File size: 23,459 Bytes
e75a247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
import os
import ast
import glob
import functools
import math
import torch
from torch.utils.data import DataLoader
from src.logger.logger import _logger, _configLogger
from src.dataset.dataset import EventDatasetCollection, EventDataset
from src.utils.import_tools import import_module
from src.dataset.functions_graph import graph_batch_func
from src.dataset.functions_data import concat_events
from src.utils.paths import get_path
from src.layers.object_cond import calc_eta_phi
from src.layers.object_cond import object_condensation_loss


def to_filelist(args, mode="train"):
    if mode == "train":
        flist = args.data_train
    elif mode == "val":
        flist = args.data_val
    elif mode == "test":
        flist = args.data_test
    else:
        raise NotImplementedError("Invalid mode %s" % mode)
    print(mode, "filelist:", flist)
    flist = [get_path(p, "preprocessed_data") for p in flist]
    return flist

class TensorCollection:
    def __init__(self, **kwargs):
        self.__dict__.update(kwargs)
    def to(self, device):
        # Move all tensors to device
        for k, v in self.__dict__.items():
            if torch.is_tensor(v):
                setattr(self, k, v.to(device))
        return self
    def dict_rep(self):
        d = {}
        for k, v in self.__dict__.items():
            if torch.is_tensor(v):
                d[k] = v
        return d
    #def __getitem__(self, i):
    #    return TensorCollection(**{k: v[i] for k, v in self.__dict__.items()})

def train_load(args, aug_soft=False, aug_collinear=False):
    train_files = to_filelist(args, "train")
    val_files = to_filelist(args, "val")
    train_data = EventDatasetCollection(train_files, args, aug_soft=aug_soft, aug_collinear=aug_collinear)
    if args.train_dataset_size is not None:
        train_data = torch.utils.data.Subset(train_data, list(range(args.train_dataset_size)))
    train_loader = DataLoader(
        train_data,
        batch_size=args.batch_size,
        drop_last=True,
        pin_memory=True,
        num_workers=args.num_workers,
        collate_fn=concat_events,
        persistent_workers=args.num_workers > 0,
        shuffle=False
    )

    '''val_loaders = {}
    for filename in val_files:
        val_data = EventDataset.from_directory(filename, mmap=True)
        val_loaders[filename] = DataLoader(
            val_data,
            batch_size=args.batch_size,
            drop_last=True,
            pin_memory=True,
            collate_fn=concat_events,
            num_workers=args.num_workers,
            persistent_workers=args.num_workers > 0,
        )'''
    val_data = EventDatasetCollection(val_files, args)
    if args.val_dataset_size is not None:
        val_data = torch.utils.data.Subset(val_data, list(range(args.val_dataset_size)))
    val_loader = DataLoader(
        val_data,
        batch_size=args.batch_size,
        drop_last=True,
        pin_memory=True,
        num_workers=args.num_workers,
        collate_fn=concat_events,
        persistent_workers=args.num_workers > 0,
        shuffle=False
    )
    return train_loader, val_loader, val_data

def test_load(args):
    test_files = to_filelist(args, "test")
    test_loaders = {}
    for filename in test_files:
        test_data = EventDataset.from_directory(filename, mmap=True, aug_soft=args.augment_soft_particles, seed=1000000)
        if args.test_dataset_max_size is not None:
              print("Limiting test dataset size to", args.test_dataset_max_size)
              test_data = torch.utils.data.Subset(test_data, list(range(args.test_dataset_max_size)))
        test_loaders[filename] = DataLoader(
            test_data,
            batch_size=args.batch_size,
            drop_last=True,
            pin_memory=True,
            collate_fn=concat_events,
            num_workers=args.num_workers,
            persistent_workers=args.num_workers > 0,
        )

    return test_loaders

def get_optimizer_and_scheduler(args, model, device, load_model_weights="load_model_weights"):
    """
    Optimizer and scheduler.
    :param args:
    :param model:
    :return:
    """
    optimizer_options = {k: ast.literal_eval(v) for k, v in args.optimizer_option}
    _logger.info("Optimizer options: %s" % str(optimizer_options))

    names_lr_mult = []
    if "weight_decay" in optimizer_options or "lr_mult" in optimizer_options:
        # https://github.com/rwightman/pytorch-image-models/blob/master/timm/optim/optim_factory.py#L31
        import re

        decay, no_decay = {}, {}
        names_no_decay = []
        for name, param in model.named_parameters():
            if not param.requires_grad:
                continue  # frozen weights
            if (
                len(param.shape) == 1
                or name.endswith(".bias")
                or (
                    hasattr(model, "no_weight_decay")
                    and name in model.no_weight_decay()
                )
            ):
                no_decay[name] = param
                names_no_decay.append(name)
            else:
                decay[name] = param

        decay_1x, no_decay_1x = [], []
        decay_mult, no_decay_mult = [], []
        mult_factor = 1
        if "lr_mult" in optimizer_options:
            pattern, mult_factor = optimizer_options.pop("lr_mult")
            for name, param in decay.items():
                if re.match(pattern, name):
                    decay_mult.append(param)
                    names_lr_mult.append(name)
                else:
                    decay_1x.append(param)
            for name, param in no_decay.items():
                if re.match(pattern, name):
                    no_decay_mult.append(param)
                    names_lr_mult.append(name)
                else:
                    no_decay_1x.append(param)
            assert len(decay_1x) + len(decay_mult) == len(decay)
            assert len(no_decay_1x) + len(no_decay_mult) == len(no_decay)
        else:
            decay_1x, no_decay_1x = list(decay.values()), list(no_decay.values())
        wd = optimizer_options.pop("weight_decay", 0.0)
        parameters = [
            {"params": no_decay_1x, "weight_decay": 0.0},
            {"params": decay_1x, "weight_decay": wd},
            {
                "params": no_decay_mult,
                "weight_decay": 0.0,
                "lr": args.start_lr * mult_factor,
            },
            {
                "params": decay_mult,
                "weight_decay": wd,
                "lr": args.start_lr * mult_factor,
            },
        ]
        _logger.info(
            "Parameters excluded from weight decay:\n - %s",
            "\n - ".join(names_no_decay),
        )
        if len(names_lr_mult):
            _logger.info(
                "Parameters with lr multiplied by %s:\n - %s",
                mult_factor,
                "\n - ".join(names_lr_mult),
            )
    else:
        parameters = model.parameters()

    if args.optimizer == "ranger":
        from src.utils.nn.optimizer.ranger import Ranger
        opt = Ranger(parameters, lr=args.start_lr, **optimizer_options)
    elif args.optimizer == "adam":
        opt = torch.optim.Adam(parameters, lr=args.start_lr, **optimizer_options)
    elif args.optimizer == "adamW":
        opt = torch.optim.AdamW(parameters, lr=args.start_lr, **optimizer_options)
    elif args.optimizer == "radam":
        opt = torch.optim.RAdam(parameters, lr=args.start_lr, **optimizer_options)

    if args.__dict__[load_model_weights] is not None:
        _logger.info("Resume training from file %s" % args.__dict__[load_model_weights])
        model_state = torch.load(
            args.__dict__[load_model_weights],
            map_location=device,
        )
        if isinstance(model, torch.nn.parallel.DistributedDataParallel):
            model.module.load_state_dict(model_state["model"])
        else:
            model.load_state_dict(model_state["model"])
        opt_state = model_state["optimizer"]
        opt.load_state_dict(opt_state)
    scheduler = None
    if args.lr_scheduler == "steps":
        lr_step = round(args.num_epochs / 3)
        scheduler = torch.optim.lr_scheduler.MultiStepLR(
            opt,
            milestones=[10],
            gamma=0.20,
            last_epoch=-1
        )
    elif args.lr_scheduler == "flat+decay":
        num_decay_epochs = max(1, int(args.num_epochs * 0.3))
        milestones = list(
            range(args.num_epochs - num_decay_epochs, args.num_epochs)
        )
        gamma = 0.01 ** (1.0 / num_decay_epochs)
        if len(names_lr_mult):

            def get_lr(epoch):
                return gamma ** max(0, epoch - milestones[0] + 1)  # noqa

            scheduler = torch.optim.lr_scheduler.LambdaLR(
                opt,
                (lambda _: 1, lambda _: 1, get_lr, get_lr),
                last_epoch=-1,
                verbose=True,
            )
        else:
            scheduler = torch.optim.lr_scheduler.MultiStepLR(
                opt,
                milestones=milestones,
                gamma=gamma,
                last_epoch=-1
            )
    elif args.lr_scheduler == "flat+linear" or args.lr_scheduler == "flat+cos":
        total_steps = args.num_epochs * args.steps_per_epoch
        warmup_steps = args.warmup_steps
        flat_steps = total_steps * 0.7 - 1
        min_factor = 0.001

        def lr_fn(step_num):
            if step_num > total_steps:
                raise ValueError(
                    "Tried to step {} times. The specified number of total steps is {}".format(
                        step_num + 1, total_steps
                    )
                )
            if step_num < warmup_steps:
                return 1.0 * step_num / warmup_steps
            if step_num <= flat_steps:
                return 1.0
            pct = (step_num - flat_steps) / (total_steps - flat_steps)
            if args.lr_scheduler == "flat+linear":
                return max(min_factor, 1 - pct)
            else:
                return max(min_factor, 0.5 * (math.cos(math.pi * pct) + 1))

        scheduler = torch.optim.lr_scheduler.LambdaLR(
            opt,
            lr_fn,
            last_epoch=-1
            if args.load_epoch is None
            else args.load_epoch * args.steps_per_epoch,
        )
        scheduler._update_per_step = (
            True  # mark it to update the lr every step, instead of every epoch
        )
    elif args.lr_scheduler == "one-cycle":
        scheduler = torch.optim.lr_scheduler.OneCycleLR(
            opt,
            max_lr=args.start_lr,
            epochs=args.num_epochs,
            steps_per_epoch=args.steps_per_epoch,
            pct_start=0.3,
            anneal_strategy="cos",
            div_factor=25.0,
            last_epoch=-1 if args.load_epoch is None else args.load_epoch,
        )
        scheduler._update_per_step = (
            True  # mark it to update the lr every step, instead of every epoch
        )
    elif args.lr_scheduler == "reduceplateau":
        scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
            opt, patience=2, threshold=0.01
        )
        # scheduler._update_per_step = (
        #     True  # mark it to update the lr every step, instead of every epoch
        # )
        scheduler._update_per_step = (
            False  # mark it to update the lr every step, instead of every epoch
        )
    if args.__dict__[load_model_weights]:
        if scheduler is not None:
            scheduler.load_state_dict(model_state["scheduler"])
    return opt, scheduler

def get_target_obj_score(clusters_eta, clusters_phi, clusters_pt, event_idx_clusters, dq_eta, dq_phi, dq_event_idx, gt_mode="all_in_radius"):
    # return the target scores for each cluster (reteurns list of 1's and 0's)
    # dq_coords: list of [eta, phi] for each dark quark
    # dq_event_idx: list of event_idx for each dark quarks
    target = []
    if gt_mode == "all_in_radius":
        for event in event_idx_clusters.unique():
            filt = event_idx_clusters == event
            clusters = torch.stack([clusters_eta[filt], clusters_phi[filt], clusters_pt[filt]], dim=1)
            dq_coords_event = torch.stack([dq_eta[dq_event_idx == event], dq_phi[dq_event_idx == event]], dim=1)
            dist_matrix = torch.cdist(
                dq_coords_event,
                clusters[:, :2].to(dq_coords_event.device),
                p=2
            ).T
            if len(dist_matrix) == 0:
                target.append(torch.zeros(len(clusters)).int().to(dist_matrix.device))
                continue
            closest_quark_dist, closest_quark_idx = dist_matrix.min(dim=1)
            closest_quark_idx[closest_quark_dist > 0.8] = -1
            target.append((closest_quark_idx != -1).float())
    else:
        # GT is set by only considering the closest jet to each dark quark (if it's within radius)
        for event in event_idx_clusters.unique():
            filt = event_idx_clusters == event
            clusters = torch.stack([clusters_eta[filt], clusters_phi[filt], clusters_pt[filt]], dim=1)
            dq_coords_event = torch.stack([dq_eta[dq_event_idx == event], dq_phi[dq_event_idx == event]], dim=1)
            dist_matrix = torch.cdist(
                dq_coords_event,
                clusters[:, :2].to(dq_coords_event.device),
                p=2
            ).T
            if len(dist_matrix) == 0:
                target.append(torch.zeros(len(clusters)).int().to(dist_matrix.device))
                continue
            closest_cluster_dist, closest_cluster_idx = dist_matrix.min(dim=0)
            closest_cluster_idx[closest_cluster_dist > 0.8] = -1
            matched_clusters = closest_cluster_idx[closest_cluster_idx != -1]
            t = torch.zeros_like(clusters_eta[filt])
            print(matched_clusters)
            print(matched_clusters.int())
            t[matched_clusters.long()] = 1
            target.append(t)
    return torch.cat(target).flatten()


def plot_obj_score_debug(dq_eta, dq_phi, dq_batch_idx, clusters_eta, clusters_phi, clusters_pt, clusters_batch_idx, clusters_labels, input_pxyz, input_event_idx, input_clusters, pred_obj_score_clusters):
    # For debugging the Objectness Score head.
    import matplotlib.pyplot as plt
    n_events = dq_batch_idx.max().int().item() + 1
    pfcands_pt = torch.sqrt(input_pxyz[:, 0] ** 2 + input_pxyz[:, 1] ** 2)
    pfcands_eta, pfcands_phi = calc_eta_phi(input_pxyz, return_stacked=0)
    fig, ax = plt.subplots(1, n_events, figsize=(n_events * 3, 3))
    colors = {0: "grey", 1: "green"}
    for i in range(n_events):
        # Plot the clusters as dots that are green for label 1 and gray for label 0
        filt = clusters_batch_idx == i
        ax[i].scatter(clusters_eta[filt].cpu(), clusters_phi[filt].cpu(), c=[colors[x] for x in clusters_labels[filt].tolist()], cmap="coolwarm", s=clusters_pt[filt].cpu(), alpha=0.5)
        # with a light gray text, also plot the target objectness score for each cluster
        for j in range(len(clusters_eta[filt])):
            ax[i].text(clusters_eta[filt][j].cpu()-0.5, clusters_phi[filt][j].cpu()-0.5, str(round(pred_obj_score_clusters[filt][j].item(), 2)), fontsize=6, color="gray", alpha=0.7)
        # Plot the dark quarks as red dots
        filt = dq_batch_idx == i
        ax[i].scatter(dq_eta[filt].cpu(), dq_phi[filt].cpu(), c="red", alpha=0.5)
        ax[i].scatter(pfcands_eta[input_event_idx == i].cpu(), pfcands_phi[input_event_idx == i].cpu(), c=input_clusters[input_event_idx == i].cpu(), cmap="coolwarm", s=pfcands_pt[input_event_idx == i].cpu(), alpha=0.5)
        # put pt of the clusters in gray text on top of them
        filt = clusters_batch_idx == i
        for j in range(len(clusters_eta[filt])):
            ax[i].text(clusters_eta[filt][j].cpu(), clusters_phi[filt][j].cpu(), str(round(clusters_pt[filt][j].item(), 2)), fontsize=8, color="black")

    fig.tight_layout()
    return fig


def get_loss_func(args):
    # Loss function  takes in the output of a model and the output of GT (the GT labels) and returns the loss.
    def loss(model_input, model_output, gt_labels):
            batch_numbers = model_input.batch_idx
            if not (args.loss == "quark_distance" or args.train_objectness_score):
                labels = gt_labels+1
            else:
                labels = gt_labels
            return object_condensation_loss(model_input, model_output, labels, batch_numbers,
                                            attr_weight=args.attr_loss_weight,
                                            repul_weight=args.repul_loss_weight,
                                            coord_weight=args.coord_loss_weight,
                                            beta_type=args.beta_type,
                                            lorentz_norm=args.lorentz_norm,
                                            spatial_part_only=args.spatial_part_only,
                                            loss_quark_distance=args.loss=="quark_distance",
                                            oc_scalars=args.scalars_oc,
                                            loss_obj_score=args.train_objectness_score)
    return loss


def renumber_clusters(tensor):
    unique = tensor.unique()
    mapping = torch.zeros(unique.max() + 1)
    for i, u in enumerate(unique):
        mapping[u] = i
    return mapping[tensor]

def get_gt_func(args):
    # Gets the GT function: the function accepts an Event batch
    # and returns the ground truth labels (GT idx of a dark quark it belongs to, or -1 for noise)
    # By default, it returns the dark quark that is closest to the event, IF it's closer than R.
    R = args.gt_radius
    def get_idx_for_event(obj, i):
        return obj.batch_number[i], obj.batch_number[i + 1]
    def get_labels(b, pfcands, special=False, get_coordinates=False, get_dq_coords=False):
        # b: Batch of events
        # if get_coordinates is true, it returns the coordinates of the labels rather than the clustering labels themselves.
        labels = torch.zeros(len(pfcands)).long()
        if get_coordinates:
            labels_coordinates = torch.zeros(len(b.matrix_element_gen_particles.pt), 4).float()
            labels_no_renumber = torch.ones_like(labels)*-1
            offset = 0
        if get_dq_coords:
            dq_coords = [b.matrix_element_gen_particles.eta, b.matrix_element_gen_particles.phi]
            #dq_coords_batch_idx = b.matrix_element_gen_particles.batch_number
            dq_coords_batch_idx = torch.zeros(b.matrix_element_gen_particles.pt.shape)
            for i in range(len(b.matrix_element_gen_particles.batch_number) - 1):
                dq_coords_batch_idx[b.matrix_element_gen_particles.batch_number[i]:b.matrix_element_gen_particles.batch_number[i + 1]] = i
        for i in range(len(b)):
            s_dq, e_dq = get_idx_for_event(b.matrix_element_gen_particles, i)
            dq_eta = b.matrix_element_gen_particles.eta[s_dq:e_dq]
            dq_phi = b.matrix_element_gen_particles.phi[s_dq:e_dq]
            # dq_pt = b.matrix_element_gen_particles.pt[s:e] # Maybe we can somehow weigh the loss by pt?
            s, e = get_idx_for_event(pfcands, i)
            pfcands_eta = pfcands.eta[s:e]
            pfcands_phi = pfcands.phi[s:e]
            # calculate the distance matrix between each dark quark and pfcands
            dist_matrix = torch.cdist(
                torch.stack([dq_eta, dq_phi], dim=1),
                torch.stack([pfcands_eta, pfcands_phi], dim=1),
                p=2
            )
            dist_matrix = dist_matrix.T
            closest_quark_dist, closest_quark_idx = dist_matrix.min(dim=1)
            closest_quark_idx[closest_quark_dist > R] = -1
            if len(closest_quark_idx):
                #if special: print("Closest quark idx", closest_quark_idx, "; renumbered ",
                #                  renumber_clusters(closest_quark_idx + 1) - 1)
                if not get_coordinates:
                    closest_quark_idx = renumber_clusters(closest_quark_idx + 1) - 1
                else:
                    labels_no_renumber[s:e] = closest_quark_idx
                    closest_quark_idx[closest_quark_idx != -1] += offset
            labels[s:e] = closest_quark_idx
            if get_coordinates:
                E_dq = b.matrix_element_gen_particles.E[s_dq:e_dq]
                pxyz_dq = b.matrix_element_gen_particles.pxyz[s_dq:e_dq] # the -1 doesn't matter as it will be ignored anyway
                labels_coordinates[s_dq:e_dq] = torch.cat([E_dq.unsqueeze(-1), pxyz_dq], dim=1)
                offset += len(E_dq)
        if get_coordinates:
            return TensorCollection(labels=labels, labels_coordinates=labels_coordinates, labels_no_renumber=labels_no_renumber)
        if get_dq_coords:
            return TensorCollection(labels=labels, dq_coords=dq_coords, dq_coords_batch_idx=dq_coords_batch_idx)
        return labels
    def gt(events):
        #special_labels = get_labels(events, events.special_pfcands, special=True)
        #print("Special pfcands labels", special_labels)
        #return torch.cat([get_labels(events, events.pfcands), special_labels])
        pfcands = events.pfcands
        if args.parton_level:
            pfcands = events.final_parton_level_particles
        if args.gen_level:
            pfcands = events.final_gen_particles
        return get_labels(events, pfcands, get_coordinates=args.loss=="quark_distance",
                          get_dq_coords=args.train_objectness_score)
    return gt


def count_parameters(model):
    return sum(p.numel() for p in model.parameters() if p.requires_grad)

def get_model(args, dev):
    network_options = {}  # TODO: implement network options
    network_module = import_module(args.network_config, name="_network_module")
    model = network_module.get_model(obj_score=False, args=args, **network_options)
    if args.load_model_weights:
        print("Loading model state dict from %s" % args.load_model_weights)
        model_state = torch.load(args.load_model_weights, map_location=dev)["model"]
        missing_keys, unexpected_keys = model.load_state_dict(model_state, strict=False)
        _logger.info(
            "Model initialized with weights from %s\n ... Missing: %s\n ... Unexpected: %s"
            % (args.load_model_weights, missing_keys, unexpected_keys)
        )
        assert len(missing_keys) == 0
        assert len(unexpected_keys) == 0
    return model

def get_model_obj_score(args, dev):
    network_options = {}  # TODO: implement network options
    network_module = import_module(args.obj_score_module, name="_network_module")
    model = network_module.get_model(obj_score=True, args=args, **network_options)
    if args.load_objectness_score_weights:
        assert args.train_objectness_score
        print("Loading objectness score model state dict from %s" % args.load_objectness_score_weights)
        model_state = torch.load(args.load_objectness_score_weights, map_location=dev)["model"]
        missing_keys, unexpected_keys = model.load_state_dict(model_state, strict=False)
        _logger.info(
            "Objectness score model initialized with weights from %s\n ... Missing: %s\n ... Unexpected: %s"
            % (args.load_objectness_score_weights, missing_keys, unexpected_keys)
        )
        assert len(missing_keys) == 0
        assert len(unexpected_keys) == 0
    return model