gregorkrzmanc's picture
.
e75a247
raw
history blame
47.6 kB
import fastjet
import os
import copy
import json
import numpy as np
import awkward as ak
import torch.utils.data
import time
import pickle
from collections import OrderedDict
from functools import partial
from concurrent.futures.thread import ThreadPoolExecutor
from src.logger.logger import _logger, warn_once
from src.data.tools import _pad, _repeat_pad, _clip, _pad_vector
from src.data.fileio import _read_files
from src.data.config import DataConfig, _md5
from src.data.preprocess import (
_apply_selection,
_build_new_variables,
_build_weights,
AutoStandardizer,
WeightMaker,
)
from src.dataset.functions_data import to_tensor
from src.layers.object_cond import calc_eta_phi
from torch_scatter import scatter_sum
from src.dataset.functions_graph import (create_graph, create_jets_outputs,
create_jets_outputs_new, create_jets_outputs_Delphes, create_jets_outputs_Delphes2)
from src.dataset.functions_data import Event, EventCollection, EventJets
from src.utils.utils import CPU_Unpickler
from src.dataset.functions_data import EventPFCands, concat_event_collection
def get_pseudojets_fastjet(pfcands):
pseudojets = []
for i in range(len(pfcands)):
pseudojets.append(fastjet.PseudoJet(pfcands.pxyz[i, 0].item(), pfcands.pxyz[i, 1].item(), pfcands.pxyz[i, 2].item(), pfcands.E[i].item()))
return pseudojets
def _finalize_inputs(table, data_config):
# transformation
output = {}
# transformation
for k, params in data_config.preprocess_params.items():
if data_config._auto_standardization and params["center"] == "auto":
raise ValueError("No valid standardization params for %s" % k)
# if params["center"] is not None:
# table[k] = (table[k] - params["center"]) * params["scale"]
if params["length"] is not None:
# if k == "hit_genlink":
# pad_fn = partial(_pad_vector, value=-1)
# table[k] = pad_fn(table[k])
# else:
pad_fn = partial(_pad, value=0)
table[k] = pad_fn(table[k], params["length"])
# stack variables for each input group
for k, names in data_config.input_dicts.items():
if (
len(names) == 1
and data_config.preprocess_params[names[0]]["length"] is None
):
output["_" + k] = ak.to_numpy(ak.values_astype(table[names[0]], "float32"))
else:
output["_" + k] = ak.to_numpy(
np.stack(
[ak.to_numpy(table[n]).astype("float32") for n in names], axis=1
)
)
# copy monitor variables
for k in data_config.z_variables:
if k not in output:
output[k] = ak.to_numpy(table[k])
return output
def _padlabel(table, _data_config):
for k in _data_config.label_value:
pad_fn = partial(_pad, value=0)
table[k] = pad_fn(table[k], 400)
return table
def _preprocess(table, data_config, options):
# apply selection
table = _apply_selection(
table,
data_config.selection
if options["training"]
else data_config.test_time_selection,
)
if len(table) == 0:
return []
# table = _padlabel(table,data_config)
# define new variables
table = _build_new_variables(table, data_config.var_funcs)
# else:
indices = np.arange(
len(table[table.fields[0]])
) # np.arange(len(table[data_config.label_names[0]]))
# shuffle
if options["shuffle"]:
np.random.shuffle(indices)
# perform input variable standardization, clipping, padding and stacking
table = _finalize_inputs(table, data_config)
return table, indices
def _load_next(data_config, filelist, load_range, options):
table = _read_files(
filelist, data_config.load_branches, load_range, treename=data_config.treename
)
table, indices = _preprocess(table, data_config, options)
return table, indices
class _SimpleIter(object):
r"""_SimpleIter
Iterator object for ``SimpleIterDataset''.
"""
def __init__(self, **kwargs):
# inherit all properties from SimpleIterDataset
self.__dict__.update(**kwargs)
self.iter_count = 0 # to raise StopIteration when dataset_cap is reached
if "dataset_cap" in kwargs and kwargs["dataset_cap"] is not None:
self.dataset_cap = kwargs["dataset_cap"]
self._sampler_options["shuffle"] = False
print("!!! Dataset_cap flag set, disabling shuffling")
else:
self.dataset_cap = None
# executor to read files and run preprocessing asynchronously
self.executor = ThreadPoolExecutor(max_workers=1) if self._async_load else None
# init: prefetch holds table and indices for the next fetch
self.prefetch = None
self.table = None
self.indices = []
self.cursor = 0
self._seed = None
worker_info = torch.utils.data.get_worker_info()
file_dict = self._init_file_dict.copy()
if worker_info is not None:
# in a worker process
self._name += "_worker%d" % worker_info.id
self._seed = worker_info.seed & 0xFFFFFFFF
np.random.seed(self._seed)
# split workload by files
new_file_dict = {}
for name, files in file_dict.items():
new_files = files[worker_info.id :: worker_info.num_workers]
assert len(new_files) > 0
new_file_dict[name] = new_files
file_dict = new_file_dict
self.worker_file_dict = file_dict
self.worker_filelist = sum(file_dict.values(), [])
self.worker_info = worker_info
self.restart()
def restart(self):
print("=== Restarting DataIter %s, seed=%s ===" % (self._name, self._seed))
# re-shuffle filelist and load range if for training
filelist = self.worker_filelist.copy()
if self._sampler_options["shuffle"]:
np.random.shuffle(filelist)
if self._file_fraction < 1:
num_files = int(len(filelist) * self._file_fraction)
filelist = filelist[:num_files]
self.filelist = filelist
if self._init_load_range_and_fraction is None:
self.load_range = (0, 1)
else:
(start_pos, end_pos), load_frac = self._init_load_range_and_fraction
interval = (end_pos - start_pos) * load_frac
if self._sampler_options["shuffle"]:
offset = np.random.uniform(start_pos, end_pos - interval)
self.load_range = (offset, offset + interval)
else:
self.load_range = (start_pos, start_pos + interval)
_logger.debug(
"Init iter [%d], will load %d (out of %d*%s=%d) files with load_range=%s:\n%s",
0 if self.worker_info is None else self.worker_info.id,
len(self.filelist),
len(sum(self._init_file_dict.values(), [])),
self._file_fraction,
int(len(sum(self._init_file_dict.values(), [])) * self._file_fraction),
str(self.load_range),
)
# '\n'.join(self.filelist[: 3]) + '\n ... ' + self.filelist[-1],)
_logger.info(
"Restarted DataIter %s, load_range=%s, file_list:\n%s"
% (
self._name,
str(self.load_range),
json.dumps(self.worker_file_dict, indent=2),
)
)
# reset file fetching cursor
self.ipos = 0 if self._fetch_by_files else self.load_range[0]
# prefetch the first entry asynchronously
self._try_get_next(init=True)
def __next__(self):
# print(self.ipos, self.cursor)
graph_empty = True
self.iter_count += 1
if self.dataset_cap is not None and self.iter_count > self.dataset_cap:
raise StopIteration
while graph_empty:
if len(self.filelist) == 0:
raise StopIteration
try:
i = self.indices[self.cursor]
except IndexError:
# case 1: first entry, `self.indices` is still empty
# case 2: running out of entries, `self.indices` is not empty
while True:
if self._in_memory and len(self.indices) > 0:
# only need to re-shuffle the indices, if this is not the first entry
if self._sampler_options["shuffle"]:
np.random.shuffle(self.indices)
break
if self.prefetch is None:
# reaching the end as prefetch got nothing
self.table = None
if self._async_load:
self.executor.shutdown(wait=False)
raise StopIteration
# get result from prefetch
if self._async_load:
self.table, self.indices = self.prefetch.result()
else:
self.table, self.indices = self.prefetch
# try to load the next ones asynchronously
self._try_get_next()
# check if any entries are fetched (i.e., passing selection) -- if not, do another fetch
if len(self.indices) > 0:
break
# reset cursor
self.cursor = 0
i = self.indices[self.cursor]
self.cursor += 1
data, graph_empty = self.get_data(i)
return data
def _try_get_next(self, init=False):
end_of_list = (
self.ipos >= len(self.filelist)
if self._fetch_by_files
else self.ipos >= self.load_range[1]
)
if end_of_list:
if init:
raise RuntimeError(
"Nothing to load for worker %d" % 0
if self.worker_info is None
else self.worker_info.id
)
if self._infinity_mode and not self._in_memory:
# infinity mode: re-start
self.restart()
return
else:
# finite mode: set prefetch to None, exit
self.prefetch = None
return
if self._fetch_by_files:
filelist = self.filelist[int(self.ipos) : int(self.ipos + self._fetch_step)]
load_range = self.load_range
else:
filelist = self.filelist
load_range = (
self.ipos,
min(self.ipos + self._fetch_step, self.load_range[1]),
)
# _logger.info('Start fetching next batch, len(filelist)=%d, load_range=%s'%(len(filelist), load_range))
if self._async_load:
self.prefetch = self.executor.submit(
_load_next,
self._data_config,
filelist,
load_range,
self._sampler_options,
)
else:
self.prefetch = _load_next(
self._data_config, filelist, load_range, self._sampler_options
)
self.ipos += self._fetch_step
def get_data(self, i):
# inputs
X = {k: self.table["_" + k][i].copy() for k in self._data_config.input_names}
if "EFlowPhoton" in X:
return create_jets_outputs_Delphes(X), False
elif "PFCands" in X:
# v2 config
return create_jets_outputs_Delphes2(X), False
return create_jets_outputs_new(X), False
class EventDatasetCollection(torch.utils.data.Dataset):
def __init__(self, dir_list, args, aug_soft=False, aug_collinear=False, shuffle_seed=10):
self.event_collections_dict = OrderedDict()
if args:
aug_soft = args.augment_soft_particles
else:
aug_soft=False
for dir in dir_list:
self.event_collections_dict[dir] = EventDataset.from_directory(dir, mmap=True, aug_soft=aug_soft or aug_soft, seed=0, aug_collinear=aug_collinear)
self.n_events = sum([x.n_events for x in self.event_collections_dict.values()])
evt_idx = np.arange(0, self.n_events) # now shuffle this using the shuffle_seed and a separate random generator
rng = np.random.default_rng(shuffle_seed)
rng.shuffle(evt_idx)
self.old_to_new_idx = evt_idx
self.event_thresholds = [x.n_events for x in self.event_collections_dict.values()]
self.event_thresholds = np.cumsum([0] + self.event_thresholds)
self.dir_list = dir_list
def __len__(self):
return self.n_events
def get_idx(self, i):
assert i < self.n_events, "Index out of bounds: %d >= %d" % (i, self.n_events)
for j in range(len(self.event_thresholds)-1):
threshold = self.event_thresholds[j]
if i >= threshold and i < self.event_thresholds[j+1]:
#print("-------------", i, threshold, self.event_thresholds, j, self.dir_list[j])
return self.event_collections_dict[self.dir_list[j]][i - threshold]
def getitem(self, i):
return self.get_idx(i)
def __iter__(self):
for i in range(self.n_events):
yield self.get_idx(self.old_to_new_idx[i])
def __getitem__(self, i):
assert i < self.n_events, "Index out of bounds: %d >= %d" % (i, self.n_events)
return self.get_idx(self.old_to_new_idx[i])
# A collection of EventDatasets.
# You should use a sampler together with this, as by default it just concatenates the EventDatasets together!
def get_batch_bounds(batch_idx):
# batch_idx: tensor of format [0,0,0,0,1,1,1...]
# returns tensor of format [0, 4, ...]
print("Batch idx", batch_idx.shape, batch_idx[(batch_idx>3130) & (batch_idx < 3140)])
batches = sorted(batch_idx.unique().tolist())
skipped = []
for i in range(batch_idx.max().int().item()):
if i not in batches:
skipped.append(i)
# reverse sort skipped
skipped = sorted(skipped, reverse=True)
result = torch.zeros(batch_idx.max().int().item() + 2 + len(skipped))
#for i, b in enumerate(batches):
# assert i == b
# result[i] = torch.where(batch_idx==b)[0].min()
# result[i+1] = torch.where(batch_idx==b)[0].max()
b_list = batch_idx.int().tolist()
prev = -1
for i, b in enumerate(b_list):
if b != prev:
result[b] = i
prev = b
result[-1] = len(b_list)
print("skipped", skipped)
for s in skipped:
if s == 0:
result[s] = 0
else:
result[s] = result[s+1]
print("result", result.shape, result[3130:3140].tolist())
return result
def filter_pfcands(pfcands):
# filter the GenParticles so that dark matter particles are not present
# dark matter particles are defined as those with abs(pdgId) > 10000 or pdgId between 50-60
# TODO: filter out high eta - temporarily this is done here, but it should be done in the ntuplizer in order to avoid big files
mask = (torch.abs(pfcands.pid) < 10000) & ((torch.abs(pfcands.pid) < 50) | (torch.abs(pfcands.pid) > 60)) & (torch.abs(pfcands.eta) < 2.4) & (pfcands.pt > 0.5) #& (pfcands.pt > 0.5)
pfcands.mask(mask)
return pfcands
class EventDataset(torch.utils.data.Dataset):
@staticmethod
def from_directory(dir, mmap=True, model_clusters_file=None, model_output_file=None, include_model_jets_unfiltered=False, fastjet_R=None, parton_level=False, gen_level=False, aug_soft=False, seed=0, aug_collinear=False, pt_jet_cutoff=100):
result = {}
for file in os.listdir(dir):
if file == "metadata.pkl":
metadata = pickle.load(open(os.path.join(dir, file), "rb"))
else:
print("File:", file)
result[file.split(".")[0]] = np.load(
os.path.join(dir, file), mmap_mode="r" if mmap else None
)
dataset = EventDataset(result, metadata, model_clusters_file=model_clusters_file,
model_output_file=model_output_file,
include_model_jets_unfiltered=include_model_jets_unfiltered,
fastjet_R=fastjet_R, parton_level=parton_level, gen_level=gen_level, aug_soft=aug_soft,
seed=seed, aug_collinear=aug_collinear, pt_jet_cutoff=pt_jet_cutoff)
return dataset
def get_pfcands_key(self):
pfcands_key = "pfcands"
print("get_pfcands_key")
if self.gen_level:
return "final_gen_particles"
if self.parton_level:
return "final_parton_level_particles"
if self.model_output is None:
if self.gen_level:
return "final_gen_particles"
if self.parton_level:
return "final_parton_level_particles"
return pfcands_key # ignore
for i in [0, 1, 2]: # try the first three if it fits
start = {key: self.metadata[key + "_batch_idx"][i] for key in self.attrs}
end = {key: self.metadata[key + "_batch_idx"][i + 1] for key in self.attrs}
result = {key: self.events[key][start[key]:end[key]] for key in self.attrs}
result = {key: EventCollection.deserialize(result[key], batch_number=None, cls=Event.evt_collections[key])
for key in self.attrs}
if "final_parton_level_particles" in result:
result["final_parton_level_particles"] = filter_pfcands(result["final_parton_level_particles"])
if "final_gen_particles" in result:
result["final_gen_particles"] = filter_pfcands(result["final_gen_particles"])
event_filter_s, event_filter_e = self.model_output["event_idx_bounds"][i].int().item(), \
self.model_output["event_idx_bounds"][i + 1].int().item()
diff = event_filter_e - event_filter_s
if diff != len(result["pfcands"]):
if diff == len(result["final_parton_level_particles"]):
pfcands_key = "final_parton_level_particles"
break
if diff == len(result["final_gen_particles"]):
pfcands_key = "final_gen_particles"
break
print("Found pfcands_key=%s" % pfcands_key)
return pfcands_key
def __init__(self, events, metadata, model_clusters_file=None, model_output_file=None, include_model_jets_unfiltered=False, fastjet_R=None, parton_level=False, gen_level=False, aug_soft=False, seed=0, aug_collinear=False, pt_jet_cutoff=100):
# events: serialized events dict
# metadata: dict with metadata
self.events = events
self.n_events = metadata["n_events"]
self.attrs = metadata["attrs"]
self.metadata = metadata
self.include_model_jets_unfiltered = include_model_jets_unfiltered
self.model_i = 0
self.parton_level = parton_level
self.gen_level = gen_level
self.augment_soft_particles = aug_soft
self.aug_collinear = aug_collinear
self.seed = seed
self.pt_jet_cutoff = pt_jet_cutoff
#self.pfcands_key = "pfcands"
# set to final_parton_level_particles or final_gen_particles in case needed
#for key in self.attrs:
# self.evt_idx_to_batch_idx[key] = {}
if model_output_file is not None:
if type(model_output_file) == str:
self.model_output = CPU_Unpickler(open(model_output_file, "rb")).load()
else:
self.model_output = model_output_file
self.model_output["event_idx_bounds"] = get_batch_bounds(self.model_output["event_idx"])
self.n_events = self.model_output["event_idx"].max().int().item() # sometimes the last batch gets cut off, which causes problems
if model_clusters_file is not None:
self.model_clusters = to_tensor(pickle.load((open(model_clusters_file, "rb"))))
else:
self.model_clusters = self.model_output["model_cluster"]
# model_output["batch_idx"] contains the batch index for each event. model_clusters is an array of the model labels for each event.
else:
self.model_output = None
self.model_clusters = None
if fastjet_R is not None:
self.fastjet_jetdef = {r: fastjet.JetDefinition(fastjet.antikt_algorithm, r) for r in fastjet_R}
## fastjet_R is an array of radiuses for which to compute that
self.pfcands_key = self.get_pfcands_key()
def __len__(self):
return self.n_events
# def __next__(self):
def add_model_output(self, model_output):
if model_output is not None:
if type(model_output) == str:
self.model_output = CPU_Unpickler(open(model_output, "rb")).load()
else:
self.model_output = model_output
self.model_output["event_idx_bounds"] = get_batch_bounds(self.model_output["event_idx"])
self.n_events = self.model_output["event_idx"].max().int().item() # sometimes the last batch gets cut off, which causes problems
self.model_clusters = self.model_output["model_cluster"]
# model_output["batch_idx"] contains the batch index for each event. model_clusters is an array of the model labels for each event.
else:
self.model_output = None
self.model_clusters = None
@staticmethod
def pfcands_add_soft_particles(pfcands, n_soft, random_generator, add_original_particle_mapping=False):
# augment the dataset with soft particles
eta_bounds = [-2.4, 2.4]
phi_bounds = [-3.14, 3.14]
#pt_bounds = [0.02, 0.5]
# choose random eta and phi
# use the random generator for eta, phi
eta = random_generator.uniform(eta_bounds[0], eta_bounds[1], n_soft).astype(np.double)
phi = random_generator.uniform(phi_bounds[0], phi_bounds[1], n_soft).astype(np.double)
#pt = random_generator.uniform(pt_bounds[0], pt_bounds[1], n_soft).astype(np.double)
pt = np.ones(n_soft).astype(np.double) * 1e-2
charge = np.zeros(n_soft).astype(np.double)
pid = np.zeros(n_soft).astype(np.double)
mass = np.zeros(n_soft).astype(np.double)
if hasattr(pfcands, "status"):
status = np.zeros(n_soft)
soft_pfcands = EventPFCands(pt, eta, phi, mass, charge, pid, pf_cand_jet_idx=-1 * torch.ones(n_soft), status=status)
else:
soft_pfcands = EventPFCands(pt, eta, phi, mass, charge, pid, pf_cand_jet_idx=-1*torch.ones(n_soft))
soft_pfcands.original_particle_mapping = torch.tensor([-1] * len(soft_pfcands))
pfcandsc = copy.deepcopy(pfcands)
pfcandsc.original_particle_mapping = torch.arange(len(pfcands))
pfcandsc = concat_event_collection([pfcandsc, soft_pfcands], nobatch=1)
if not add_original_particle_mapping:
pfcandsc.original_particle_mapping = torch.arange(len(pfcandsc)) # For now, ignore the soft particles
#print("Original PM:", pfcandsc.original_particle_mapping.max())
return pfcandsc
@staticmethod
def pfcands_split_particles(pfcands, random_generator):
# Augment the dataset by spliting the harder particles
# 5 highest pt particles
k = min(5, len(pfcands))
highest_pt_idx = torch.topk(pfcands.pt, k)[1]
weights = pfcands.pt[highest_pt_idx]
# Pick a random particle to split according to weights
n_to_split = random_generator.randint(0, k)
#idx = random_generator.choice(highest_pt_idx, p=weights / weights.sum())
indices = highest_pt_idx[:n_to_split]
pfcandsc = copy.deepcopy(pfcands)
pfcandsc.original_particle_mapping = torch.arange(len(pfcands))
# assert that indices are all lower than len(pfcands)
if not torch.all(indices < len(pfcands)):
print("Indices:", indices)
print("PFCands:", pfcands.pt)
print("PFCands len:", len(pfcands.pt))
raise ValueError("Indices are out of bounds")
for idx in indices:
split_into = random_generator.randint(2, 5)
# split the particle into
eta = pfcands.eta[idx]
phi = pfcands.phi[idx]
pt = pfcands.pt[idx] / split_into
charge = pfcands.charge[idx]
mass = 0
pid = pfcands.pid[idx]
colinear_pfcands = EventPFCands(pt=[pt], eta=[eta], phi=[phi], mass=[mass], charge=[charge], pid=[pid], pf_cand_jet_idx=[pfcands.pf_cand_jet_idx[idx]], original_particle_mapping=[idx])
#pfcandsc.original_particle_mapping[idx] = idx
pfcandsc.pt[idx] = pt
for _ in range(split_into-1):
pfcandsc = concat_event_collection([pfcandsc, colinear_pfcands], nobatch=1)
if pfcandsc.original_particle_mapping.max() >= len(pfcands):
#print("Original PM:", pfcandsc.original_particle_mapping.max(), "len pfcands", len(pfcands))
raise ValueError("Original particle mapping is out of bounds")
return pfcandsc
def get_idx(self, i):
#print("Getting idx", i)
start = {key: self.metadata[key + "_batch_idx"][i] for key in self.attrs}
end = {key: self.metadata[key + "_batch_idx"][i + 1] for key in self.attrs}
result = {key: self.events[key][start[key]:end[key]] for key in self.attrs}
result = {key: EventCollection.deserialize(result[key], batch_number=None, cls=Event.evt_collections[key]) for
key in self.attrs}
result["pfcands"] = filter_pfcands(result["pfcands"])
if "final_parton_level_particles" in result:
#print("i=", i)
#print("BEFORE:", len(result["final_parton_level_particles"]))
result["final_parton_level_particles"] = filter_pfcands(result["final_parton_level_particles"])
#print("AFTER:", len(result["final_parton_level_particles"]))
#print("------")
if "final_gen_particles" in result:
result["final_gen_particles"] = filter_pfcands(result["final_gen_particles"])
## augment pfcands here
if self.augment_soft_particles:
random_generator = np.random.RandomState(seed=i + self.seed)
#n_soft = int(random_generator.uniform(10, 1000))
n_soft = 500
#n_soft = 1000
result["pfcands"] = EventDataset.pfcands_add_soft_particles(result["pfcands"], n_soft, random_generator)
if "final_parton_level_particles" in result:
result["final_parton_level_particles"] = EventDataset.pfcands_add_soft_particles(result["final_parton_level_particles"], n_soft, random_generator) # Also augment parton-level event for testing
if "final_gen_particles" in result:
result["final_gen_particles"] = EventDataset.pfcands_add_soft_particles(result["final_gen_particles"], n_soft, random_generator)
else:
result["pfcands"].original_particle_mapping = torch.arange(len(result["pfcands"].pt))
if self.aug_collinear:
random_generator = np.random.RandomState(seed=i + self.seed)
if i % 2: # Every second one:
result["pfcands"] = EventDataset.pfcands_split_particles(result["pfcands"], random_generator)
if "final_parton_level_particles" in result:
result["final_parton_level_particles"] = EventDataset.pfcands_split_particles(
result["final_parton_level_particles"], random_generator
)
# Also augment parton-level event for testing
if "final_gen_particles" in result:
result["final_gen_particles"] = EventDataset.pfcands_split_particles(result["final_gen_particles"], random_generator)
else:
n_soft = 500
result["pfcands"] = EventDataset.pfcands_add_soft_particles(result["pfcands"], n_soft, random_generator,
add_original_particle_mapping=True)
if "final_parton_level_particles" in result:
result["final_parton_level_particles"] = EventDataset.pfcands_add_soft_particles(
result["final_parton_level_particles"], n_soft, random_generator, add_original_particle_mapping=True
)
# Also augment parton-level event for testing
if "final_gen_particles" in result:
result["final_gen_particles"] = EventDataset.pfcands_add_soft_particles(
result["final_gen_particles"],
n_soft,
random_generator,
add_original_particle_mapping=True
)
if self.model_output is not None:
#if "final_parton_level_particles" in result and len(result["final_parton_level_particles"]) == 0:
# print("!!")
# return None
result["model_jets"], bc_scores_pfcands, bc_labels_pfcands = self.get_model_jets(i, pfcands=result[self.pfcands_key], include_target=1, dq=result["matrix_element_gen_particles"])
result[self.pfcands_key].bc_scores_pfcands = bc_scores_pfcands
result[self.pfcands_key].bc_labels_pfcands = bc_labels_pfcands
if self.include_model_jets_unfiltered:
result["model_jets_unfiltered"], _, _ = self.get_model_jets(i, pfcands=result[self.pfcands_key], filter=False)
if hasattr(self, "fastjet_jetdef") and self.fastjet_jetdef is not None:
if self.gen_level:
result["fastjet_jets"] = {key: EventDataset.get_fastjet_jets(result, self.fastjet_jetdef[key], key="final_gen_particles", pt_cutoff=self.pt_jet_cutoff) for key in self.fastjet_jetdef}
elif self.parton_level:
result["fastjet_jets"] = {key: EventDataset.get_fastjet_jets(result, self.fastjet_jetdef[key], key="final_parton_level_particles", pt_cutoff=self.pt_jet_cutoff) for key in self.fastjet_jetdef}
else:
result["fastjet_jets"] = {key: EventDataset.get_fastjet_jets(result, self.fastjet_jetdef[key], key="pfcands", pt_cutoff=self.pt_jet_cutoff) for key
in self.fastjet_jetdef}
if "genjets" in result:
result["genjets"] = EventDataset.mask_jets(result["genjets"])
evt = Event(**result)
assert evt.pfcands.original_particle_mapping.max() < len(evt.pfcands.pt), "Original particle mapping is out of bounds: " + str(evt.original_particle_mapping.max()) + " >= " + str(len(evt.pfcands.pt))
return evt
@staticmethod
def get_target_obj_score(clusters_eta, clusters_phi, clusters_pt, event_idx_clusters, dq_eta, dq_phi, dq_event_idx):
# return the target scores for each cluster (reteurns list of 1's and 0's)
# dq_coords: list of [eta, phi] for each dark quark
# dq_event_idx: list of event_idx for each dark quarks
target = []
for event in event_idx_clusters.unique():
filt = event_idx_clusters == event
clusters = torch.stack([clusters_eta[filt], clusters_phi[filt], clusters_pt[filt]], dim=1)
dq_coords_event = torch.stack([dq_eta[dq_event_idx == event], dq_phi[dq_event_idx == event]], dim=1)
dist_matrix = torch.cdist(
dq_coords_event,
clusters[:, :2].to(dq_coords_event.device),
p=2
).T
if len(dist_matrix) == 0:
target.append(torch.zeros(len(clusters)).int().to(dist_matrix.device))
continue
closest_quark_dist, closest_quark_idx = dist_matrix.min(dim=1)
closest_quark_idx[closest_quark_dist > 0.8] = -1
target.append((closest_quark_idx != -1).float())
if len(target):
return torch.cat(target).flatten()
return torch.tensor([])
@staticmethod
def mask_jets(jets, cutoff=100):
mask = jets.pt >= cutoff
return EventJets(jets.pt[mask], jets.eta[mask], jets.phi[mask], jets.mass[mask])
@staticmethod
def get_model_jets_static(i, pfcands, model_output, model_clusters):
event_filter_s, event_filter_e = model_output["event_idx_bounds"][i].int().item(), model_output["event_idx_bounds"][i + 1].int().item()
pfcands_pt = pfcands.pt
pfcands_pxyz = pfcands.pxyz
pfcands_E = pfcands.E
#assert len(pfcands_pt) == event_filter_e - event_filter_s, "Error!, len(pfcands_pt)==%d, event_filter_e-event_filter_s=%d" % (len(pfcands_pt), event_filter_e - event_filter_s)
if not len(pfcands_pt) == event_filter_e - event_filter_s:
return None
# jets_pt = scatter_sum(to_tensor(pfcands_pt), self.model_clusters[event_filter] + 1, dim=0)[1:]
jets_pxyz = scatter_sum(to_tensor(pfcands_pxyz), model_clusters[event_filter_s:event_filter_e] + 1, dim=0)[1:]
jets_pt = torch.norm(jets_pxyz[:, :2], p=2, dim=-1)
jets_eta, jets_phi = calc_eta_phi(jets_pxyz, False)
# jets_mass = torch.zeros_like(jets_eta)
jets_E = scatter_sum(to_tensor(pfcands_E), model_clusters[event_filter_s:event_filter_e] + 1, dim=0)[1:]
jets_mass = torch.sqrt(jets_E ** 2 - jets_pxyz.norm(dim=-1) ** 2)
cluster_labels = model_clusters[event_filter_s:event_filter_e]
bc_scores = model_output["pred"][event_filter_s:event_filter_e, -1]
cutoff = 100
mask = jets_pt >= cutoff
return EventJets(jets_pt[mask], jets_eta[mask], jets_phi[mask], jets_mass[mask])
@staticmethod
def get_jets_fastjets_raw_with_assignment(pfcands, jetdef, pt_cutoff=100):
pt = []
eta = []
phis = []
mass = []
particle_to_jet = {} # this will map particle_idx -> jet_idx
array = get_pseudojets_fastjet(pfcands)
for idx, pseudojet in enumerate(array):
pseudojet.set_user_index(idx)
cluster = fastjet.ClusterSequence(array, jetdef)
inc_jets = cluster.inclusive_jets()
jet_idx = 0
for elem in inc_jets:
if elem.pt() < pt_cutoff:
continue
# print("pt:", elem.pt(), "eta:", elem.rap(), "phi:", elem.phi())ž
pt.append(elem.pt())
eta.append(elem.rap())
phi = elem.phi()
if phi > np.pi:
phi -= 2 * np.pi
phis.append(phi)
mass.append(elem.m())
# Get constituents of this jet
constituents = cluster.constituents(elem)
for constituent in constituents:
particle_idx = constituent.user_index()
particle_to_jet[particle_idx] = jet_idx
jet_idx += 1
return pt, eta, phis, mass, particle_to_jet
@staticmethod
def get_jets_fastjets_raw(pfcands, jetdef, pt_cutoff=100):
pt = []
eta = []
phis = []
mass = []
array = get_pseudojets_fastjet(pfcands)
cluster = fastjet.ClusterSequence(array, jetdef)
inc_jets = cluster.inclusive_jets()
for elem in inc_jets:
if elem.pt() < pt_cutoff:
continue
# print("pt:", elem.pt(), "eta:", elem.rap(), "phi:", elem.phi())ž
pt.append(elem.pt())
eta.append(elem.rap())
phi = elem.phi()
if phi > np.pi:
phi -= 2 * np.pi
phis.append(phi)
mass.append(elem.m())
return pt, eta, phis, mass
@staticmethod
def get_fastjet_jets_with_assignment(event, jetdef, key="pfcands", pt_cutoff=100):
if type(event) == dict:
k = event[key]
else:
k = getattr(event, key)
pt, eta, phi, m, assignment = EventDataset.get_jets_fastjets_raw_with_assignment(k, jetdef, pt_cutoff=pt_cutoff)
return EventJets(torch.tensor(pt), torch.tensor(eta), torch.tensor(phi), torch.tensor(m)), assignment
@staticmethod
def get_fastjet_jets(event, jetdef, key="pfcands", pt_cutoff=100):
if type(event) == dict:
k = event[key]
else:
k = getattr(event, key)
pt, eta, phi, m = EventDataset.get_jets_fastjets_raw(k, jetdef, pt_cutoff=pt_cutoff)
return EventJets(torch.tensor(pt), torch.tensor(eta), torch.tensor(phi), torch.tensor(m))
def get_model_jets(self, i, pfcands, filter=True, dq=None, include_target=False):
event_filter_s, event_filter_e = self.model_output["event_idx_bounds"][i].int().item(), self.model_output["event_idx_bounds"][i+1].int().item()
pfcands_pt = pfcands.pt
pfcands_pxyz = pfcands.pxyz
pfcands_E = pfcands.E
obj_score = None
#print("Len pfcands_pt", len(pfcands_pt), "event_filter_e", event_filter_e, "event_filter_s", event_filter_s)
if len(pfcands_pt) == 0:
return EventJets(torch.tensor([]), torch.tensor([]), torch.tensor([]) ,torch.tensor([])), None, None
assert len(pfcands_pt) == event_filter_e - event_filter_s, "Error! filter={} len(pfcands_pt)={} event_filter_e={} event_filter_s={}".format(filter, len(pfcands_pt), event_filter_e, event_filter_s)
#jets_pt = scatter_sum(to_tensor(pfcands_pt), self.model_clusters[event_filter] + 1, dim=0)[1:]
jets_pxyz = scatter_sum(to_tensor(pfcands_pxyz), self.model_clusters[event_filter_s:event_filter_e] + 1, dim=0)[1:]
jets_pt = torch.norm(jets_pxyz[:, :2], p=2, dim=-1)
jets_eta, jets_phi = calc_eta_phi(jets_pxyz, False)
#jets_mass = torch.zeros_like(jets_eta)
jets_E = scatter_sum(to_tensor(pfcands_E), self.model_clusters[event_filter_s:event_filter_e] + 1, dim=0)[1:]
jets_mass = torch.sqrt(jets_E**2 - jets_pxyz.norm(dim=-1)**2)
cluster_labels = self.model_clusters[event_filter_s:event_filter_e]
bc_scores = self.model_output["pred"][event_filter_s:event_filter_e, -1]
if "obj_score_pred" in self.model_output and not torch.is_tensor(self.model_output["obj_score_pred"]):
self.model_output["obj_score_pred"] = torch.cat(self.model_output["obj_score_pred"])
print("Concatenated obj_score_pred")
target_obj_score = None
if filter:
cutoff = self.pt_jet_cutoff
mask = jets_pt >= cutoff
if "obj_score_pred" in self.model_output:
obj_score = self.model_output["obj_score_pred"][(self.model_output["event_clusters_idx"] == i)]
#print("Jets pt", jets_pt, "obj score", obj_score)
assert len(obj_score) == len(jets_pt), "Error! len(obj_score)=%d, len(jets_pt)=%d" % (
len(obj_score), len(jets_pt))
if include_target:
target_obj_score = EventDataset.get_target_obj_score(jets_eta, jets_phi, jets_pt, torch.zeros(jets_pt.size(0)), dq.eta, dq.phi, torch.zeros(dq.eta.size(0)))
else:
mask = torch.ones_like(jets_pt, dtype=torch.bool)
if obj_score is not None:
obj_score = obj_score[mask]
assert len(jets_pt[mask]) == len(obj_score), "Error! len(jets_pt[mask])=%d, len(obj_score)=%d" % (len(jets_pt[mask]), len(obj_score))
if target_obj_score is not None:
target_obj_score = target_obj_score[mask]
assert len(jets_pt[mask]) == len(target_obj_score), "Error! len(jets_pt[mask])=%d, len(obj_score)=%d" % (len(jets_pt[mask]), len(obj_score))
return EventJets(jets_pt[mask], jets_eta[mask], jets_phi[mask], jets_mass[mask], obj_score=obj_score, target_obj_score=target_obj_score), bc_scores, cluster_labels
def get_iter(self):
self.i = 0
while self.i < self.n_events:
yield self.get_idx(self.i)
self.i += 1
def __iter__(self):
return self.get_iter()
def __getitem__(self, i):
assert i < self.n_events, "Index out of bounds: %d >= %d" % (i, self.n_events)
return self.get_idx(i)
class SimpleIterDataset(torch.utils.data.IterableDataset):
r"""Base IterableDataset.
Handles dataloading.
Arguments:
file_dict (dict): dictionary of lists of files to be loaded.
data_config_file (str): YAML file containing data format information.
for_training (bool): flag indicating whether the dataset is used for training or testing.
When set to ``True``, will enable shuffling and sampling-based reweighting.
When set to ``False``, will disable shuffling and reweighting, but will load the observer variables.
load_range_and_fraction (tuple of tuples, ``((start_pos, end_pos), load_frac)``): fractional range of events to load from each file.
E.g., setting load_range_and_fraction=((0, 0.8), 0.5) will randomly load 50% out of the first 80% events from each file (so load 50%*80% = 40% of the file).
fetch_by_files (bool): flag to control how events are retrieved each time we fetch data from disk.
When set to ``True``, will read only a small number (set by ``fetch_step``) of files each time, but load all the events in these files.
When set to ``False``, will read from all input files, but load only a small fraction (set by ``fetch_step``) of events each time.
Default is ``False``, which results in a more uniform sample distribution but reduces the data loading speed.
fetch_step (float or int): fraction of events (when ``fetch_by_files=False``) or number of files (when ``fetch_by_files=True``) to load each time we fetch data from disk.
Event shuffling and reweighting (sampling) is performed each time after we fetch data.
So set this to a large enough value to avoid getting an imbalanced minibatch (due to reweighting/sampling), especially when ``fetch_by_files`` set to ``True``.
Will load all events (files) at once if set to non-positive value.
file_fraction (float): fraction of files to load.
"""
def __init__(
self,
file_dict,
data_config_file,
for_training=True,
load_range_and_fraction=None,
extra_selection=None,
fetch_by_files=False,
fetch_step=0.01,
file_fraction=1,
remake_weights=False,
up_sample=True,
weight_scale=1,
max_resample=10,
async_load=True,
infinity_mode=False,
in_memory=False,
name="",
laplace=False,
edges=False,
diffs=False,
dataset_cap=None,
n_noise=0,
synthetic=False,
synthetic_npart_min=2,
synthetic_npart_max=5,
jets=False,
):
self._iters = {} if infinity_mode or in_memory else None
_init_args = set(self.__dict__.keys())
self._init_file_dict = file_dict
self._init_load_range_and_fraction = load_range_and_fraction
self._fetch_by_files = fetch_by_files
self._fetch_step = fetch_step
self._file_fraction = file_fraction
self._async_load = async_load
self._infinity_mode = infinity_mode
self._in_memory = in_memory
self._name = name
self.laplace = laplace
self.edges = edges
self.diffs = diffs
self.synthetic = synthetic
self.synthetic_npart_min = synthetic_npart_min
self.synthetic_npart_max = synthetic_npart_max
self.dataset_cap = dataset_cap # used to cap the dataset to some fixed number of events - used for debugging purposes
self.n_noise = n_noise
self.jets = jets
# ==== sampling parameters ====
self._sampler_options = {
"up_sample": up_sample,
"weight_scale": weight_scale,
"max_resample": max_resample,
}
if for_training:
self._sampler_options.update(training=True, shuffle=False, reweight=True)
else:
self._sampler_options.update(training=False, shuffle=False, reweight=False)
# discover auto-generated reweight file
if ".auto.yaml" in data_config_file:
data_config_autogen_file = data_config_file
else:
data_config_md5 = _md5(data_config_file)
data_config_autogen_file = data_config_file.replace(
".yaml", ".%s.auto.yaml" % data_config_md5
)
if os.path.exists(data_config_autogen_file):
data_config_file = data_config_autogen_file
_logger.info(
"Found file %s w/ auto-generated preprocessing information, will use that instead!"
% data_config_file
)
# load data config (w/ observers now -- so they will be included in the auto-generated yaml)
self._data_config = DataConfig.load(data_config_file)
if for_training:
# produce variable standardization info if needed
if self._data_config._missing_standardization_info:
s = AutoStandardizer(file_dict, self._data_config)
self._data_config = s.produce(data_config_autogen_file)
# produce reweight info if needed
# if self._sampler_options['reweight'] and self._data_config.weight_name and not self._data_config.use_precomputed_weights:
# if remake_weights or self._data_config.reweight_hists is None:
# w = WeightMaker(file_dict, self._data_config)
# self._data_config = w.produce(data_config_autogen_file)
# reload data_config w/o observers for training
if (
os.path.exists(data_config_autogen_file)
and data_config_file != data_config_autogen_file
):
data_config_file = data_config_autogen_file
_logger.info(
"Found file %s w/ auto-generated preprocessing information, will use that instead!"
% data_config_file
)
self._data_config = DataConfig.load(
data_config_file, load_observers=False, extra_selection=extra_selection
)
else:
self._data_config = DataConfig.load(
data_config_file,
load_reweight_info=False,
extra_test_selection=extra_selection,
)
# Derive all variables added to self.__dict__
self._init_args = set(self.__dict__.keys()) - _init_args
@property
def config(self):
return self._data_config
def __iter__(self):
if self._iters is None:
kwargs = {k: copy.deepcopy(self.__dict__[k]) for k in self._init_args}
return _SimpleIter(**kwargs)
else:
worker_info = torch.utils.data.get_worker_info()
worker_id = worker_info.id if worker_info is not None else 0
try:
return self._iters[worker_id]
except KeyError:
kwargs = {k: copy.deepcopy(self.__dict__[k]) for k in self._init_args}
self._iters[worker_id] = _SimpleIter(**kwargs)
return self._iters[worker_id]