jetclustering / src /model_wrapper_gradio.py
gregorkrzmanc's picture
:
a02ee35
raw
history blame
7.02 kB
# A simple wrapper to run the L-GATr model on HuggingFace spaces
import shutil
import glob
import argparse
import functools
import numpy as np
import math
import torch
import sys
import os
import wandb
import time
from pathlib import Path
from src.layers.object_cond import calc_eta_phi
torch.autograd.set_detect_anomaly(True)
from src.dataset.functions_data import get_batch
from src.dataset.functions_data import concat_events, Event, EventPFCands
from src.plotting.plot_event import plot_event
from src.dataset.dataset import EventDataset
from src.jetfinder.clustering import get_clustering_labels
from torch_scatter import scatter_sum
from src.utils.train_utils import (
to_filelist,
train_load,
test_load,
get_model,
get_optimizer_and_scheduler,
get_model_obj_score
)
from src.utils.paths import get_path
import warnings
import pickle
import os
import fastjet
def inference(loss_str, train_dataset_str, input_text, input_text_quarks):
args = argparse.ArgumentParser()
model_path = f"models/{loss_str}/{train_dataset_str}.ckpt"
args.spatial_part_only = True # LGATr
args.load_model_weights = model_path
args.aug_soft = True # LGATr_GP etc.
args.network_config = "src/1models/LGATr/lgatr.py"
args.beta_type = "pt+bc"
args.embed_as_vectors = False
args.debug = False
args.epsilon = 0.3
args.gen_level = False
args.parton_level = False
args.global_features_obj_score = False
args.gt_radius = 0.8
args.no_pid = True
args.hidden_mv_channels = 16
args.hidden_s_channels = 64
args.internal_dim = 128
args.lorentz_norm = False
args.min_cluster_size = 2
args.min_samples = 1
args.n_heads = 4
args.num_blocks = 10
args.scalars_oc=False
dev = torch.device("cpu")
model = get_model(args, dev)
orig_model = model
batch_config = {"use_p_xyz": True, "use_four_momenta": False}
if "lgatr" in args.network_config.lower():
batch_config = {"use_four_momenta": True}
batch_config["no_pid"] = True
print("batch_config:", batch_config)
model.eval()
# input text in format pt,eta,phi,mass,charge
pt, eta, phi, mass, charge = [], [], [], [], []
# now parse the input text
for line in input_text.strip().split('\n'):
values = list(map(float, line.split()))
pt.append(values[0])
eta.append(values[1])
phi.append(values[2])
mass.append(values[3])
charge.append(int(values[4]))
pt_quarks, eta_quarks, phi_quarks = [], [], []
for line in input_text_quarks.strip().split("\n"):
values = list(map(float, line.split()))
pt_quarks.append(values[0])
eta_quarks.append(values[1])
phi_quarks.append(values[2])
pid = torch.zeros(len(pt))
pf_cand_jet_idx = [-1] * len(pt)
pfcands = EventPFCands(pt, eta, phi, mass, charge, pid, pf_cand_jet_idx=pf_cand_jet_idx)
n_soft = 0
if "GP" in loss_str:
n_soft = 500
if n_soft > 0:
pfcands = EventDataset.pfcands_add_soft_particles(pfcands, n_soft, random_generator=np.random.RandomState(seed=0))
event = Event(pfcands=pfcands)
event_batch = concat_events([event])
batch, _ = get_batch(event_batch, batch_config, torch.zeros(len(pfcands)), test=True)
with torch.no_grad():
coords = model(batch, cpu_demo=True)[:, 1:4] # !!! Only use cpu_demo with batch size of 1 (quick fix for unavailability of xformers attention on CPU)
clust_labels = get_clustering_labels(coords.detach().cpu().numpy(), batch.batch_idx, min_cluster_size=args.min_cluster_size, min_samples=args.min_samples, epsilon=args.epsilon)
jets_pxyz = scatter_sum(torch.tensor(pfcands.pxyz), torch.tensor(clust_labels+1), dim=0)[1:]
jets_pt = torch.norm(jets_pxyz[:, :2], p=2, dim=-1)
filt = torch.where(jets_pt > 30)[0].tolist()
jets_eta, jets_phi = calc_eta_phi(jets_pxyz, False)
clust_assignment = {}
for i in range(len(clust_labels)):
if clust_labels[i] in filt and clust_labels[i] != -1:
clust_assignment[i] = filt.index(clust_labels[i])
jets_pt = jets_pt[filt]
jets_eta = jets_eta[filt]
jets_phi = jets_phi[filt]
ak_pt, ak_eta, ak_phi, _, ak_assignment = EventDataset.get_jets_fastjets_raw_with_assignment(pfcands, fastjet.JetDefinition(fastjet.antikt_algorithm, 0.8), pt_cutoff=30)
model_coords = calc_eta_phi(coords, return_stacked=0)
clist = ['#1f78b4', '#b3df8a', '#33a02c', '#fb9a99', '#e31a1c', '#fdbe6f', '#ff7f00', '#cab2d6', '#6a3d9a', '#ffff99',
'#b15928']
colors = {
-1: "gray",
0: clist[0],
1: clist[1],
2: clist[2],
3: clist[3],
4: clist[4],
5: clist[5],
6: clist[6],
7: clist[7],
}
c = []
c_ak = []
for i in range(len(pfcands)):
if i in ak_assignment:
c_ak.append(colors.get(ak_assignment[i], "purple"))
else:
c_ak.append("gray")
if i in clust_assignment:
c.append(colors.get(clust_assignment[i], "gray"))
else:
c.append("gray")
import matplotlib.pyplot as plt
fig, ax = plt.subplots(1, 3, figsize=(10, 3.33)) # with AK colors, with model colors, with model colors in clustering space
ax[0].set_title("Colors: AK clusters")
ax[1].set_title("Colors: Model clusters")
ax[2].set_title("Colors: Model clusters in cl. space")
plot_event(event, colors=c_ak, ax=ax[0], jets=0)
plot_event(event, colors=c, ax=ax[1], jets=0)
plot_event(event, colors=c, ax=ax[2], custom_coords=model_coords, jets=0)
model_jets, ak_jets = [], []
for j in range(len(ak_pt)):
if ak_pt[j] >= 30:
ax[0].text(ak_eta[j] + 0.1, ak_phi[j] + 0.1,
"pt=" + str(round(ak_pt[j], 1)), color="blue", fontsize=6, alpha=0.5)
ak_jets.append({"pt": ak_pt[j], "eta": ak_eta[j], "phi": ak_phi[j]})
if ak_pt[j] >= 100:
for k in range(3):
circle = plt.Circle((ak_eta[j], ak_phi[j]), 0.8, color="green", fill=False, alpha=.7)
ax[k].add_artist(circle)
for j in range(len(jets_pt)):
if jets_pt[j] >= 30:
ax[1].text(jets_eta[j] + 0.1, jets_phi[j] + 0.1,
"pt=" + str(round(jets_pt[j].item(), 1)), color="blue", fontsize=6, alpha=0.5)
model_jets.append({"pt": jets_pt[j].item(), "eta": jets_eta[j].item(), "phi": jets_phi[j].item()})
if jets_pt[j] >= 100:
for k in range(3):
circle = plt.Circle((jets_eta[j], jets_phi[j]), 0.7, color="blue", fill=False, alpha=.7)
ax[k].add_artist(circle)
for k in range(3):
#for n in range(len(phi_quarks)):
# # add triangle symb
ax[k].scatter(eta_quarks, phi_quarks, s=pt_quarks, c="red", marker="^", alpha=0.3)
ax[k].set_xlabel("$\eta$")
ax[k].set_ylabel("$\phi$")
fig.tight_layout()
return model_jets, ak_jets, fig