Spaces:
Sleeping
Sleeping
from typing import Optional, Tuple | |
import torch | |
def select_knn(x: torch.Tensor, | |
k: int, | |
batch_x: Optional[torch.Tensor] = None, | |
inmask: Optional[torch.Tensor] = None, | |
max_radius: float = 1e9, | |
mask_mode: int = 1) -> Tuple[torch.Tensor, torch.Tensor]: | |
r"""Finds for each element in :obj:`x` the :obj:`k` nearest points in | |
:obj:`x`. | |
Args: | |
x (Tensor): Node feature matrix | |
:math:`\mathbf{X} \in \mathbb{R}^{N \times F}`. | |
k (int): The number of neighbors. | |
batch_x (LongTensor, optional): Batch vector | |
:math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each | |
node to a specific example. :obj:`batch_x` needs to be sorted. | |
(default: :obj:`None`) | |
max_radius (float): Maximum distance to nearest neighbours. (default: :obj:`1e9`) | |
mask_mode (int): ??? (default: :obj:`1`) | |
:rtype: :class:`Tuple`[`LongTensor`,`FloatTensor`] | |
.. code-block:: python | |
import torch | |
from torch_cmspepr import select_knn | |
x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]]) | |
batch_x = torch.tensor([0, 0, 0, 0]) | |
assign_index = select_knn(x, 2, batch_x) | |
""" | |
x = x.view(-1, 1) if x.dim() == 1 else x | |
x = x.contiguous() | |
mask: torch.Tensor = torch.ones(x.shape[0], dtype=torch.int32, device=x.device) | |
if inmask is not None: | |
mask = inmask | |
row_splits: torch.Tensor = torch.tensor([0, x.shape[0]], dtype=torch.int32, device=x.device) | |
if batch_x is not None: | |
assert x.size(0) == batch_x.numel() | |
batch_size = int(batch_x.max()) + 1 | |
deg = x.new_zeros(batch_size, dtype=torch.long) | |
deg.scatter_add_(0, batch_x, torch.ones_like(batch_x)) | |
ptr_x = deg.new_zeros(batch_size + 1) | |
torch.cumsum(deg, 0, out=ptr_x[1:]) | |
return torch.ops.torch_cmspepr.select_knn( | |
x, | |
row_splits, | |
mask, | |
k, | |
max_radius, | |
mask_mode, | |
) | |
def knn_graph(x: torch.Tensor, k: int, batch: Optional[torch.Tensor] = None, | |
loop: bool = False, flow: str = 'source_to_target', | |
cosine: bool = False, num_workers: int = 1) -> torch.Tensor: | |
r"""Computes graph edges to the nearest :obj:`k` points. | |
Args: | |
x (Tensor): Node feature matrix | |
:math:`\mathbf{X} \in \mathbb{R}^{N \times F}`. | |
k (int): The number of neighbors. | |
batch (LongTensor, optional): Batch vector | |
:math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each | |
node to a specific example. :obj:`batch` needs to be sorted. | |
(default: :obj:`None`) | |
loop (bool, optional): If :obj:`True`, the graph will contain | |
self-loops. (default: :obj:`False`) | |
flow (string, optional): The flow direction when used in combination | |
with message passing (:obj:`"source_to_target"` or | |
:obj:`"target_to_source"`). (default: :obj:`"source_to_target"`) | |
cosine (boolean, optional): If :obj:`True`, will use the Cosine | |
distance instead of Euclidean distance to find nearest neighbors. | |
(default: :obj:`False`) | |
num_workers (int): Number of workers to use for computation. Has no | |
effect in case :obj:`batch` is not :obj:`None`, or the input lies | |
on the GPU. (default: :obj:`1`) | |
:rtype: :class:`LongTensor` | |
.. code-block:: python | |
import torch | |
from torch_cluster import knn_graph | |
x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]]) | |
batch = torch.tensor([0, 0, 0, 0]) | |
edge_index = knn_graph(x, k=2, batch=batch, loop=False) | |
""" | |
assert flow in ['source_to_target', 'target_to_source'] | |
K = k if loop else k + 1 | |
start = 0 if loop else 1 | |
index_dists = select_knn(x, K, batch) # select_knn is always in "loop" mode | |
neighbours, edge_dists = index_dists[0], index_dists[1] | |
sources = torch.arange(neighbours.shape[0], device=neighbours.device)[:, None].expand(-1, k).contiguous().view(-1) | |
targets = neighbours[:,start:].contiguous().view(-1) | |
edge_index = torch.cat([sources[None, :], targets[None, :]], dim = 0) | |
if flow == 'source_to_target': | |
row, col = edge_index[1], edge_index[0] | |
else: | |
row, col = edge_index[0], edge_index[1] | |
if not loop: | |
mask = row != col | |
row, col = row[mask], col[mask] | |
return torch.stack([row, col], dim=0) | |
class SelectKnn(torch.autograd.Function): | |
def forward(ctx, ): | |
pass |