jetclustering / src /layers /select_knn.py
gregorkrzmanc's picture
.
e75a247
raw
history blame
4.67 kB
from typing import Optional, Tuple
import torch
@torch.jit.script
def select_knn(x: torch.Tensor,
k: int,
batch_x: Optional[torch.Tensor] = None,
inmask: Optional[torch.Tensor] = None,
max_radius: float = 1e9,
mask_mode: int = 1) -> Tuple[torch.Tensor, torch.Tensor]:
r"""Finds for each element in :obj:`x` the :obj:`k` nearest points in
:obj:`x`.
Args:
x (Tensor): Node feature matrix
:math:`\mathbf{X} \in \mathbb{R}^{N \times F}`.
k (int): The number of neighbors.
batch_x (LongTensor, optional): Batch vector
:math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each
node to a specific example. :obj:`batch_x` needs to be sorted.
(default: :obj:`None`)
max_radius (float): Maximum distance to nearest neighbours. (default: :obj:`1e9`)
mask_mode (int): ??? (default: :obj:`1`)
:rtype: :class:`Tuple`[`LongTensor`,`FloatTensor`]
.. code-block:: python
import torch
from torch_cmspepr import select_knn
x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])
batch_x = torch.tensor([0, 0, 0, 0])
assign_index = select_knn(x, 2, batch_x)
"""
x = x.view(-1, 1) if x.dim() == 1 else x
x = x.contiguous()
mask: torch.Tensor = torch.ones(x.shape[0], dtype=torch.int32, device=x.device)
if inmask is not None:
mask = inmask
row_splits: torch.Tensor = torch.tensor([0, x.shape[0]], dtype=torch.int32, device=x.device)
if batch_x is not None:
assert x.size(0) == batch_x.numel()
batch_size = int(batch_x.max()) + 1
deg = x.new_zeros(batch_size, dtype=torch.long)
deg.scatter_add_(0, batch_x, torch.ones_like(batch_x))
ptr_x = deg.new_zeros(batch_size + 1)
torch.cumsum(deg, 0, out=ptr_x[1:])
return torch.ops.torch_cmspepr.select_knn(
x,
row_splits,
mask,
k,
max_radius,
mask_mode,
)
@torch.jit.script
def knn_graph(x: torch.Tensor, k: int, batch: Optional[torch.Tensor] = None,
loop: bool = False, flow: str = 'source_to_target',
cosine: bool = False, num_workers: int = 1) -> torch.Tensor:
r"""Computes graph edges to the nearest :obj:`k` points.
Args:
x (Tensor): Node feature matrix
:math:`\mathbf{X} \in \mathbb{R}^{N \times F}`.
k (int): The number of neighbors.
batch (LongTensor, optional): Batch vector
:math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each
node to a specific example. :obj:`batch` needs to be sorted.
(default: :obj:`None`)
loop (bool, optional): If :obj:`True`, the graph will contain
self-loops. (default: :obj:`False`)
flow (string, optional): The flow direction when used in combination
with message passing (:obj:`"source_to_target"` or
:obj:`"target_to_source"`). (default: :obj:`"source_to_target"`)
cosine (boolean, optional): If :obj:`True`, will use the Cosine
distance instead of Euclidean distance to find nearest neighbors.
(default: :obj:`False`)
num_workers (int): Number of workers to use for computation. Has no
effect in case :obj:`batch` is not :obj:`None`, or the input lies
on the GPU. (default: :obj:`1`)
:rtype: :class:`LongTensor`
.. code-block:: python
import torch
from torch_cluster import knn_graph
x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])
batch = torch.tensor([0, 0, 0, 0])
edge_index = knn_graph(x, k=2, batch=batch, loop=False)
"""
assert flow in ['source_to_target', 'target_to_source']
K = k if loop else k + 1
start = 0 if loop else 1
index_dists = select_knn(x, K, batch) # select_knn is always in "loop" mode
neighbours, edge_dists = index_dists[0], index_dists[1]
sources = torch.arange(neighbours.shape[0], device=neighbours.device)[:, None].expand(-1, k).contiguous().view(-1)
targets = neighbours[:,start:].contiguous().view(-1)
edge_index = torch.cat([sources[None, :], targets[None, :]], dim = 0)
if flow == 'source_to_target':
row, col = edge_index[1], edge_index[0]
else:
row, col = edge_index[0], edge_index[1]
if not loop:
mask = row != col
row, col = row[mask], col[mask]
return torch.stack([row, col], dim=0)
class SelectKnn(torch.autograd.Function):
@staticmethod
def forward(ctx, ):
pass