File size: 14,390 Bytes
e75a247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import matplotlib.pyplot as plt
import torch
import os
import numpy as np
import matplotlib.colors as mcolors
from matplotlib import cm
from sklearn.metrics import confusion_matrix
from src.plotting.histograms import score_histogram, confusion_matrix_plot
from src.plotting.plot_coordinates import plot_coordinates
from src.layers.object_cond import calc_eta_phi


def plot_event_comparison(event, ax=None, special_pfcands_size=1, special_pfcands_color="gray"):
    eta_dq = event.matrix_element_gen_particles.eta
    phi_dq = event.matrix_element_gen_particles.phi
    pt_dq = event.matrix_element_gen_particles.pt
    eta = event.pfcands.eta
    phi = event.pfcands.phi
    pt = event.pfcands.pt
    mapping = event.pfcands.pf_cand_jet_idx.int().tolist()
    print("N jets:", len(event.jets))
    genjet_eta = event.genjets.eta
    genjet_phi = event.genjets.phi
    genjet_pt = event.genjets.pt
    if ax is None:
        fig, ax = plt.subplots(1, 2, figsize=(10, 5))
    # plot eta, phi and the size of circles proportional to p_t. The colors should be either gray (if not in mapping) or some other color that 'represents' the identified jet
    colorlist = ["red", "green", "blue", "purple", "orange", "yellow", "black", "pink", "cyan", "brown", "black", "black", "black", "gray"]
    colors = []
    for i in range(len(eta)):
        colors.append(colorlist[mapping[i]])
    colors = np.array(colors)
    is_special = (event.pfcands.pid.abs() < 4)
    #markers = ["." if not is_special[i] else "v" for i in range(len(eta))]
    #ax[0].scatter(eta, phi, s=pt, c=colors)
    ax[0].scatter(eta[is_special], phi[is_special], s=pt[is_special]*special_pfcands_size, c=special_pfcands_color, marker="v")
    ax[0].scatter(eta[~is_special], phi[~is_special], s=pt[~is_special], c=colors[~is_special])
    ax[0].scatter(eta_dq, phi_dq, s=pt_dq, c="red", marker="^", alpha=1.0)
    ax[0].scatter(genjet_eta, genjet_phi, marker="*", s=genjet_pt, c="blue", alpha=1.0)
    #eta_special = event.special_pfcands.eta
    #phi_special = event.special_pfcands.phi
    #pt_special = event.special_pfcands.pt
    #print("N special PFCands:", len(eta_special))
    #ax[0].scatter(eta_special, phi_special, s=pt_special*special_pfcands_size, c=special_pfcands_color, marker="v")
    # "special" PFCands - electrons, muons, photons satisfying certain criteria
    # Display the jets as a circle with R=0.5
    jet_eta = event.jets.eta
    jet_phi = event.jets.phi
    for i in range(len(jet_eta)):
        circle = plt.Circle((jet_eta[i], jet_phi[i]), 0.5, color="red", fill=False)
        ax[0].add_artist(circle)
    ax[0].set_xlabel(r"$\eta$")
    ax[0].set_ylabel(r"$\phi$")
    ax[0].set_title("PFCands with Jets")
    if event.fatjets is not None:
        colors = []
        for i in range(len(eta)):
            colors.append(colorlist[mapping[i]])
        colors = np.array(colors)
        is_special = (event.pfcands.pid.abs() < 4)
        ax[1].scatter(eta[is_special], phi[is_special], s=pt[is_special] * special_pfcands_size,
                      c=colors[is_special], marker="v")
        ax[1].scatter(eta[~is_special], phi[~is_special], s=pt[~is_special], c=colors[~is_special])
        ax[1].scatter(eta_dq, phi_dq, s=pt_dq, c="red", marker="^", alpha=1.0)
        ax[1].scatter(genjet_eta, genjet_phi, marker="*", s=genjet_pt, c="blue", alpha=1.0)
        ax[1].set_xlabel(r"$\eta$")
        ax[1].set_ylabel(r"$\phi$")
        ax[1].set_title("PFCands with FatJets")
        # Plot the fatjets as a circle with R=0.8 around the center of the fatjet
        fatjet_eta = event.fatjets.eta
        fatjet_phi = event.fatjets.phi
        fatjet_R = 0.8
        for i in range(len(fatjet_eta)):
            circle = plt.Circle((fatjet_eta[i], fatjet_phi[i]), fatjet_R, color="red", fill=False)
            ax[1].add_artist(circle)
            # even aspect ratio
            ax[1].set_aspect("equal")
        ax[0].set_aspect("equal")
    if ax is not None:
        fig.tight_layout()
        return fig


def plot_event(event, colors="gray", custom_coords=None, ax=None, jets=True, pfcands="pfcands"):
    # plots event onto the specified ax.
    # :colors: color of the pfcands
    # :colors_special: color of the special pfcands
    # :ax: matplotlib ax object to plot onto
    # :custom_coords: Plot eta and phi from custom_coords instead of event.pfcands.
    make_fig = ax is None
    if ax is None:
        fig, ax = plt.subplots(1, 1, figsize=(5, 5))



    eta = getattr(event, pfcands).eta
    phi = getattr(event, pfcands).phi
    pt = getattr(event, pfcands).pt

    #eta_special = event.special_pfcands.eta
    #phi_special = event.special_pfcands.phi
    #pt_special = event.special_pfcands.pt
    if custom_coords:
        eta = custom_coords[0]
        phi = custom_coords[1]
        #if len(eta_special):
        #    eta_special = eta[-len(eta_special):]
        #    phi_special = phi[-len(phi_special):]
        #    eta = eta[:-len(eta_special)]
        #    phi = phi[:-len(eta_special)]
    #genjet_eta = event.genjets.eta
    #genjet_phi = event.genjets.phi
    #genjet_pt = event.genjets.pt
    #if len(eta_special):
    #    colors_special = colors[-len(eta_special):]
    #    colors = colors[:-len(eta_special)]
    #    print("Colors_special", colors_special)
    #    assert len(colors) == len(phi)
    #    assert len(colors_special) == len(eta_special)
    ax.scatter(eta, phi, s=pt, c=colors, alpha=0.7)
    if hasattr(event, "matrix_element_gen_particles") and event.matrix_element_gen_particles is not None:
        eta_dq = event.matrix_element_gen_particles.eta
        phi_dq = event.matrix_element_gen_particles.phi
        pt_dq = event.matrix_element_gen_particles.pt
        ax.scatter(eta_dq, phi_dq, s=pt_dq, c="red", marker="^", alpha=0.5) # Dark quarks
    #ax.scatter(genjet_eta, genjet_phi, marker="*", s=genjet_pt, c="blue", alpha=0.5)
    #if len(eta_special):
    #    ax.scatter(eta_special, phi_special, s=pt_special, c=colors_special, marker="v")
    if jets:
        #jet_eta = event.fatjets.eta
        #jet_phi = event.fatjets.phi
        #for i in range(len(jet_eta)):
        #    circle = plt.Circle((jet_eta[i], jet_phi[i]), 0.8, color="red", fill=False)
        #    ax.add_artist(circle)
        if hasattr(event, "model_jets") and event.model_jets is not None:
            model_jet_eta = event.model_jets.eta
            model_jet_phi = event.model_jets.phi
            obj_score = None
            if hasattr(event.model_jets, "obj_score"):
                obj_score = event.model_jets.obj_score
            for i in range(len(model_jet_eta)):
                circle = plt.Circle((model_jet_eta[i], model_jet_phi[i]), 0.77, color="blue", fill=False, alpha=.7)
                ax.add_artist(circle)
                # plot text with obj score
                if obj_score is not None:
                    ax.text(model_jet_eta[i]+0.2, model_jet_phi[i]-0.2, "o.s.=" + str(round(torch.sigmoid(obj_score[i]).item(), 2)), color="gray", fontsize=10, alpha=0.5)
        if hasattr(event, "fastjet_jets") and event.fastjet_jets is not None:
            fj_r = 0.8
            model_jet_eta = event.fastjet_jets[fj_r].eta
            model_jet_phi = event.fastjet_jets[fj_r].phi
            for i in range(len(model_jet_eta)):
                circle = plt.Circle((model_jet_eta[i], model_jet_phi[i]), 0.74, color="green", fill=False, alpha=.7)
                ax.add_artist(circle)
    ax.set_xlabel(r"$\eta$")
    ax.set_ylabel(r"$\phi$")
    ax.set_aspect("equal")
    if make_fig:
        fig.tight_layout()
        return fig


def get_idx_for_event(obj, i):
    return obj.batch_number[i], obj.batch_number[i+1]


def get_labels_jets(b, pfcands, jets):
    # b: Batch of events
    R = 0.8
    labels = torch.zeros(len(pfcands)).long()
    for i in range(len(b)):
        s, e = get_idx_for_event(jets, i)
        dq_eta = jets.eta[s:e]
        dq_phi = jets.phi[s:e]
        if s == e:
            continue
        s, e = get_idx_for_event(pfcands, i)
        pfcands_eta = pfcands.eta[s:e]
        pfcands_phi = pfcands.phi[s:e]
        # calculate the distance matrix between each dark quark and pfcands
        dist_matrix = torch.cdist(
            torch.stack([dq_eta, dq_phi], dim=1),
            torch.stack([pfcands_eta, pfcands_phi], dim=1),
            p=2
        )
        dist_matrix = dist_matrix.T
        closest_quark_dist, closest_quark_idx = dist_matrix.min(dim=1)
        closest_quark_idx[closest_quark_dist > R] = -1
        labels[s:e] = closest_quark_idx
    return (labels >= 0).float()


def plot_batch_eval_OC(event_batch, y_true, y_pred, batch_idx, filename, args, batch, dropped_batches):
    # Plot the batch, together with nice colors with object condensation GT and betas
    max_events = 5
    sz = 10
    assert len(y_true) == len(y_pred), f"y_true: {len(y_true)}, y_pred: {len(y_pred)}"
    if args.beta_type == "pt+bc":
        n_columns = 6
        y_true_bc = (y_true >= 0).int()
        #score_histogram(y_true_bc, y_pred[:, 3]).savefig(os.path.join(os.path.dirname(filename), "binary_classifier_scores.pdf"))
        #score_histogram(y_true_bc, (event_batch.pfcands.pf_cand_jet_idx >= 0).float()).savefig(
        #    os.path.join(os.path.dirname(filename), "binary_classifier_scores_AK8.pdf"))
        #score_histogram(y_true_bc, get_labels_jets(event_batch, event_batch.pfcands, event_batch.fatjets)).savefig(
        #    os.path.join(os.path.dirname(filename), "binary_classifier_scores_radius_FatJets.pdf"))
        #score_histogram(y_true_bc, get_labels_jets(event_batch, event_batch.pfcands, event_batch.genjets)).savefig(
        #    os.path.join(os.path.dirname(filename), "binary_classifier_scores_radius_GenJets.pdf"))
        #fig, ax = plt.subplots(1, 3, figsize=(3*sz/2, sz/2))
        #confusion_matrix_plot(y_true_bc, y_pred[:, 3] > 0.5, ax[0])
        #ax[0].set_title("Classifier (cut at 0.5)")
        #confusion_matrix_plot(y_true_bc, get_labels_jets(event_batch, event_batch.pfcands, event_batch.fatjets), ax[2])
        #ax[2].set_title("FatJets")
        #confusion_matrix_plot(y_true_bc, get_labels_jets(event_batch, event_batch.pfcands, event_batch.genjets), ax[1])
        #ax[1].set_title("GenJets")
        #fig.tight_layout()
        #fig.savefig(os.path.join(os.path.dirname(filename), "conf_matrices.pdf"))
    else:
        n_columns = 4
    fig, ax = plt.subplots(max_events, n_columns, figsize=(n_columns * sz, sz * max_events))
    # columns: Input coords, colored by beta ; Input coords, colored by GT labels; model coords, colored by beta; model coords, colored by GT labels
    print("N events")
    for i in range(event_batch.n_events):
        if i >= max_events:
            break
        if i not in dropped_batches:
            continue
        event = event_batch[i]
        filt = batch_idx == i
        y_true_event = y_true[filt]
        y_pred_event = y_pred[filt]
        if args.beta_type == "default":
            betas = y_pred_event[filt, 3]
        elif args.beta_type == "pt":
            betas = event.pfcands.pt
        elif args.beta_type == "pt+bc":
            betas = event.pfcands.pt
            classifier_labels = y_pred_event[:, 3]
        p_xyz = y_pred_event[:, :3]
        if y_pred_event.shape[1] == 5:
            p_xyz = y_pred_event[:, 1:4]
            e = y_pred_event[:, 0]
            #lorentz_invariant = e**2 - p_xyz.norm(dim=1)**2
            #lorentz_invariant_inputs = event.pfcands.E ** 2 - event.pfcands.pxyz.norm(dim=1) ** 2
        plot_coordinates(event.pfcands.pxyz, pt=event.pfcands.pt, tidx=y_true_event,
                         outdir=os.path.dirname(filename),
                         filename="input_coords_batch_" + str(batch) + "_event_" + str(i) + ".html")
        plot_coordinates(p_xyz, pt=event.pfcands.pt, tidx=y_true_event,
                         outdir=os.path.dirname(filename),
                         filename="model_coords_batch_" + str(batch) + "_event_" + str(i) + ".html")
        y_true_event = y_true_event.tolist()
        clist = ['#1f78b4', '#b3df8a', '#33a02c', '#fb9a99', '#e31a1c', '#fdbe6f', '#ff7f00', '#cab2d6', '#6a3d9a', '#ffff99', '#b15928']
        colors = {
            -1: "gray",
            0: clist[0],
            1: clist[1],
            2: clist[2],
            3: clist[3]
        }
        eta, phi = calc_eta_phi(p_xyz, return_stacked=False)
        plot_event(event, colors=plt.cm.brg(betas), ax=ax[i, 0])
        cbar = plt.colorbar(mappable=cm.ScalarMappable(cmap=plt.cm.brg), ax=ax[i, 0]) # How to specify the palette?
        ax[i, 0].set_title(r"input coords, $\beta$ colors")
        cbar.set_label(r"$\beta$")
        plot_event(event, colors=[colors[i] for i in y_true_event], ax=ax[i, 1])
        ax[i, 1].set_title("input coords, GT colors")
        plot_event(event, custom_coords=[eta, phi], colors=plt.cm.brg(betas), ax=ax[i, 2], jets=False)
        #assert betas.min() >= 0 and betas.max() <= 1
        ax[i, 2].set_title(r"model coords, $\beta$ colors")
        cbar = plt.colorbar(mappable=cm.ScalarMappable(cmap=plt.cm.brg), ax=ax[i, 2])
        ax[i, 3].set_title("model coords, GT colors")
        cbar.set_label(r"$\beta$")
        plot_event(event, custom_coords=[eta, phi], colors=[colors[i] for i in y_true_event], ax=ax[i, 3], jets=False)
        if args.beta_type == "pt+bc":
            # Create a custom colormap from light gray to dark green
            colors = [(0.9, 0.9, 0.9), (0.0, 0.5, 0.0)]  # RGB for light gray and dark green
            cmap_name = "lightgray_to_darkgreen"
            custom_cmap = mcolors.LinearSegmentedColormap.from_list(cmap_name, colors)
            plot_event(event, custom_coords=[eta, phi], colors=custom_cmap(classifier_labels), ax=ax[i, 5], jets=False)
            ax[i, 5].set_title(r"model coords, BC label colors")
            cbar = plt.colorbar(mappable=cm.ScalarMappable(cmap=custom_cmap), ax=ax[i, 5])
            cbar.set_label("Classifier score")
            plot_event(event, colors=custom_cmap(classifier_labels), ax=ax[i, 4], jets=False)
            ax[i, 4].set_title(r"input coords, BC label colors")
            cbar = plt.colorbar(mappable=cm.ScalarMappable(cmap=custom_cmap), ax=ax[i, 4])
            cbar.set_label("Classifier score")
    print("Saving eval figure to", filename)
    fig.tight_layout()
    fig.savefig(filename)
    fig.clear()
    plt.close(fig)