Spaces:
Sleeping
Sleeping
import numpy as np | |
import torch | |
#from torch_scatter import scatter_add, scatter_sum | |
def get_ratios(e_hits, part_idx, y): | |
"""Obtain the percentage of energy of the particle present in the hits | |
Args: | |
e_hits (_type_): _description_ | |
part_idx (_type_): _description_ | |
y (_type_): _description_ | |
Returns: | |
_type_: _description_ | |
""" | |
energy_from_showers = scatter_sum(e_hits, part_idx.long(), dim=0) | |
# y_energy = y[:, 3] | |
y_energy = y.E | |
energy_from_showers = energy_from_showers[1:] | |
assert len(energy_from_showers) > 0 | |
return (energy_from_showers.flatten() / y_energy).tolist() | |
def get_number_hits(e_hits, part_idx): | |
number_of_hits = scatter_sum(torch.ones_like(e_hits), part_idx.long(), dim=0) | |
return (number_of_hits[1:].flatten()).tolist() | |
def get_e_reco(e_hits, part_idx): | |
number_of_hits = scatter_sum(e_hits, part_idx.long(), dim=0) | |
return number_of_hits[1:].flatten() | |
def get_number_of_daughters(hit_type_feature, hit_particle_link, daughters): | |
a = hit_particle_link | |
b = daughters | |
a_u = torch.unique(a) | |
number_of_p = torch.zeros_like(a_u) | |
for p, i in enumerate(a_u): | |
mask2 = a == i | |
number_of_p[p] = torch.sum(torch.unique(b[mask2]) != -1) | |
return number_of_p | |
def find_mask_no_energy( | |
hit_particle_link, | |
hit_type_a, | |
hit_energies, | |
y, | |
daughters, | |
predict=False, | |
is_Ks=False, | |
): | |
"""This function remove particles with tracks only and remove particles with low fractions | |
# Remove 2212 going to multiple particles without tracks for now | |
# remove particles below energy cut | |
# remove particles that decayed in the tracker | |
# remove particles with two tracks (due to bad tracking) | |
# remove particles with daughters for the moment | |
Args: | |
hit_particle_link (_type_): _description_ | |
hit_type_a (_type_): _description_ | |
hit_energies (_type_): _description_ | |
y (_type_): _description_ | |
Returns: | |
_type_: _description_ | |
""" | |
number_of_daughters = get_number_of_daughters( | |
hit_type_a, hit_particle_link, daughters | |
) | |
list_p = np.unique(hit_particle_link) | |
list_remove = [] | |
part_frac = torch.tensor(get_ratios(hit_energies, hit_particle_link, y)) | |
number_of_hits = get_number_hits(hit_energies, hit_particle_link) | |
if predict: | |
energy_cut = 0.1 | |
filt1 = (torch.where(part_frac >= energy_cut)[0] + 1).long().tolist() | |
else: | |
energy_cut = 0.01 | |
filt1 = (torch.where(part_frac >= energy_cut)[0] + 1).long().tolist() | |
number_of_tracks = scatter_add(1 * (hit_type_a == 1), hit_particle_link.long())[1:] | |
if is_Ks == False: | |
for index, p in enumerate(list_p): | |
mask = hit_particle_link == p | |
hit_types = np.unique(hit_type_a[mask]) | |
if predict: | |
if ( | |
np.array_equal(hit_types, [0, 1]) | |
or int(p) not in filt1 | |
or (number_of_hits[index] < 2) | |
or (y.decayed_in_tracker[index] == 1) | |
or number_of_tracks[index] == 2 | |
or number_of_daughters[index] > 1 | |
): | |
list_remove.append(p) | |
else: | |
if ( | |
np.array_equal(hit_types, [0, 1]) | |
or int(p) not in filt1 | |
or (number_of_hits[index] < 2) | |
or number_of_tracks[index] == 2 | |
or number_of_daughters[index] > 1 | |
): | |
list_remove.append(p) | |
if len(list_remove) > 0: | |
mask = torch.tensor(np.full((len(hit_particle_link)), False, dtype=bool)) | |
for p in list_remove: | |
mask1 = hit_particle_link == p | |
mask = mask1 + mask | |
else: | |
mask = np.full((len(hit_particle_link)), False, dtype=bool) | |
if len(list_remove) > 0: | |
mask_particles = np.full((len(list_p)), False, dtype=bool) | |
for p in list_remove: | |
mask_particles1 = list_p == p | |
mask_particles = mask_particles1 + mask_particles | |
else: | |
mask_particles = np.full((len(list_p)), False, dtype=bool) | |
return mask, mask_particles | |
class CachedIndexList: | |
def __init__(self, lst): | |
self.lst = lst | |
self.cache = {} | |
def index(self, value): | |
if value in self.cache: | |
return self.cache[value] | |
else: | |
idx = self.lst.index(value) | |
self.cache[value] = idx | |
return idx | |
def find_cluster_id(hit_particle_link): | |
unique_list_particles = list(np.unique(hit_particle_link)) | |
if np.sum(np.array(unique_list_particles) == -1) > 0: | |
non_noise_idx = torch.where(hit_particle_link != -1)[0] # | |
noise_idx = torch.where(hit_particle_link == -1)[0] # | |
unique_list_particles1 = torch.unique(hit_particle_link)[1:] | |
cluster_id_ = torch.searchsorted( | |
unique_list_particles1, hit_particle_link[non_noise_idx], right=False | |
) | |
cluster_id_small = 1.0 * cluster_id_ + 1 | |
cluster_id = hit_particle_link.clone() | |
cluster_id[non_noise_idx] = cluster_id_small | |
cluster_id[noise_idx] = 0 | |
else: | |
c_unique_list_particles = CachedIndexList(unique_list_particles) | |
cluster_id = map( | |
lambda x: c_unique_list_particles.index(x), hit_particle_link.tolist() | |
) | |
cluster_id = torch.Tensor(list(cluster_id)) + 1 | |
return cluster_id, unique_list_particles | |
def scatter_count(input: torch.Tensor): | |
return scatter_add(torch.ones_like(input, dtype=torch.long), input.long()) | |
def get_particle_features(unique_list_particles, output, prediction, connection_list): | |
unique_list_particles = torch.Tensor(unique_list_particles).to(torch.int64) | |
if prediction: | |
number_particle_features = 12 - 2 | |
else: | |
number_particle_features = 9 - 2 | |
if output["pf_features"].shape[0] == 18: | |
number_particle_features += 8 # add vertex information | |
features_particles = torch.permute( | |
torch.tensor( | |
output["pf_features"][ | |
2:number_particle_features, list(unique_list_particles) | |
] | |
), | |
(1, 0), | |
) # | |
# particle_coord are just features 10, 11, 12 | |
if features_particles.shape[1] == 16: # Using config with part_pxyz and part_vertex_xyz | |
#print("Using config with part_pxyz and part_vertex_xyz") | |
particle_coord = features_particles[:, 10:13] | |
vertex_coord = features_particles[:, 13:16] | |
# normalize particle coords | |
particle_coord = particle_coord# / np.linalg.norm(particle_coord, axis=1).reshape(-1, 1) # DO NOT NORMALIZE | |
#particle_coord, spherical_to_cartesian( | |
# features_particles[:, 1], | |
# features_particles[:, 0], # theta and phi are mixed!!! | |
# features_particles[:, 2], | |
# normalized=True, | |
#) | |
else: | |
particle_coord = spherical_to_cartesian( | |
features_particles[:, 1], | |
features_particles[:, 0], # theta and phi are mixed!!! | |
features_particles[:, 2], | |
normalized=True, | |
) | |
vertex_coord = torch.zeros_like(particle_coord) | |
y_mass = features_particles[:, 3].view(-1).unsqueeze(1) | |
y_mom = features_particles[:, 2].view(-1).unsqueeze(1) | |
y_energy = torch.sqrt(y_mass**2 + y_mom**2) | |
y_pid = features_particles[:, 4].view(-1).unsqueeze(1) | |
if prediction: | |
y_data_graph = Particles_GT( | |
particle_coord, | |
y_energy, | |
y_mom, | |
y_mass, | |
y_pid, | |
features_particles[:, 5].view(-1).unsqueeze(1), | |
features_particles[:, 6].view(-1).unsqueeze(1), | |
unique_list_particles=unique_list_particles, | |
vertex=vertex_coord, | |
) | |
else: | |
y_data_graph = Particles_GT( | |
particle_coord, | |
y_energy, | |
y_mom, | |
y_mass, | |
y_pid, | |
unique_list_particles=unique_list_particles, | |
vertex=vertex_coord, | |
) | |
return y_data_graph | |
def modify_index_link_for_gamma_e( | |
hit_type_feature, hit_particle_link, daughters, output, number_part, is_Ks=False | |
): | |
"""Split all particles that have daughters, mostly for brems and conversions but also for protons and neutrons | |
Returns: | |
hit_particle_link: new link | |
hit_link_modified: bool for modified hits | |
""" | |
hit_link_modified = torch.zeros_like(hit_particle_link).to(hit_particle_link.device) | |
mask = hit_type_feature > 1 | |
a = hit_particle_link[mask] | |
b = daughters[mask] | |
a_u = torch.unique(a) | |
number_of_p = torch.zeros_like(a_u) | |
connections_list = [] | |
for p, i in enumerate(a_u): | |
mask2 = a == i | |
list_of_daugthers = torch.unique(b[mask2]) | |
number_of_p[p] = len(list_of_daugthers) | |
if (number_of_p[p] > 1) and (torch.sum(list_of_daugthers == i) > 0): | |
connections_list.append([i, torch.unique(b[mask2])]) | |
pid_particles = torch.tensor(output["pf_features"][6, 0:number_part]) | |
electron_photon_mask = (torch.abs(pid_particles[a_u.long()]) == 11) + ( | |
pid_particles[a_u.long()] == 22 | |
) | |
electron_photon_mask = ( | |
electron_photon_mask * number_of_p > 1 | |
) # electron_photon_mask * | |
if is_Ks: | |
index_change = a_u # [electron_photon_mask] | |
else: | |
index_change = a_u[electron_photon_mask] | |
for i in index_change: | |
mask_n = mask * (hit_particle_link == i) | |
hit_particle_link[mask_n] = daughters[mask_n] | |
hit_link_modified[mask_n] = 1 | |
return hit_particle_link, hit_link_modified, connections_list | |
def get_hit_features( | |
output, number_hits, prediction, number_part, hit_chis, pos_pxpy, is_Ks=False | |
): | |
hit_particle_link = torch.tensor(output["pf_vectoronly"][0, 0:number_hits]) | |
if prediction: | |
indx_daugthers = 3 | |
else: | |
indx_daugthers = 1 | |
daughters = torch.tensor(output["pf_vectoronly"][indx_daugthers, 0:number_hits]) | |
if prediction: | |
pandora_cluster = torch.tensor(output["pf_vectoronly"][1, 0:number_hits]) | |
pandora_pfo_link = torch.tensor(output["pf_vectoronly"][2, 0:number_hits]) | |
if is_Ks: | |
pandora_mom = torch.permute( | |
torch.tensor(output["pf_points_pfo"][0:3, 0:number_hits]), (1, 0) | |
) | |
pandora_ref_point = torch.permute( | |
torch.tensor(output["pf_points_pfo"][3:6, 0:number_hits]), (1, 0) | |
) | |
if output["pf_points_pfo"].shape[0] > 6: | |
pandora_pid = torch.tensor(output["pf_points_pfo"][6, 0:number_hits]) | |
else: | |
# zeros | |
# print("Zeros for pandora pid!") | |
pandora_pid=torch.zeros(number_hits) | |
else: | |
pandora_mom = None | |
pandora_ref_point = None | |
pandora_pid = None | |
if is_Ks: | |
pandora_cluster_energy = torch.tensor( | |
output["pf_features"][9, 0:number_hits] | |
) | |
pfo_energy = torch.tensor(output["pf_features"][10, 0:number_hits]) | |
chi_squared_tracks = torch.tensor(output["pf_features"][11, 0:number_hits]) | |
elif hit_chis: | |
pandora_cluster_energy = torch.tensor( | |
output["pf_features"][-3, 0:number_hits] | |
) | |
pfo_energy = torch.tensor(output["pf_features"][-2, 0:number_hits]) | |
chi_squared_tracks = torch.tensor(output["pf_features"][-1, 0:number_hits]) | |
else: | |
pandora_cluster_energy = torch.tensor( | |
output["pf_features"][-2, 0:number_hits] | |
) | |
pfo_energy = torch.tensor(output["pf_features"][-1, 0:number_hits]) | |
chi_squared_tracks = None | |
else: | |
pandora_cluster = None | |
pandora_pfo_link = None | |
pandora_cluster_energy = None | |
pfo_energy = None | |
chi_squared_tracks = None | |
pandora_mom = None | |
pandora_ref_point = None | |
pandora_pid = None | |
# hit type | |
hit_type_feature = torch.permute( | |
torch.tensor(output["pf_vectors"][:, 0:number_hits]), (1, 0) | |
)[:, 0].to(torch.int64) | |
( | |
hit_particle_link, | |
hit_link_modified, | |
connection_list, | |
) = modify_index_link_for_gamma_e( | |
hit_type_feature, hit_particle_link, daughters, output, number_part, is_Ks | |
) | |
cluster_id, unique_list_particles = find_cluster_id(hit_particle_link) | |
# position, e, p | |
pos_xyz_hits = torch.permute( | |
torch.tensor(output["pf_points"][0:3, 0:number_hits]), (1, 0) | |
) | |
pf_features_hits = torch.permute( | |
torch.tensor(output["pf_features"][0:2, 0:number_hits]), (1, 0) | |
) # removed theta, phi | |
p_hits = pf_features_hits[:, 0].unsqueeze(1) | |
p_hits[p_hits == -1] = 0 # correct p of Hcal hits to be 0 | |
e_hits = pf_features_hits[:, 1].unsqueeze(1) | |
e_hits[e_hits == -1] = 0 # correct the energy of the tracks to be 0 | |
if pos_pxpy: | |
pos_pxpypz = torch.permute( | |
torch.tensor(output["pf_points"][3:, 0:number_hits]), (1, 0) | |
) | |
else: | |
pos_pxpypz = pos_xyz_hits | |
# pos_pxpypz = pos_theta_phi | |
return ( | |
pos_xyz_hits, | |
pos_pxpypz, | |
p_hits, | |
e_hits, | |
hit_particle_link, | |
pandora_cluster, | |
pandora_cluster_energy, | |
pfo_energy, | |
pandora_mom, | |
pandora_ref_point, | |
pandora_pid, | |
unique_list_particles, | |
cluster_id, | |
hit_type_feature, | |
pandora_pfo_link, | |
daughters, | |
hit_link_modified, | |
connection_list, | |
chi_squared_tracks, | |
) | |
def standardize_coordinates(coord_cart_hits): | |
if len(coord_cart_hits) == 0: | |
return coord_cart_hits, None | |
std_scaler = StandardScaler() | |
coord_cart_hits = std_scaler.fit_transform(coord_cart_hits) | |
return torch.tensor(coord_cart_hits).float(), std_scaler | |
def create_dif_interactions(i, j, pos, number_p): | |
x_interactions = pos | |
x_interactions = torch.reshape(x_interactions, [number_p, 1, 2]) | |
x_interactions = x_interactions.repeat(1, number_p, 1) | |
xi = x_interactions[i, j, :] | |
xj = x_interactions[j, i, :] | |
x_interactions_m = xi - xj | |
return x_interactions_m | |
def spherical_to_cartesian(phi, theta, r, normalized=False): | |
if normalized: | |
r = torch.ones_like(phi) | |
x = r * torch.sin(theta) * torch.cos(phi) | |
y = r * torch.sin(theta) * torch.sin(phi) | |
z = r * torch.cos(theta) | |
return torch.cat((x.unsqueeze(1), y.unsqueeze(1), z.unsqueeze(1)), dim=1) | |
def calculate_distance_to_boundary(g): | |
r = 2150 | |
r_in_endcap = 2307 | |
mask_endcap = (torch.abs(g.ndata["pos_hits_xyz"][:, 2]) - r_in_endcap) > 0 | |
mask_barrer = ~mask_endcap | |
weight = torch.ones_like(g.ndata["pos_hits_xyz"][:, 0]) | |
C = g.ndata["pos_hits_xyz"] | |
A = torch.Tensor([0, 0, 1]).to(C.device) | |
P = ( | |
r | |
* 1 | |
/ (torch.norm(torch.cross(A.view(1, -1), C, dim=-1), dim=1)).unsqueeze(1) | |
* C | |
) | |
P1 = torch.abs(r_in_endcap / g.ndata["pos_hits_xyz"][:, 2].unsqueeze(1)) * C | |
weight[mask_barrer] = torch.norm(P - C, dim=1)[mask_barrer] | |
weight[mask_endcap] = torch.norm(P1[mask_endcap] - C[mask_endcap], dim=1) | |
g.ndata["radial_distance"] = weight | |
weight_ = torch.exp(-(weight / 1000)) | |
g.ndata["radial_distance_exp"] = weight_ | |
return g | |
class EventCollection: | |
def mask(self, mask): | |
for k in self.__dict__: | |
if getattr(self, k) is not None: | |
if type(getattr(self, k)) == list: | |
if getattr(self, k)[0] is not None: | |
setattr(self, k, getattr(self, k)[mask]) | |
elif not type(getattr(self, k)) == dict: | |
setattr(self, k, getattr(self, k)[mask]) | |
else: | |
raise NotImplementedError("Need to implement correct indexing") | |
# TODO: for the mapping pfcands_idx to jet_idx | |
def copy(self): | |
obj = type(self).__new__(self.__class__) | |
obj.__dict__.update(self.__dict__) | |
return obj | |
def serialize(self): | |
# get all the self.init_attrs and concat them together. Also return batch_number | |
res = [] | |
for attr in self.init_attrs: | |
if attr == "status" and not hasattr(self, attr): | |
continue | |
res.append(getattr(self, attr)) | |
data = torch.stack(res).T | |
#data = torch.stack([getattr(self, attr) for attr in self.init_attrs]).T | |
assert data.shape[0] == self.batch_number.max().item() | |
return data, self.batch_number | |
def __getitem__(self, i): | |
data = {} | |
s, e = self.batch_number[i], self.batch_number[i + 1] | |
for attr in type(self).init_attrs: | |
if attr == "status" and not hasattr(self, attr): | |
continue | |
data[attr] = getattr(self, attr)[s:e] | |
return type(self)(**data) | |
def deserialize(data_matrix, batch_number, cls): | |
data = {} | |
filt = None | |
for i, key in enumerate(cls.init_attrs): | |
if i >= data_matrix.shape[1]: | |
break # For some PFCands, 'status' is not populated | |
data[key] = data_matrix[:, i] | |
#if key == "pid" and pid_filter: | |
# filt = ~np.bool(np.abs(data[key]) >= 10000 + (np.abs(data[key]) >= 50 * np.abs(data[key]) <= 60)) | |
return cls(**data, batch_number=batch_number) | |
def concat_event_collection(list_event_collection, nobatch=False): | |
c = list_event_collection[0] | |
list_of_attrs = c.init_attrs | |
#for k in c.__dict__: | |
# if getattr(c, k) is not None: | |
# if isinstance(getattr(c, k), torch.Tensor): | |
# list_of_attrs.append(k) | |
result = {} | |
for attr in list_of_attrs: | |
if hasattr(c, attr): | |
result[attr] = torch.cat([getattr(c, attr) for c in list_event_collection], dim=0) | |
if hasattr(c, "original_particle_mapping") and c.original_particle_mapping is not None: | |
result["original_particle_mapping"] = torch.cat([c.original_particle_mapping for c in list_event_collection], dim=0) | |
if not nobatch: | |
batch_number, to_add_idx = add_batch_number(list_event_collection, attr=list_of_attrs[0]) | |
#if hasattr(c, "original_particle_mapping") and c.original_particle_mapping is not None: | |
# #filt = result["original_particle_mapping"] != -1 | |
# #result["original_particle_mapping"][filt] += to_add_idx[filt] | |
return type(c)(**result, batch_number=batch_number) | |
else: | |
return type(c)(**result) | |
def concat_events(list_events): | |
attrs = list_events[0].init_attrs | |
result = {} | |
for attr in attrs: | |
result[attr] = concat_event_collection([getattr(e, attr) for e in list_events]) | |
# assert result[attr].batch_number.max() == len(list_events)# sometimes the event is empty (e.g. no found jets) | |
return Event(**result, n_events=len(list_events)) | |
def renumber_clusters(tensor): | |
unique = tensor.unique() | |
mapping = torch.zeros(unique.max().int().item() + 1) | |
for i, u in enumerate(unique): | |
mapping[u] = i | |
return mapping[tensor] | |
class TensorCollection: | |
def __init__(self, **kwargs): | |
self.__dict__.update(kwargs) | |
def to(self, device): | |
# Move all tensors to device | |
for k, v in self.__dict__.items(): | |
if torch.is_tensor(v): | |
setattr(self, k, v.to(device)) | |
return self | |
def dict_rep(self): | |
d = {} | |
for k, v in self.__dict__.items(): | |
if torch.is_tensor(v): | |
d[k] = v | |
return d | |
#def __getitem__(self, i): | |
# return TensorCollection(**{k: v[i] for k, v in self.__dict__.items()}) | |
def get_corrected_batch(event_batch, cluster_idx, test): | |
# return a batch with fake nodes in it (as .fake_nodes_idx property) and cluster_idx should be set to -1 for the nodes that don't belong anywhere | |
# cluster_idx should be a tensor of the same length as the input vectors | |
clusters = torch.where(torch.tensor(cluster_idx) != -1)[0] | |
new_batch_idx = torch.tensor(cluster_idx[clusters]) | |
# for each cluster, add a fake node that has zeros for vectors, scalars and pt | |
batch_idx_fake_nodes = torch.sort(new_batch_idx.unique())[0] | |
vectors_fake_nodes = torch.zeros(len(batch_idx_fake_nodes), event_batch.input_vectors.shape[1]) | |
vectors_fake_nodes = vectors_fake_nodes.to(event_batch.input_vectors.device) | |
scalars_fake_nodes = torch.zeros(len(batch_idx_fake_nodes), event_batch.input_scalars.shape[1]) | |
scalars_fake_nodes = scalars_fake_nodes.to(event_batch.input_scalars.device) | |
pt_fake_nodes = torch.zeros(len(batch_idx_fake_nodes)) | |
pt_fake_nodes = pt_fake_nodes.to(event_batch.pt.device) | |
#event_batch.input_vectors[clusters] | |
#event_batch.input_scalars[clusters] | |
#event_batch.pt[clusters] | |
# | |
input_vectors = torch.cat([event_batch.input_vectors[clusters], vectors_fake_nodes], dim=0) | |
input_scalars = torch.cat([event_batch.input_scalars[clusters], scalars_fake_nodes], dim=0) | |
pt = torch.cat([event_batch.pt[clusters], pt_fake_nodes], dim=0) | |
batch_idx = torch.cat([new_batch_idx, batch_idx_fake_nodes], dim=0) | |
batch_sort_idx = torch.argsort(batch_idx) # the models need batch idx in ascending order in order to correctly construct the attention mask | |
#return EventBatch( | |
# input_vectors=input_vectors[batch_sort_idx], | |
# input_scalars=input_scalars[batch_sort_idx], | |
# pt=pt[batch_sort_idx], | |
# batch_idx=batch_idx[batch_sort_idx], | |
# fake_nodes_idx=batch_idx_fake_nodes + len(new_batch_idx), | |
#) | |
#For returning without the fake nodes (!!!!!) | |
#print("New batch idx", renumber_clusters(new_batch_idx)) | |
return EventBatch( | |
input_vectors=event_batch.input_vectors[clusters], | |
input_scalars=event_batch.input_scalars[clusters], | |
pt=event_batch.pt[clusters], | |
batch_idx=new_batch_idx, | |
renumber_clusters=not test | |
) | |
def get_batch(event, batch_config, y, test=False, external_batch_filter=None): | |
# Returns the EventBatch class, with correct scalars etc. | |
# If test=True, it will put all events in the batch, i.e. no filtering of the events without signal. | |
pfcands = event.pfcands | |
if batch_config.get("parton_level", False): | |
pfcands = event.final_parton_level_particles | |
if batch_config.get("gen_level", False): | |
pfcands = event.final_gen_particles | |
batch_idx_pfcands = torch.zeros(len(pfcands)).long() | |
#batch_idx_special_pfcands = torch.zeros(len(event.special_pfcands)).long() | |
for i in range(len(pfcands.batch_number) - 1): | |
batch_idx_pfcands[pfcands.batch_number[i]:pfcands.batch_number[i+1]] = i | |
batch_filter = [] | |
if batch_config.get("quark_dist_loss", False): | |
lbl = y.labels | |
elif batch_config.get("obj_score", False): | |
lbl = y.labels | |
dq_coords = y.dq_coords | |
dq_coords_batch_idx = y.dq_coords_batch_idx | |
else: | |
lbl = y | |
if not (test or batch_config.get("quark_dist_loss", False)): # dont filter for quark distance loss | |
for i in batch_idx_pfcands.unique().tolist(): | |
if (lbl[batch_idx_pfcands == i] == -1).all(): | |
batch_filter.append(i) | |
#for i in range(len(event.special_pfcands.batch_number) - 1): | |
# batch_idx_special_pfcands[event.special_pfcands.batch_number[i]:event.special_pfcands.batch_number[i+1]] = i | |
#batch_idx = torch.cat([batch_idx_pfcands, batch_idx_special_pfcands]) | |
batch_idx = batch_idx_pfcands | |
batch_idx = batch_idx.to(pfcands.pt.device) | |
if batch_config.get("use_p_xyz", False): | |
#batch_vectors = torch.cat([event.pfcands.pxyz, event.special_pfcands.pxyz], dim=0) | |
batch_vectors = pfcands.pxyz | |
elif batch_config.get("use_four_momenta", False): | |
batch_vectors = torch.cat([pfcands.E.unsqueeze(-1), pfcands.pxyz], dim=1) | |
assert batch_vectors.shape[0] == pfcands.E.shape[0] | |
else: | |
raise NotImplementedError | |
chg = pfcands.charge.unsqueeze(1) | |
if batch_config.get("no_pid", False): | |
batch_scalars_pfcands = chg | |
else: | |
pids = batch_config.get("pids", [11, 13, 22, 130, 211, 0, 1, 2, 3]) # 0, 1, 2, 3 are the special PFcands | |
# onehot encode pids of event.pfcands.pid | |
pids_onehot = torch.zeros(len(pfcands), len(pids)) | |
for i in pfcands.pid: | |
if abs(i).item() not in pids: | |
print(i, "not in", pids) | |
raise Exception | |
for i, pid in enumerate(pids): | |
pids_onehot[:, i] = (pfcands.pid.abs() == pid).float() | |
assert (pids_onehot.sum(dim=1) == 1).all() | |
batch_scalars_pfcands = torch.cat([chg, pids_onehot], dim=1) | |
#if batch_config.get("use_p_xyz", False): | |
# # also add pt as a scalar | |
batch_scalars_pfcands = torch.cat([batch_scalars_pfcands, pfcands.pt.unsqueeze(1), pfcands.E.unsqueeze(1)], dim=1) | |
#pids_onehot_special_pfcands = torch.zeros(len(event.special_pfcands), len(pids)) | |
#for i, pid in enumerate(pids): | |
# pids_onehot_special_pfcands[:, i] = (event.special_pfcands.pid.abs() == pid).float() | |
#assert (pids_onehot_special_pfcands.sum(dim=1) == 1).all() | |
#batch_scalars_special_pfcands =event.special_pfcands.charge.unsqueeze(1) #torch.cat([event.special_pfcands.charge.unsqueeze(1), pids_onehot_special_pfcands], dim=1) | |
batch_scalars = batch_scalars_pfcands # torch.cat([batch_scalars_pfcands, batch_scalars_special_pfcands], dim=0) | |
if batch_idx.max() != event.n_events - 1: | |
print("Error!!") | |
print("Batch idx", batch_idx.max(), batch_idx.tolist()) | |
print("N events", event.n_events) | |
print("Batch number:", pfcands.batch_number) | |
#assert batch_idx.max() == event.n_events - 1 | |
filt = ~torch.isin(batch_idx_pfcands, torch.tensor(batch_filter)) | |
if batch_config.get("obj_score", False): | |
filt_dq = ~torch.isin(dq_coords_batch_idx, torch.tensor(batch_filter)) | |
dropped_batches = batch_idx[~filt].unique() | |
#if (~filt).sum() > 0: | |
# #print("Found events with no signal!!! Dropping it in training", (~filt).sum() / len(filt), batch_filter) | |
# #print("Renumbered", renumber_clusters(batch_idx[filt]).unique()) | |
# #print("Original", batch_idx[filt].unique()) | |
# #print("ALL", batch_idx.unique()) | |
if batch_config.get("quark_dist_loss", False): | |
y_filt = y | |
elif batch_config.get("obj_score", False): | |
#print(dq_coords[0].shape, filt_dq.shape, lbl.shape, filt.shape, dq_coords[1].shape) | |
#print(dq_coords_batch_idx[filt_dq]) | |
y_filt = TensorCollection(labels=lbl[filt], dq_eta=dq_coords[0][filt_dq], dq_phi=dq_coords[1][filt_dq], | |
dq_coords_batch_idx=renumber_clusters(dq_coords_batch_idx[filt_dq].int())) | |
else: | |
y_filt = y[filt] | |
#print("Filtering y!" , len(y[filt]), len(batch_vectors[filt])) | |
print("------- Dropped batches:", dropped_batches) | |
if pfcands.original_particle_mapping is not None: | |
opm = pfcands.original_particle_mapping[filt] | |
else: opm = None | |
return EventBatch( | |
input_vectors=batch_vectors[filt], | |
input_scalars=batch_scalars[filt], | |
batch_idx=batch_idx[filt], | |
pt=pfcands.pt[filt], | |
filter=filt, | |
dropped_batches=dropped_batches, | |
renumber=not test, | |
original_particle_mapping=opm | |
), y_filt | |
def to_tensor(item): | |
if isinstance(item, torch.Tensor): | |
# if it's float, change to double | |
if item.dtype == torch.float32: | |
return item.double() | |
return item | |
item = torch.tensor(item) | |
if item.dtype == torch.float32: | |
return item.double() | |
return item | |
class EventPFCands(EventCollection): | |
init_attrs = ["pt", "eta", "phi", "mass", "charge", "pid", "pf_cand_jet_idx", "status"] | |
def __init__( | |
self, | |
pt, | |
eta, | |
phi, | |
mass, | |
charge, | |
pid, | |
jet_idx=None, | |
pfcands_idx=None, | |
batch_number=None, | |
offline=False, | |
pf_cand_jet_idx=None, # Optional: provide either this or pfcands_idx & jet_idx | |
status=None, # optional | |
pid_filter=True, # if true, remove invisible GenParticles (abs(pid) > 10000 or (pid >= 50 and pid <= 60) | |
original_particle_mapping=None | |
): | |
#print("Jet idx:", jet_idx) | |
#print("PFCands_idx:", pfcands_idx) | |
self.pt = to_tensor(pt) | |
self.eta = to_tensor(eta) | |
self.theta = 2 * torch.atan(torch.exp(-self.eta)) | |
self.p = self.pt / torch.sin(self.theta) | |
self.phi = to_tensor(phi) | |
self.pxyz = torch.stack( | |
(self.p * torch.cos(self.phi) * torch.sin(self.theta), | |
self.p * torch.sin(self.phi) * torch.sin(self.theta), | |
self.p * torch.cos(self.theta)), | |
dim=1 | |
) | |
#assert (torch.abs(torch.norm(self.pxyz, dim=1) - self.p) < 0.1).all(), (torch.abs(torch.norm(self.pxyz, dim=1) - self.p).max()) | |
if not (torch.abs(torch.norm(self.pxyz, dim=1) - self.p) < 0.05).all(): | |
print("!!!!!", (torch.abs(torch.norm(self.pxyz, dim=1) - self.p)).max()) | |
# argmax | |
am = torch.argmax(torch.abs(torch.norm(self.pxyz, dim=1) - self.p)) | |
print("pt", self.pt[am], "eta", self.eta[am], "phi", self.phi[am], "mass", mass[am], "batch_number", batch_number) | |
#print("pt", self.pt, "eta", self.eta, "phi", self.phi, "mass", mass, "batch_number", batch_number) | |
self.mass = to_tensor(mass) | |
self.E = torch.sqrt(self.mass ** 2 + self.p ** 2) | |
self.charge = to_tensor(charge) | |
self.pid = to_tensor(pid) | |
if original_particle_mapping is not None: | |
self.original_particle_mapping = to_tensor(original_particle_mapping) | |
else: | |
self.original_particle_mapping = original_particle_mapping | |
if status is not None: | |
self.status = to_tensor(status) | |
#self.init_attrs.append("status") | |
if pf_cand_jet_idx is not None: | |
self.pf_cand_jet_idx = to_tensor(pf_cand_jet_idx) | |
else: | |
self.pf_cand_jet_idx = torch.ones(len(self.pt)).int() * -1 | |
for i, pfcand_idx in enumerate(pfcands_idx): | |
if int(pfcand_idx) >= len(self.pt): | |
print("Out of bounds") | |
if not offline: | |
raise Exception | |
else: | |
self.pf_cand_jet_idx[int(pfcand_idx)] = int(jet_idx[i]) | |
if batch_number is not None: | |
self.batch_number = batch_number | |
def __len__(self): | |
return len(self.pt) | |
class EventMetadataAndMET(EventCollection): | |
# Extra info belonging to the event: MET, trigger info etc. | |
init_attrs = ["pt", "phi", "scouting_trig", "offline_trig", "veto_trig"] | |
def __init__(self, pt, phi, scouting_trig, offline_trig, veto_trig, batch_number=None): | |
self.pt = to_tensor(pt) | |
self.phi = to_tensor(phi) | |
self.scouting_trig = to_tensor(scouting_trig) | |
self.offline_trig = to_tensor(offline_trig) | |
self.veto_trig = to_tensor(veto_trig) | |
if batch_number is not None: | |
self.batch_number = to_tensor(batch_number) | |
def __len__(self): | |
return len(self.pt) | |
class EventJets(EventCollection): | |
init_attrs = ["pt", "eta", "phi", "mass"] | |
def __init__( | |
self, | |
pt, | |
eta, | |
phi, | |
mass, | |
area=None, | |
obj_score=None, | |
target_obj_score=None, | |
batch_number=None | |
): | |
self.pt = to_tensor(pt) | |
self.eta = to_tensor(eta) | |
self.theta = 2 * torch.atan(torch.exp(-self.eta)) | |
self.p = pt / torch.sin(self.theta) | |
self.phi = to_tensor(phi) | |
self.pxyz = torch.stack( | |
(self.p * torch.cos(self.phi) * torch.sin(self.theta), | |
self.p * torch.sin(self.phi) * torch.sin(self.theta), | |
self.p * torch.cos(self.theta)), | |
dim=1 | |
) | |
if obj_score is not None: | |
self.obj_score = to_tensor(obj_score) | |
if target_obj_score is not None: | |
self.target_obj_score = to_tensor(target_obj_score) | |
tst = torch.abs(torch.norm(self.pxyz, dim=1) - self.p) | |
#if not (tst[~torch.isnan(tst)] < 1e-2).all(): | |
# print("!!!!!", (torch.abs(torch.norm(self.pxyz, dim=1) - self.p)).max()) | |
# print("pt", self.pt, "eta", self.eta, "phi", self.phi, "mass", mass, "batch_number", batch_number) | |
# assert False | |
self.mass = to_tensor(mass) | |
self.area = area | |
self.E = torch.sqrt(self.mass ** 2 + self.p ** 2) | |
if self.area is not None: | |
self.area = to_tensor(self.area) | |
if batch_number is not None: | |
self.batch_number = to_tensor(batch_number) | |
def __len__(self): | |
return len(self.pt) | |
class Particles_GT: | |
def __init__( | |
self, | |
coordinates, | |
energy, | |
momentum, | |
mass, | |
pid, | |
decayed_in_calo=None, | |
decayed_in_tracker=None, | |
batch_number=None, | |
unique_list_particles=None, | |
energy_corrected=None, | |
vertex=None, | |
): | |
self.coord = coordinates | |
self.E = energy | |
self.E_corrected = energy | |
if energy_corrected is not None: | |
self.E_corrected = energy_corrected | |
assert len(coordinates) == len(energy) | |
self.m = momentum | |
self.mass = mass | |
self.pid = pid | |
self.vertex = vertex | |
if unique_list_particles is not None: | |
self.unique_list_particles = unique_list_particles | |
if decayed_in_calo is not None: | |
self.decayed_in_calo = decayed_in_calo | |
if decayed_in_tracker is not None: | |
self.decayed_in_tracker = decayed_in_tracker | |
if batch_number is not None: | |
self.batch_number = batch_number | |
def __len__(self): | |
return len(self.E) | |
def mask(self, mask): | |
for k in self.__dict__: | |
if getattr(self, k) is not None: | |
if type(getattr(self, k)) == list: | |
if getattr(self, k)[0] is not None: | |
setattr(self, k, getattr(self, k)[mask]) | |
else: | |
setattr(self, k, getattr(self, k)[mask]) | |
def copy(self): | |
obj = type(self).__new__(self.__class__) | |
obj.__dict__.update(self.__dict__) | |
return obj | |
def calculate_corrected_E(self, g, connections_list): | |
for element in connections_list: | |
# checked there is track | |
parent_particle = element[0] | |
mask_i = g.ndata["particle_number_nomap"] == parent_particle | |
track_number = torch.sum(g.ndata["hit_type"][mask_i] == 1) | |
if track_number > 0: | |
# find index in list | |
index_parent = torch.argmax( | |
1 * (self.unique_list_particles == parent_particle) | |
) | |
energy_daugthers = 0 | |
for daugther in element[1]: | |
if daugther != parent_particle: | |
if torch.sum(self.unique_list_particles == daugther) > 0: | |
index_daugthers = torch.argmax( | |
1 * (self.unique_list_particles == daugther) | |
) | |
energy_daugthers = ( | |
self.E[index_daugthers] + energy_daugthers | |
) | |
self.E_corrected[index_parent] = ( | |
self.E_corrected[index_parent] - energy_daugthers | |
) | |
self.coord[index_parent] *= (1 - energy_daugthers / torch.norm(self.coord[index_parent])) | |
def concatenate_Particles_GT(list_of_Particles_GT): | |
list_coord = [p[1].coord for p in list_of_Particles_GT] | |
list_vertex = [p[1].vertex for p in list_of_Particles_GT] | |
list_coord = torch.cat(list_coord, dim=0) | |
list_E = [p[1].E for p in list_of_Particles_GT] | |
list_E = torch.cat(list_E, dim=0) | |
list_E_corr = [p[1].E_corrected for p in list_of_Particles_GT] | |
list_E_corr = torch.cat(list_E_corr, dim=0) | |
list_m = [p[1].m for p in list_of_Particles_GT] | |
list_m = torch.cat(list_m, dim=0) | |
list_mass = [p[1].mass for p in list_of_Particles_GT] | |
list_mass = torch.cat(list_mass, dim=0) | |
list_pid = [p[1].pid for p in list_of_Particles_GT] | |
list_pid = torch.cat(list_pid, dim=0) | |
if list_vertex[0] is not None: | |
list_vertex = torch.cat(list_vertex, dim=0) | |
if hasattr(list_of_Particles_GT[0], "decayed_in_calo"): | |
list_dec_calo = [p[1].decayed_in_calo for p in list_of_Particles_GT] | |
list_dec_track = [p[1].decayed_in_tracker for p in list_of_Particles_GT] | |
list_dec_calo = torch.cat(list_dec_calo, dim=0) | |
list_dec_track = torch.cat(list_dec_track, dim=0) | |
else: | |
list_dec_calo = None | |
list_dec_track = None | |
batch_number = add_batch_number(list_of_Particles_GT) | |
return Particles_GT( | |
list_coord, | |
list_E, | |
list_m, | |
list_mass, | |
list_pid, | |
list_dec_calo, | |
list_dec_track, | |
batch_number, | |
energy_corrected=list_E_corr, | |
vertex=list_vertex, | |
) | |
def add_batch_number(list_event_collections, attr): | |
list_y = [] | |
list_y_to_add = [] # Computes a list of numbers to add to the original_particle_idx or similar fields | |
idx = 0 | |
list_y.append(idx) | |
for i, el in enumerate(list_event_collections): | |
num_in_batch = el.__dict__[attr].shape[0] | |
list_y.append(idx + num_in_batch) | |
list_y_to_add += [idx] * num_in_batch | |
idx += num_in_batch | |
list_y = torch.tensor(list_y) | |
return list_y, torch.tensor(list_y_to_add) | |
def create_noise_label(hit_energies, hit_particle_link, y, cluster_id): | |
unique_p_numbers = torch.unique(cluster_id) | |
number_of_hits = get_number_hits(hit_energies, cluster_id) | |
e_reco = get_e_reco(hit_energies, cluster_id) | |
mask_hits = to_tensor(number_of_hits) < 6 | |
mask_p = e_reco<0.10 | |
mask_all = mask_hits.view(-1) + mask_p.view(-1) | |
list_remove = unique_p_numbers[mask_all.view(-1)] | |
if len(list_remove) > 0: | |
mask = to_tensor(np.full((len(cluster_id)), False, dtype=bool)) | |
for p in list_remove: | |
mask1 = cluster_id == p | |
mask = mask1 + mask | |
else: | |
mask = to_tensor(np.full((len(cluster_id)), False, dtype=bool)) | |
list_p = unique_p_numbers | |
if len(list_remove) > 0: | |
mask_particles = np.full((len(list_p)), False, dtype=bool) | |
for p in list_remove: | |
mask_particles1 = list_p == p | |
mask_particles = mask_particles1 + mask_particles | |
else: | |
mask_particles = to_tensor(np.full((len(list_p)), False, dtype=bool)) | |
return mask.to(bool), ~mask_particles.to(bool) | |
class EventBatch: | |
def __init__(self, input_vectors, input_scalars, batch_idx, pt, original_particle_mapping=None, filter=None, dropped_batches=None, fake_nodes_idx=None, batch_idx_events=None, renumber=False): | |
self.input_vectors = input_vectors | |
self.input_scalars = input_scalars | |
self.batch_idx = batch_idx #renumber_clusters(batch_idx) | |
if renumber: | |
self.batch_idx = renumber_clusters(batch_idx) | |
self.pt = pt | |
self.filter = filter | |
self.dropped_batches = dropped_batches | |
self.original_particle_mapping = original_particle_mapping | |
if fake_nodes_idx is not None: | |
self.fake_nodes_idx = fake_nodes_idx | |
if batch_idx_events is not None: | |
self.batch_idx_events = batch_idx_events # Used for | |
def to(self, device): | |
self.input_vectors = self.input_vectors.to(device) | |
self.input_scalars = self.input_scalars.to(device) | |
self.batch_idx = self.batch_idx.to(device) | |
self.pt = self.pt.to(device) | |
if self.filter is not None: | |
self.filter = self.filter.to(device) | |
if self.original_particle_mapping is not None: | |
self.original_particle_mapping = self.original_particle_mapping.to(device) | |
return self | |
def cpu(self): | |
return self.to(torch.device("cpu")) | |
class Event: | |
evt_collections = {"jets": EventJets, "genjets": EventJets, "pfcands": EventPFCands, | |
"offline_pfcands": EventPFCands, "MET": EventMetadataAndMET, "fatjets": EventJets, | |
"special_pfcands": EventPFCands, "matrix_element_gen_particles": EventPFCands, | |
"model_jets": EventJets, "final_gen_particles": EventPFCands, | |
"final_parton_level_particles": EventPFCands} | |
def __init__(self, jets=None, genjets=None, pfcands=None, offline_pfcands=None, MET=None, fatjets=None, | |
special_pfcands=None, matrix_element_gen_particles=None, model_jets=None, model_jets_unfiltered=None, | |
n_events=1, fastjet_jets=None, final_gen_particles=None, final_parton_level_particles=None): | |
self.jets = jets | |
self.genjets = genjets | |
self.pfcands = pfcands | |
self.offline_pfcands = offline_pfcands | |
self.MET = MET | |
self.fatjets = fatjets | |
self.fastjet_jets = fastjet_jets | |
self.special_pfcands = special_pfcands | |
self.matrix_element_gen_particles = matrix_element_gen_particles | |
self.model_jets = model_jets | |
self.model_jets_unfiltered = model_jets_unfiltered | |
self.init_attrs = [] | |
self.n_events = n_events | |
self.final_gen_particles = final_gen_particles | |
self.final_parton_level_particles = final_parton_level_particles | |
if jets is not None: | |
self.init_attrs.append("jets") | |
if genjets is not None: | |
self.init_attrs.append("genjets") | |
if pfcands is not None: | |
self.init_attrs.append("pfcands") | |
if offline_pfcands is not None: | |
self.init_attrs.append("offline_pfcands") | |
if MET is not None: | |
self.init_attrs.append("MET") | |
if fatjets is not None: | |
self.init_attrs.append("fatjets") | |
if special_pfcands is not None: | |
self.init_attrs.append("special_pfcands") | |
if matrix_element_gen_particles is not None: | |
self.init_attrs.append("matrix_element_gen_particles") | |
if model_jets is not None: | |
self.init_attrs.append("model_jets") | |
if model_jets_unfiltered is not None: | |
self.init_attrs.append("model_jets_unfiltered") | |
if final_gen_particles is not None: | |
self.init_attrs.append("final_gen_particles") | |
if final_parton_level_particles is not None: | |
self.init_attrs.append("final_parton_level_particles") | |
#if fastjet_jets is not None: | |
# self.init_attrs.append("fastjet_jets") | |
''' @staticmethod | |
def deserialize(result, result_metadata, event_idx=None): | |
# 'result' arrays can be mmap-ed. | |
# If event_idx is not None and is set to a list, only the selected event_idx will be returned. | |
n_events = result_metadata["n_events"] | |
attrs = result.keys() | |
if event_idx is None: | |
event_idx = to_tensor(list(range(n_events))) | |
else: | |
event_idx = to_tensor(event_idx) | |
assert (event_idx < n_events).all() | |
return Event(**{key: result[key][torch.isin(result_metadata[key + "_batch_idx"], event_idx)] for key in attrs}, n_events=n_events) | |
''' | |
def __len__(self): | |
return self.n_events | |
def serialize(self): | |
result = {} | |
result_metadata = {"n_events": self.n_events, "attrs": self.init_attrs} | |
for key in self.init_attrs: | |
s = getattr(self, key).serialize() | |
result[key] = s[0] | |
result_metadata[key + "_batch_idx"] = s[1] | |
return result, result_metadata | |
def __getitem__(self, i): | |
dic = {} | |
for key in self.init_attrs: | |
#s, e = getattr(self, key).batch_number[i], getattr(self, key).batch_number[i + 1] | |
dic[key] = getattr(self, key)[i] | |
return Event(**dic, n_events=1) | |