Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import dgl | |
import dgl.function as fn | |
import numpy as np | |
""" | |
Graph Transformer Layer with edge features | |
""" | |
""" | |
Util functions | |
""" | |
def src_dot_dst(src_field, dst_field, out_field): | |
def func(edges): | |
return {out_field: (edges.src[src_field] * edges.dst[dst_field])} | |
return func | |
def scaling(field, scale_constant): | |
def func(edges): | |
return {field: ((edges.data[field]) / scale_constant)} | |
return func | |
# Improving implicit attention scores with explicit edge features, if available | |
def imp_exp_attn(implicit_attn, explicit_edge): | |
""" | |
implicit_attn: the output of K Q | |
explicit_edge: the explicit edge features | |
""" | |
def func(edges): | |
return {implicit_attn: (edges.data[implicit_attn] * edges.data[explicit_edge])} | |
return func | |
# To copy edge features to be passed to FFN_e | |
def out_edge_features(edge_feat): | |
def func(edges): | |
return {'e_out': edges.data[edge_feat]} | |
return func | |
def exp(field): | |
def func(edges): | |
# clamp for softmax numerical stability | |
return {field: torch.exp((edges.data[field].sum(-1, keepdim=True)).clamp(-5, 5))} | |
return func | |
""" | |
Single Attention Head | |
""" | |
class MultiHeadAttentionLayer(nn.Module): | |
def __init__(self, in_dim, out_dim, num_heads, use_bias): | |
super().__init__() | |
self.out_dim = out_dim | |
self.num_heads = num_heads | |
if use_bias: | |
self.Q = nn.Linear(in_dim, out_dim * num_heads, bias=True) | |
self.K = nn.Linear(in_dim, out_dim * num_heads, bias=True) | |
self.V = nn.Linear(in_dim, out_dim * num_heads, bias=True) | |
self.proj_e = nn.Linear(in_dim, out_dim * num_heads, bias=True) | |
else: | |
self.Q = nn.Linear(in_dim, out_dim * num_heads, bias=False) | |
self.K = nn.Linear(in_dim, out_dim * num_heads, bias=False) | |
self.V = nn.Linear(in_dim, out_dim * num_heads, bias=False) | |
self.proj_e = nn.Linear(in_dim, out_dim * num_heads, bias=False) | |
def propagate_attention(self, g): | |
# Compute attention score | |
g.apply_edges(src_dot_dst('K_h', 'Q_h', 'score')) #, edges) | |
# scaling | |
g.apply_edges(scaling('score', np.sqrt(self.out_dim))) | |
# Use available edge features to modify the scores | |
g.apply_edges(imp_exp_attn('score', 'proj_e')) | |
# Copy edge features as e_out to be passed to FFN_e | |
g.apply_edges(out_edge_features('score')) | |
# softmax | |
g.apply_edges(exp('score')) | |
# Send weighted values to target nodes | |
eids = g.edges() | |
g.send_and_recv(eids, fn.src_mul_edge('V_h', 'score', 'V_h'), fn.sum('V_h', 'wV')) | |
g.send_and_recv(eids, fn.copy_edge('score', 'score'), fn.sum('score', 'z')) | |
def forward(self, g, h, e): | |
Q_h = self.Q(h) | |
K_h = self.K(h) | |
V_h = self.V(h) | |
proj_e = self.proj_e(e) | |
# Reshaping into [num_nodes, num_heads, feat_dim] to | |
# get projections for multi-head attention | |
g.ndata['Q_h'] = Q_h.view(-1, self.num_heads, self.out_dim) | |
g.ndata['K_h'] = K_h.view(-1, self.num_heads, self.out_dim) | |
g.ndata['V_h'] = V_h.view(-1, self.num_heads, self.out_dim) | |
g.edata['proj_e'] = proj_e.view(-1, self.num_heads, self.out_dim) | |
self.propagate_attention(g) | |
h_out = g.ndata['wV'] / (g.ndata['z'] + torch.full_like(g.ndata['z'], 1e-6)) # adding eps to all values here | |
e_out = g.edata['e_out'] | |
return h_out, e_out | |
class GraphTransformerLayer(nn.Module): | |
""" | |
Param: | |
""" | |
def __init__(self, in_dim, out_dim, num_heads, dropout=0.0, layer_norm=False, batch_norm=True, residual=True, use_bias=False): | |
super().__init__() | |
self.in_channels = in_dim | |
self.out_channels = out_dim | |
self.num_heads = num_heads | |
self.dropout = dropout | |
self.residual = residual | |
self.layer_norm = layer_norm | |
self.batch_norm = batch_norm | |
self.attention = MultiHeadAttentionLayer(in_dim, out_dim//num_heads, num_heads, use_bias) | |
self.O_h = nn.Linear(out_dim, out_dim) | |
self.O_e = nn.Linear(out_dim, out_dim) | |
if self.layer_norm: | |
self.layer_norm1_h = nn.LayerNorm(out_dim) | |
self.layer_norm1_e = nn.LayerNorm(out_dim) | |
if self.batch_norm: | |
self.batch_norm1_h = nn.BatchNorm1d(out_dim) | |
self.batch_norm1_e = nn.BatchNorm1d(out_dim) | |
# FFN for h | |
self.FFN_h_layer1 = nn.Linear(out_dim, out_dim*2) | |
self.FFN_h_layer2 = nn.Linear(out_dim*2, out_dim) | |
# FFN for e | |
self.FFN_e_layer1 = nn.Linear(out_dim, out_dim*2) | |
self.FFN_e_layer2 = nn.Linear(out_dim*2, out_dim) | |
if self.layer_norm: | |
self.layer_norm2_h = nn.LayerNorm(out_dim) | |
self.layer_norm2_e = nn.LayerNorm(out_dim) | |
if self.batch_norm: | |
self.batch_norm2_h = nn.BatchNorm1d(out_dim) | |
self.batch_norm2_e = nn.BatchNorm1d(out_dim) | |
def forward(self, g, h, e): | |
h_in1 = h # for first residual connection | |
e_in1 = e # for first residual connection | |
# multi-head attention out | |
h_attn_out, e_attn_out = self.attention(g, h, e) | |
h = h_attn_out.view(-1, self.out_channels) | |
e = e_attn_out.view(-1, self.out_channels) | |
#h = F.dropout(h, self.dropout, training=self.training) | |
#e = F.dropout(e, self.dropout, training=self.training) | |
h = self.O_h(h) | |
e = self.O_e(e) | |
if self.residual: | |
h = h_in1 + h # residual connection | |
e = e_in1 + e # residual connection | |
if self.layer_norm: | |
h = self.layer_norm1_h(h) | |
e = self.layer_norm1_e(e) | |
if self.batch_norm: | |
h = self.batch_norm1_h(h) | |
e = self.batch_norm1_e(e) | |
h_in2 = h # for second residual connection | |
e_in2 = e # for second residual connection | |
# FFN for h | |
h = self.FFN_h_layer1(h) | |
h = F.relu(h) | |
h = F.dropout(h, self.dropout, training=self.training) | |
h = self.FFN_h_layer2(h) | |
# FFN for e | |
e = self.FFN_e_layer1(e) | |
e = F.relu(e) | |
e = F.dropout(e, self.dropout, training=self.training) | |
e = self.FFN_e_layer2(e) | |
if self.residual: | |
h = h_in2 + h # residual connection | |
e = e_in2 + e # residual connection | |
if self.layer_norm: | |
h = self.layer_norm2_h(h) | |
e = self.layer_norm2_e(e) | |
if self.batch_norm: | |
h = self.batch_norm2_h(h) | |
e = self.batch_norm2_e(e) | |
return h, e | |
def __repr__(self): | |
return '{}(in_channels={}, out_channels={}, heads={}, residual={})'.format(self.__class__.__name__, | |
self.in_channels, | |
self.out_channels, self.num_heads, self.residual) |