)
# Each iteration we either merge two jets to one, or we
# finalise a jet. Thus it takes a number of iterations
# equal to the number of jets to finish
for iteration in range(len(initial_particles)):
distance, ijetA = find_closest_jets(npjets.akt_dist, npjets.nn)
ijetB = npjets.nn[ijetA]
# Add normalisation for real distance
distance *= invR2
if (ijetB >= 0):
if ijetB < ijetA:
ijetA, ijetB = ijetB, ijetA
logger.debug(f"Iteration {iteration + 1}: {distance} for jet {ijetA} and jet {ijetB}")
# Merge jets
npjets.mask_slot(ijetA)
npjets.mask_slot(ijetB)
jet_indexA = npjets.jets_index[ijetA]
jet_indexB = npjets.jets_index[ijetB]
merged_jet = jets[jet_indexA] + jets[jet_indexB]
imerged_jet = len(jets)
jets.append(merged_jet)
# We recycle the slot of jetA (which is the lowest slot)
npjets.insert_jet(merged_jet, slot=ijetA, jet_index=imerged_jet)
add_step_to_history(history=history, jets=jets,
parent1=jets[jet_indexA].cluster_history_index,
parent2=jets[jet_indexB].cluster_history_index,
jetp_index=imerged_jet, distance=distance)
# Get the NNs for the merged pseudojet
scan_for_my_nearest_neighbours(ijetA, npjets.phi, npjets.rap, npjets.inv_pt2,
npjets.dist, npjets.akt_dist, npjets.nn, npjets.mask, R2)
else:
logger.debug(f"Iteration {iteration + 1}: {distance} for jet {ijetA} and jet {ijetB}")
# Beamjet
npjets.mask_slot(ijetA)
jet_indexA = npjets.jets_index[ijetA]
add_step_to_history(history=history, jets=jets, parent1=jets[jet_indexA].cluster_history_index,
parent2=BeamJet,
jetp_index=Invalid, distance=distance)
# Now need to update nearest distances, when pseudojets are unmasked and
# had either jetA or jetB as their nearest neighbour
# Note, it doesn't matter that we reused the ijetA slot here!
if ijetB != -1:
jets_to_update = np.logical_and(~npjets.mask, np.logical_or(npjets.nn == ijetA, npjets.nn == ijetB))
else:
jets_to_update = np.logical_and(~npjets.mask, npjets.nn == ijetA)
ijets_to_update = np.where(jets_to_update)
# Doable without actually needing a loop?
for ijet_to_update in ijets_to_update[0]:
scan_for_my_nearest_neighbours(ijet_to_update, npjets.phi, npjets.rap, npjets.inv_pt2,
npjets.dist, npjets.akt_dist, npjets.nn, npjets.mask, R2)
# Useful to check that we have done all updates correctly (only for debug!)
if logger.level == logging.DEBUG:
npjets_copy = deepcopy(npjets)
scan_for_all_nearest_neighbours(npjets_copy.phi, npjets_copy.rap, npjets_copy.inv_pt2,
npjets_copy.dist, npjets.akt_dist, npjets_copy.nn, npjets_copy.mask, R2)
compare_status(npjets, npjets_copy)
if return_raw:
return jets, history
return inclusive_jets(jets, history, ptmin=ptmin)
|