File size: 11,529 Bytes
e75a247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import torch
import torch.nn as nn
import torch.nn.functional as F

import dgl
import dgl.function as fn
import numpy as np
from src.layers.GravNetConv3 import WeirdBatchNorm, knn_per_graph

"""
    Graph Transformer Layer
    
"""

"""
    Util functions
"""


def src_dot_dst(src_field, dst_field, out_field):
    def func(edges):
        return {
            out_field: (edges.src[src_field] * edges.dst[dst_field]).sum(
                -1, keepdim=True
            )
        }

    return func


def scaled_exp(field, scale_constant):
    def func(edges):
        # clamp for softmax numerical stability
        return {field: torch.exp((edges.data[field] / scale_constant).clamp(-5, 5))}

    return func


def src_dot_dst2(src_field, dst_field, out_field):
    def func(edges):
        return {out_field: (edges.src[src_field] - edges.dst[dst_field])}

    return func


"""
    Single Attention Head
"""


class RelativePositionMessage(nn.Module):
    """
    Compute the input feature from neighbors
    """

    def __init__(self, out_dim):
        super(RelativePositionMessage, self).__init__()
        self.out_dim = out_dim

    def forward(self, edges):
        dist = -torch.sqrt((edges.src["G_h"] - edges.dst["G_h"]).pow(2).sum(-1) + 1e-6)
        distance = torch.exp((dist / np.sqrt(self.out_dim)).clamp(-5, 5))
        score = (edges.src["K_h"] * edges.dst["Q_h"]).sum(-1, keepdim=True)
        score_e = torch.exp((score / np.sqrt(self.out_dim)).clamp(-5, 5))
        print("checkling shapes", score_e.shape, distance.shape, edges.src["V_h"].shape)
        weight = torch.mul(score_e.view(-1, 1, 1), distance.view(-1, 1, 1))
        v_h = torch.mul(weight, edges.src["V_h"])

        return {"V1_h": v_h}


class MultiHeadAttentionLayer(nn.Module):
    def __init__(self, n_neigh, in_dim, out_dim, num_heads, use_bias):
        super().__init__()

        self.out_dim = out_dim
        self.num_heads = num_heads
        self.n_neigh = n_neigh
        if use_bias:
            self.Q = nn.Linear(in_dim, out_dim * num_heads, bias=True)
            self.K = nn.Linear(in_dim, out_dim * num_heads, bias=True)
            self.V = nn.Linear(in_dim, out_dim * num_heads, bias=True)
        else:
            self.G = nn.Linear(in_dim, 3 * num_heads, bias=False)
            self.K = nn.Linear(in_dim, out_dim * num_heads, bias=False)
            self.Q = nn.Linear(in_dim, out_dim * num_heads, bias=False)
            self.V = nn.Linear(in_dim, out_dim * num_heads, bias=False)
        self.RelativePositionMessage = RelativePositionMessage(out_dim)
        # self.M1 = nn.Linear(1, out_dim, bias=False)
        # self.relu = nn.ReLU()
        # self.M2 = nn.Linear(out_dim, out_dim, bias=False)

    def propagate_attention(self, g):
        # Compute attention score
        # g.apply_edges(dist_calc("G_h", "G_h", "distance"))
        g.apply_edges(src_dot_dst("K_h", "Q_h", "score"))
        g.apply_edges(scaled_exp("score", np.sqrt(self.out_dim)))

        # g.apply_edges(scaled_exp("distance", np.sqrt(self.out_dim)))
        # g.apply_edges(score_times_dist("score_dis"))
        eids = g.edges()
        g.send_and_recv(eids, self.RelativePositionMessage, fn.sum("V1_h", "wV"))
        g.send_and_recv(eids, fn.copy_e("score", "score"), fn.sum("score", "z"))

    def forward(self, g, h):

        K_h = self.K(h)
        V_h = self.V(h)
        Q_h = self.Q(h)
        G_h = self.G(h)
        g.ndata["K_h"] = K_h.view(-1, self.num_heads, self.out_dim)
        g.ndata["Q_h"] = Q_h.view(-1, self.num_heads, self.out_dim)
        g.ndata["G_h"] = G_h.view(-1, self.num_heads, 3)
        g.ndata["V_h"] = V_h.view(-1, self.num_heads, self.out_dim)
        s_l = g.ndata["G_h"]
        gu = knn_per_graph(g, s_l.view(-1, 3), self.n_neigh)
        gu.ndata["K_h"] = g.ndata["K_h"]
        gu.ndata["V_h"] = g.ndata["V_h"]
        gu.ndata["Q_h"] = g.ndata["Q_h"]
        gu.ndata["G_h"] = g.ndata["G_h"]
        self.propagate_attention(gu)
        # print(gu.ndata["z"].shape)
        gu.ndata["z"] = gu.ndata["z"].view(-1, 1, 1).tile((1, 1, self.out_dim))
        mask_empty = gu.ndata["z"] > 0
        head_out = gu.ndata["wV"]
        head_out[mask_empty] = head_out[mask_empty] / (gu.ndata["z"][mask_empty])
        gu.ndata["z"] = gu.ndata["z"][:, :, 0].view(
            gu.ndata["wV"].shape[0], self.num_heads, 1
        )

        return head_out


class GraphTransformerLayer(nn.Module):
    """
    Param:
    """

    def __init__(
        self,
        neigh,
        in_dim,
        out_dim,
        num_heads,
        dropout=0.0,
        layer_norm=False,
        batch_norm=True,
        residual=False,
        use_bias=False,
    ):
        super().__init__()
        self.d_shape = 32
        self.in_channels = in_dim
        self.out_channels = out_dim
        self.num_heads = num_heads
        self.dropout = dropout
        self.residual = residual
        self.layer_norm = layer_norm
        self.batch_norm = batch_norm
        self.neigh = neigh
        self.attention = MultiHeadAttentionLayer(
            self.neigh, self.d_shape, out_dim // num_heads, num_heads, use_bias
        )

        self.O = nn.Linear(out_dim, out_dim)

        if self.layer_norm:
            self.layer_norm1 = nn.LayerNorm(out_dim)

        if self.batch_norm:
            self.batch_norm1 = nn.BatchNorm1d(out_dim)

        # FFN
        self.FFN_layer1 = nn.Linear(out_dim, out_dim * 2)
        self.FFN_layer2 = nn.Linear(out_dim * 2, out_dim)

        if self.layer_norm:
            self.layer_norm2 = nn.LayerNorm(out_dim)

        if self.batch_norm:
            self.batch_norm2 = nn.BatchNorm1d(out_dim)
        self.pre_gravnet = nn.Sequential(
            nn.Linear(self.in_channels, self.d_shape),  #! Dense 1
            nn.ELU(),
            nn.Linear(self.d_shape, self.d_shape),  #! Dense 2
            nn.ELU(),
        )

    def forward(self, g, h):
        h_in1 = h  # for first residual connection
        h = self.pre_gravnet(h)
        # multi-head attention out
        attn_out = self.attention(g, h)
        h = attn_out.view(-1, self.out_channels)
        # print("output of the attention ", h[0:2])
        # if torch.sum(torch.isnan(h)) > 0:
        #     print("output of the attention ALREADY NAN HERE")
        #     0 / 0
        h = F.dropout(h, self.dropout, training=self.training)

        h = self.O(h)

        if self.residual:
            h = h_in1 + h  # residual connection
        # print("output of residual ", h[0:2])
        # if torch.sum(torch.isnan(h)) > 0:
        #     print("output of the residual ALREADY NAN HERE")
        #     0 / 0
        if self.layer_norm:
            h = self.layer_norm1(h)

        if self.batch_norm:
            h = self.batch_norm1(h)
        # # print("output of batchnorm ", h[0:2])
        # if torch.sum(torch.isnan(h)) > 0:
        #     print("output of the batchnorm ALREADY NAN HERE")
        #     0 / 0
        h_in2 = h  # for second residual connection

        # FFN
        h = self.FFN_layer1(h)
        h = F.relu(h)
        h = F.dropout(h, self.dropout, training=self.training)
        h = self.FFN_layer2(h)
        # print("output of FFN_layer2 ", h[0:2])
        # if torch.sum(torch.isnan(h)) > 0:
        #     print("output of the FFN_layer2 ALREADY NAN HERE")
        #     0 / 0
        if self.residual:
            h = h_in2 + h  # residual connection

        if self.layer_norm:
            h = self.layer_norm2(h)

        if self.batch_norm:
            h = self.batch_norm2(h)

        return h

    def __repr__(self):
        return "{}(in_channels={}, out_channels={}, heads={}, residual={})".format(
            self.__class__.__name__,
            self.in_channels,
            self.out_channels,
            self.num_heads,
            self.residual,
        )

        # if torch.sum(torch.isnan(g.edata["vector"])) > 0:
        #     print("VECTOR ALREADY NAN HERE")
        #     0 / 0
        # e_data_m1 = self.M1(g.edata["vector"])
        # e_data_m1 = self.relu(e_data_m1)
        # e_data_m1 = self.M2(e_data_m1)
        # print("e_data_m1", e_data_m1[0:2])
        # g.edata["vector"] = e_data_m1
        # print("wV", g.ndata["wV"][0:2])
        # g.send_and_recv(eids, fn.copy_e("vector", "vector"), fn.sum("vector", "z"))
        # print("z", g.ndata["z"][0:2])
        # if torch.sum(torch.isnan(g.ndata["z"])) > 0:
        #     0 / 0


# class MultiHeadAttentionLayer2(nn.Module):
#     def __init__(self, n_neigh, in_dim, out_dim, num_heads, use_bias):
#         super().__init__()

#         self.out_dim = out_dim
#         self.num_heads = num_heads
#         self.n_neigh = n_neigh
#         if use_bias:
#             self.Q = nn.Linear(in_dim, out_dim * num_heads, bias=True)
#             self.K = nn.Linear(in_dim, out_dim * num_heads, bias=True)
#             self.V = nn.Linear(in_dim, out_dim * num_heads, bias=True)
#         else:
#             self.K = nn.Linear(in_dim, 3 * num_heads, bias=False)
#             self.V = nn.Linear(in_dim, out_dim * num_heads, bias=False)
#             self.M1 = nn.Linear(3, out_dim, bias=False)
#             self.relu = nn.ReLU()
#             self.M2 = nn.Linear(out_dim, out_dim, bias=False)

#     def propagate_attention(self, g):
#         # Compute attention score
#         g.apply_edges(src_dot_dst2("K_h", "K_h", "vector"))  # , edges)
#         # if torch.sum(torch.isnan(g.edata["vector"])) > 0:
#         #     print("VECTOR ALREADY NAN HERE")
#         #     0 / 0
#         e_data_m1 = self.M1(g.edata["vector"])
#         e_data_m1 = self.relu(e_data_m1)
#         e_data_m1 = self.M2(e_data_m1)
#         g.edata["vector"] = e_data_m1
#         g.apply_edges(scaled_exp("vector", np.sqrt(self.out_dim)))
#         # if torch.sum(torch.isnan(g.edata["vector"])) > 0:
#         #     print(g.edata["vector"])
#         # Send weighted values to target nodes
#         eids = g.edges()
#         # vector attention to modulate individual channels
#         g.send_and_recv(eids, fn.u_mul_e("V_h", "vector", "V_h"), fn.sum("V_h", "wV"))
#         # print("wV", g.ndata["wV"][0:2])
#         g.send_and_recv(eids, fn.copy_e("vector", "vector"), fn.sum("vector", "z"))
#         # print("z", g.ndata["z"][0:2])
#         # if torch.sum(torch.isnan(g.ndata["z"])) > 0:
#         #     0 / 0

#     def forward(self, g, h):

#         K_h = self.K(h)
#         V_h = self.V(h)

#         g.ndata["K_h"] = K_h.view(-1, self.num_heads, 3)
#         g.ndata["V_h"] = V_h.view(-1, self.num_heads, self.out_dim)
#         # print("q_h", Q_h[0:2])
#         # print("K_h", K_h[0:2])
#         # print("V_h", V_h[0:2])
#         s_l = g.ndata["K_h"]
#         gu = knn_per_graph(g, s_l.view(-1, 3), self.n_neigh)
#         gu.ndata["K_h"] = g.ndata["K_h"]
#         gu.ndata["V_h"] = g.ndata["V_h"]
#         self.propagate_attention(gu)
#         # print(gu.ndata["z"].shape)
#         # gu.ndata["z"] = gu.ndata["z"].view(-1, 1, 1).tile((1, 1, self.out_dim))
#         mask_empty = gu.ndata["z"] > 0
#         head_out = gu.ndata["wV"]
#         # print(head_out.shape, gu.ndata["z"].shape)
#         head_out[mask_empty] = head_out[mask_empty] / (gu.ndata["z"][mask_empty])
#         # g.ndata["z"] = g.ndata["z"][:, :, 0].view(
#         #     g.ndata["wV"].shape[0], self.num_heads, 1
#         # )
#         # print("head_out", head_out[0:2])
#         # if torch.sum(torch.isnan(head_out)) > 0:
#         #     print("head_out ALREADY NAN HERE")
#         #     0 / 0
#         return head_out