jetclustering / app.py
gregorkrzmanc's picture
.
e75a247
raw
history blame
2.51 kB
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import os
from src.model_wrapper_gradio import inference
# === Dummy file-based prefill function ===
def prefill_event(subdataset, event_idx):
base_path = f"demo_datasets/{subdataset}/{event_idx}"
try:
with open(f"{base_path}.txt", "r") as f:
particles_data = f.read()
except FileNotFoundError:
particles_data = "pt eta phi mass charge\n"
try:
with open(f"{base_path}_quarks.txt", "r") as f:
quarks_data = f.read()
except FileNotFoundError:
quarks_data = "pt eta phi\n"
return particles_data, quarks_data
from huggingface_hub import snapshot_download
snapshot_download(repo_id="gregorkrzmanc/jetclustering", local_dir="src/models/")
snapshot_download(repo_id="gregorkrzmanc/jetclustering_demo", local_dir="demo_datasets/", repo_type="dataset")
# === Interface layout ===
def gradio_ui():
with gr.Blocks() as demo:
gr.Markdown("## Jet Clustering Demo")
with gr.Row():
loss_dropdown = gr.Dropdown(choices=["GP_IRC_SN", "GP_IRC_S", "GP", "base"], label="Loss Function", value="GP_IRC_SN")
train_dataset_dropdown = gr.Dropdown(choices=["QCD", "900_03", "900_03+700_07", "700_07", "900_03+700_07+QCD"], label="Training Dataset", value="QCD")
with gr.Row():
subdataset_dropdown = gr.Dropdown(choices=os.listdir("demo_datasets"), label="Subdataset")
event_idx_dropdown = gr.Dropdown(choices=list(range(50)), label="Event Index")
prefill_btn = gr.Button("Load Event from Dataset")
particles_text = gr.Textbox(label="Particles CSV (pt eta phi mass charge)", lines=6, interactive=True)
quarks_text = gr.Textbox(label="Quarks CSV (pt eta phi)", lines=3, interactive=True)
process_btn = gr.Button("Run Jet Clustering")
image_output = gr.Plot(label="Output")
model_jets_output = gr.JSON(label="Model Jets")
antikt_jets_output = gr.JSON(label="Anti-kt Jets")
prefill_btn.click(fn=prefill_event,
inputs=[subdataset_dropdown, event_idx_dropdown],
outputs=[particles_text, quarks_text])
process_btn.click(fn=inference,
inputs=[loss_dropdown, train_dataset_dropdown, particles_text, quarks_text],
outputs=[model_jets_output, antikt_jets_output, image_output])
return demo
demo = gradio_ui()
demo.launch()