File size: 7,225 Bytes
e75a247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import torch
import torch.nn as nn
import torch.nn.functional as F

import dgl
import dgl.function as fn
import numpy as np

"""
    Graph Transformer Layer with edge features
    
"""

"""
    Util functions
"""
def src_dot_dst(src_field, dst_field, out_field):
    def func(edges):
        return {out_field: (edges.src[src_field] * edges.dst[dst_field])}
    return func

def scaling(field, scale_constant):
    def func(edges):
        return {field: ((edges.data[field]) / scale_constant)}
    return func

# Improving implicit attention scores with explicit edge features, if available
def imp_exp_attn(implicit_attn, explicit_edge):
    """
        implicit_attn: the output of K Q
        explicit_edge: the explicit edge features
    """
    def func(edges):
        return {implicit_attn: (edges.data[implicit_attn] * edges.data[explicit_edge])}
    return func

# To copy edge features to be passed to FFN_e
def out_edge_features(edge_feat):
    def func(edges):
        return {'e_out': edges.data[edge_feat]}
    return func


def exp(field):
    def func(edges):
        # clamp for softmax numerical stability
        return {field: torch.exp((edges.data[field].sum(-1, keepdim=True)).clamp(-5, 5))}
    return func




"""
    Single Attention Head
"""

class MultiHeadAttentionLayer(nn.Module):
    def __init__(self, in_dim, out_dim, num_heads, use_bias):
        super().__init__()
        
        self.out_dim = out_dim
        self.num_heads = num_heads
        
        if use_bias:
            self.Q = nn.Linear(in_dim, out_dim * num_heads, bias=True)
            self.K = nn.Linear(in_dim, out_dim * num_heads, bias=True)
            self.V = nn.Linear(in_dim, out_dim * num_heads, bias=True)
            self.proj_e = nn.Linear(in_dim, out_dim * num_heads, bias=True)
        else:
            self.Q = nn.Linear(in_dim, out_dim * num_heads, bias=False)
            self.K = nn.Linear(in_dim, out_dim * num_heads, bias=False)
            self.V = nn.Linear(in_dim, out_dim * num_heads, bias=False)
            self.proj_e = nn.Linear(in_dim, out_dim * num_heads, bias=False)
    
    def propagate_attention(self, g):
        # Compute attention score
        g.apply_edges(src_dot_dst('K_h', 'Q_h', 'score')) #, edges)
        
        # scaling
        g.apply_edges(scaling('score', np.sqrt(self.out_dim)))
        
        # Use available edge features to modify the scores
        g.apply_edges(imp_exp_attn('score', 'proj_e'))
        
        # Copy edge features as e_out to be passed to FFN_e
        g.apply_edges(out_edge_features('score'))
        
        # softmax
        g.apply_edges(exp('score'))

        # Send weighted values to target nodes
        eids = g.edges()
        g.send_and_recv(eids, fn.src_mul_edge('V_h', 'score', 'V_h'), fn.sum('V_h', 'wV'))
        g.send_and_recv(eids, fn.copy_edge('score', 'score'), fn.sum('score', 'z'))
    
    def forward(self, g, h, e):

        Q_h = self.Q(h)
        K_h = self.K(h)
        V_h = self.V(h)
        proj_e = self.proj_e(e)
        
        # Reshaping into [num_nodes, num_heads, feat_dim] to 
        # get projections for multi-head attention
        g.ndata['Q_h'] = Q_h.view(-1, self.num_heads, self.out_dim)
        g.ndata['K_h'] = K_h.view(-1, self.num_heads, self.out_dim)
        g.ndata['V_h'] = V_h.view(-1, self.num_heads, self.out_dim)
        g.edata['proj_e'] = proj_e.view(-1, self.num_heads, self.out_dim)
        
        self.propagate_attention(g)
        
        h_out = g.ndata['wV'] / (g.ndata['z'] + torch.full_like(g.ndata['z'], 1e-6)) # adding eps to all values here
        e_out = g.edata['e_out']
        
        return h_out, e_out
    

class GraphTransformerLayer(nn.Module):
    """
        Param: 
    """
    def __init__(self, in_dim, out_dim, num_heads, dropout=0.0, layer_norm=False, batch_norm=True, residual=True, use_bias=False):
        super().__init__()

        self.in_channels = in_dim
        self.out_channels = out_dim
        self.num_heads = num_heads
        self.dropout = dropout
        self.residual = residual
        self.layer_norm = layer_norm     
        self.batch_norm = batch_norm
        
        self.attention = MultiHeadAttentionLayer(in_dim, out_dim//num_heads, num_heads, use_bias)
        
        self.O_h = nn.Linear(out_dim, out_dim)
        self.O_e = nn.Linear(out_dim, out_dim)

        if self.layer_norm:
            self.layer_norm1_h = nn.LayerNorm(out_dim)
            self.layer_norm1_e = nn.LayerNorm(out_dim)
            
        if self.batch_norm:
            self.batch_norm1_h = nn.BatchNorm1d(out_dim)
            self.batch_norm1_e = nn.BatchNorm1d(out_dim)
        
        # FFN for h
        self.FFN_h_layer1 = nn.Linear(out_dim, out_dim*2)
        self.FFN_h_layer2 = nn.Linear(out_dim*2, out_dim)
        
        # FFN for e
        self.FFN_e_layer1 = nn.Linear(out_dim, out_dim*2)
        self.FFN_e_layer2 = nn.Linear(out_dim*2, out_dim)

        if self.layer_norm:
            self.layer_norm2_h = nn.LayerNorm(out_dim)
            self.layer_norm2_e = nn.LayerNorm(out_dim)
            
        if self.batch_norm:
            self.batch_norm2_h = nn.BatchNorm1d(out_dim)
            self.batch_norm2_e = nn.BatchNorm1d(out_dim)
        
    def forward(self, g, h, e):
        h_in1 = h # for first residual connection
        e_in1 = e # for first residual connection
        
        # multi-head attention out
        h_attn_out, e_attn_out = self.attention(g, h, e)
        
        h = h_attn_out.view(-1, self.out_channels)
        e = e_attn_out.view(-1, self.out_channels)

        #h = F.dropout(h, self.dropout, training=self.training)
        #e = F.dropout(e, self.dropout, training=self.training)

        h = self.O_h(h)
        e = self.O_e(e)

        if self.residual:
            h = h_in1 + h # residual connection
            e = e_in1 + e # residual connection

        if self.layer_norm:
            h = self.layer_norm1_h(h)
            e = self.layer_norm1_e(e)

        if self.batch_norm:
            h = self.batch_norm1_h(h)
            e = self.batch_norm1_e(e)
 
        h_in2 = h # for second residual connection
        e_in2 = e # for second residual connection

        # FFN for h
        h = self.FFN_h_layer1(h)
        h = F.relu(h)
        h = F.dropout(h, self.dropout, training=self.training)
        h = self.FFN_h_layer2(h)

        # FFN for e
        e = self.FFN_e_layer1(e)
        e = F.relu(e)
        e = F.dropout(e, self.dropout, training=self.training)
        e = self.FFN_e_layer2(e)
    
        if self.residual:
            h = h_in2 + h # residual connection       
            e = e_in2 + e # residual connection  

        if self.layer_norm:
            h = self.layer_norm2_h(h)
            e = self.layer_norm2_e(e)

        if self.batch_norm:
            h = self.batch_norm2_h(h)
            e = self.batch_norm2_e(e) 


        return h, e
        
    def __repr__(self):
        return '{}(in_channels={}, out_channels={}, heads={}, residual={})'.format(self.__class__.__name__,
                                             self.in_channels,
                                             self.out_channels, self.num_heads, self.residual)