{ "cells": [ { "metadata": { "ExecuteTime": { "end_time": "2025-05-31T10:57:54.370070Z", "start_time": "2025-05-31T10:57:50.042007Z" } }, "cell_type": "code", "source": [ "import torch\n", "import sys\n", "import os.path as osp\n", "import os\n", "import sys\n", "import numpy as np\n", "from src.dataset.dataset import SimpleIterDataset, EventDataset, EventDatasetCollection\n", "from src.utils.utils import to_filelist\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import matplotlib\n", "matplotlib.rc('font', size=13)\n", "from src.plotting.plot_event import plot_event_comparison\n", "from src.dataset.functions_data import concat_events\n", "from src.utils.paths import get_path\n", "from dotenv import load_dotenv\n", "load_dotenv()" ], "id": "6bae9707acf4a848", "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "execution_count": 1 }, { "metadata": { "ExecuteTime": { "end_time": "2025-05-31T10:57:56.609949Z", "start_time": "2025-05-31T10:57:56.601868Z" } }, "cell_type": "code", "source": [ "\n", "def remove_from_list(lst):\n", " out = []\n", " for item in lst:\n", " if item in [\"hgcal\", \"data.txt\", \"test_file.root\"]:\n", " continue\n", " out.append(item)\n", " return out\n", "\n", "#path = \"/eos/user/g/gkrzmanc/jetclustering/data/SVJ_std_UL2018_scouting_test_large/SVJ_mMed-700GeV_mDark-20GeV_rinv-0.7_alpha-peak\"\n", "def get_iter(path_to_ds):\n", " return iter(EventDatasetCollection(path_to_ds, args=None))\n", "\n", "inputs = {\n", " \"r_inv.=0.3, m_Z'=900 GeV\": [\"Delphes_020425_test_PU_PFfix_part0/SVJ_mZprime-900_mDark-20_rinv-0.3_alpha-peak\"],\n", " \"QCD\": [\"QCD_test_part0/qcd_test\"]}\n" ], "id": "e7a7ef680143801e", "outputs": [], "execution_count": 2 }, { "metadata": { "ExecuteTime": { "end_time": "2025-05-31T10:57:58.118511Z", "start_time": "2025-05-31T10:57:58.031290Z" } }, "cell_type": "code", "source": [ "datasets = {\n", " key: get_iter([get_path(x, \"preprocessed_data\") for x in value]) for key, value in inputs.items()\n", "}" ], "id": "1549361c5b028634", "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Getting query for path Delphes_020425_test_PU_PFfix_part0/SVJ_mZprime-900_mDark-20_rinv-0.3_alpha-peak | Preproc. data root= /work/gkrzmanc/jetclustering/preprocessed_data\n", "File: final_gen_particles.pkl\n", "File: final_parton_level_particles.pkl\n", "File: pfcands.pkl\n", "File: matrix_element_gen_particles.pkl\n", "get_pfcands_key\n", "Getting query for path QCD_test_part0/qcd_test | Preproc. data root= /work/gkrzmanc/jetclustering/preprocessed_data\n", "File: final_gen_particles.pkl\n", "File: matrix_element_gen_particles.pkl\n", "File: pfcands.pkl\n", "File: final_parton_level_particles.pkl\n", "get_pfcands_key\n" ] } ], "execution_count": 3 }, { "metadata": { "ExecuteTime": { "end_time": "2025-04-30T09:52:58.871921Z", "start_time": "2025-04-30T09:52:58.833485Z" } }, "cell_type": "code", "source": "e.final_parton_level_particles.pid", "id": "baf454ab625e31d0", "outputs": [ { "ename": "NameError", "evalue": "name 'e' is not defined", "output_type": "error", "traceback": [ "\u001B[0;31m---------------------------------------------------------------------------\u001B[0m", "\u001B[0;31mNameError\u001B[0m Traceback (most recent call last)", "Cell \u001B[0;32mIn[8], line 1\u001B[0m\n\u001B[0;32m----> 1\u001B[0m \u001B[43me\u001B[49m\u001B[38;5;241m.\u001B[39mfinal_parton_level_particles\u001B[38;5;241m.\u001B[39mpid\n", "\u001B[0;31mNameError\u001B[0m: name 'e' is not defined" ] } ], "execution_count": 8 }, { "metadata": { "ExecuteTime": { "end_time": "2025-05-31T10:58:01.440411Z", "start_time": "2025-05-31T10:58:01.074984Z" } }, "cell_type": "code", "source": [ "e = next(datasets[\"QCD\"])\n", "# print" ], "id": "9240584690041d12", "outputs": [], "execution_count": 4 }, { "metadata": { "ExecuteTime": { "end_time": "2025-05-31T10:58:55.184136Z", "start_time": "2025-05-31T10:58:55.157910Z" } }, "cell_type": "code", "source": [ "for i in range(len(e.pfcands)):\n", " # print pt,eta,phi,mass,charge\n", " print(e.pfcands.pt[i].item(), e.pfcands.eta[i].item(), e.pfcands.phi[i].item(), e.pfcands.mass[i].item(), e.pfcands.charge[i].item())" ], "id": "1aac41993f716f83", "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1.285908579826355 -2.2064461708068848 2.6301612854003906 0.9382699728012085 1.0\n", "0.7487459778785706 -2.094208240509033 -0.05120047181844711 0.4936800003051758 -1.0\n", "0.5246888995170593 -2.007927417755127 2.989550828933716 0.4936800003051758 -1.0\n", "2.7525248527526855 -1.9870414733886719 -0.4528072476387024 0.13956999778747559 1.0\n", "0.7956375479698181 -2.04066801071167 2.194350004196167 0.13956999778747559 -1.0\n", "0.9809597134590149 -1.8432270288467407 -2.1718909740448 0.13956999778747559 1.0\n", "0.6347672343254089 -1.8870458602905273 -2.357295513153076 0.13956999778747559 -1.0\n", "0.5286186337471008 -1.8677940368652344 -1.5477248430252075 0.13956999778747559 -1.0\n", "11.700090408325195 -1.7546323537826538 -0.2974643111228943 0.13956999778747559 1.0\n", "4.672840118408203 -1.7406619787216187 -0.5989688038825989 0.13956999778747559 -1.0\n", "0.9087695479393005 -1.68337881565094 -2.4570295810699463 0.13956999778747559 -1.0\n", "3.460341215133667 -1.703657627105713 -0.5562939047813416 0.13956999778747559 1.0\n", "1.8114593029022217 -1.3267972469329834 -0.5191969275474548 0.4936800003051758 -1.0\n", "1.7149032354354858 -1.1945360898971558 0.32848119735717773 0.4936800003051758 -1.0\n", "1.2845592498779297 -1.03621506690979 1.9651798009872437 0.4936800003051758 1.0\n", "0.8349813222885132 -0.5699279308319092 -0.029887989163398743 0.13956999778747559 1.0\n", "1.1308070421218872 -0.4994378685951233 2.56583833694458 0.13956999778747559 1.0\n", "0.8581411838531494 -0.4269869029521942 0.5446347594261169 0.13956999778747559 -1.0\n", "1.0720726251602173 -0.3555384576320648 -3.059396505355835 0.13956999778747559 1.0\n", "1.3427362442016602 -0.1894076019525528 -2.8412978649139404 0.13956999778747559 -1.0\n", "1.3493661880493164 0.4127936065196991 1.7053676843643188 0.13956999778747559 1.0\n", "1.55831778049469 0.4903299808502197 -1.5499778985977173 0.13956999778747559 1.0\n", "6.850871562957764 0.4772738814353943 -1.4543260335922241 0.13956999778747559 1.0\n", "8.582344055175781 0.5117385387420654 -1.4390026330947876 0.4936800003051758 1.0\n", "7.369996070861816 0.4535500705242157 -1.4423576593399048 0.4936800003051758 -1.0\n", "1.6464149951934814 0.5791456699371338 -1.9467434883117676 0.4936800003051758 1.0\n", "21.498641967773438 0.5266798138618469 -1.4554439783096313 0.4936800003051758 -1.0\n", "8.963800430297852 0.5426040291786194 -1.3467090129852295 0.13956999778747559 -1.0\n", "1.332951545715332 0.6667371988296509 -1.456124186515808 0.13956999778747559 -1.0\n", "1.4493573904037476 0.7821112275123596 1.338742971420288 0.13956999778747559 -1.0\n", "2.704180955886841 0.9362266063690186 1.8429251909255981 0.13956999778747559 1.0\n", "18.941211700439453 0.9151712656021118 2.007201910018921 0.4936800003051758 1.0\n", "16.181575775146484 0.8733822107315063 2.063425064086914 0.0005110002239234746 -1.0\n", "4.140904426574707 0.9097205996513367 2.311692476272583 0.13956999778747559 1.0\n", "1.65585196018219 0.9911935329437256 -2.927703619003296 0.13956999778747559 -1.0\n", "0.8846070766448975 1.0426397323608398 1.066613793373108 0.13956999778747559 1.0\n", "1.054222583770752 0.9839426279067993 1.3207497596740723 0.9382699728012085 1.0\n", "2.8340156078338623 1.0142217874526978 1.9148632287979126 0.13956999778747559 -1.0\n", "3.116788387298584 1.0746370553970337 1.7928866147994995 0.13956999778747559 -1.0\n", "1.8012828826904297 1.1586496829986572 1.6795539855957031 0.13956999778747559 1.0\n", "3.0504701137542725 1.1395117044448853 1.8572102785110474 0.13956999778747559 -1.0\n", "2.317504405975342 1.235701084136963 1.8641473054885864 0.13956999778747559 -1.0\n", "1.3057663440704346 1.4062622785568237 -2.100675582885742 0.13956999778747559 1.0\n", "0.8453368544578552 1.419650673866272 -2.91204571723938 0.13956999778747559 -1.0\n", "0.5769703984260559 1.603403091430664 -2.7231976985931396 0.13956999778747559 1.0\n", "0.8172481656074524 1.690572738647461 -2.174063205718994 0.13956999778747559 1.0\n", "0.7432761788368225 1.9709503650665283 -0.6545511484146118 0.13956999778747559 1.0\n", "1.003330111503601 1.957755446434021 0.7579545378684998 0.13956999778747559 -1.0\n", "1.8586223125457764 2.074205160140991 1.968035340309143 0.9382699728012085 -1.0\n", "8.109560012817383 2.1814541816711426 2.3149867057800293 0.13956999778747559 1.0\n", "0.6520617604255676 2.3831369876861572 -1.781076431274414 0.4936800003051758 -1.0\n", "0.550498902797699 2.361708164215088 1.9065485000610352 0.13956999778747559 1.0\n", "1.11271071434021 -2.3813540935516357 0.09735637158155441 0.0 0.0\n", "1.5287894010543823 -2.221574068069458 -2.210566759109497 -8.429369557916289e-08 0.0\n", "0.6183608770370483 -2.221240282058716 0.6431254148483276 -4.214684778958144e-08 0.0\n", "1.211024522781372 -1.9566999673843384 2.333557367324829 5.960464477539063e-08 0.0\n", "0.6445324420928955 -1.9420228004455566 2.208566188812256 2.9802322387695312e-08 0.0\n", "0.7663082480430603 -1.9107446670532227 -1.6390632390975952 0.0 0.0\n", "0.6305390000343323 -1.8952817916870117 -2.6273038387298584 2.9802322387695312e-08 0.0\n", "1.6763824224472046 -1.8914414644241333 -0.3428950607776642 0.0 0.0\n", "0.9485975503921509 -1.8628748655319214 1.868783950805664 4.214684778958144e-08 0.0\n", "1.5745559930801392 -1.8449265956878662 -0.42849770188331604 -8.429369557916289e-08 0.0\n", "2.108532190322876 -1.8357230424880981 -0.3890358805656433 -8.429369557916289e-08 0.0\n", "3.032390594482422 -1.825714111328125 -0.3301529586315155 2.0647654253025394e-07 0.0\n", "2.1467669010162354 -1.8234453201293945 -0.28642016649246216 8.429369557916289e-08 0.0\n", "1.2778874635696411 -1.7949914932250977 -0.5542489886283875 4.214684778958144e-08 0.0\n", "0.912905216217041 -1.6805322170257568 1.1381043195724487 -5.1619135632563484e-08 0.0\n", "1.2532317638397217 -1.4871019124984741 -1.4817794561386108 0.0 0.0\n", "1.5387523174285889 -1.4224203824996948 1.4819539785385132 0.0 0.0\n", "2.6689887046813965 -1.358622670173645 0.7036111354827881 5.960464477539063e-08 0.0\n", "2.3188722133636475 -1.3341741561889648 -1.752328872680664 8.429369557916289e-08 0.0\n", "0.9236962199211121 -1.3245621919631958 2.707490921020508 0.0 0.0\n", "1.8177824020385742 -1.3222960233688354 -2.190955400466919 -8.429369557916289e-08 0.0\n", "1.052416443824768 -1.1373424530029297 -2.9189302921295166 2.107342389479072e-08 0.0\n", "2.123594045639038 -1.0880649089813232 -1.0246020555496216 -7.300048565639372e-08 0.0\n", "1.964095950126648 -1.0772368907928467 2.488572597503662 4.214684778958144e-08 0.0\n", "3.922567367553711 -1.0374717712402344 0.7515174150466919 -8.429369557916289e-08 0.0\n", "2.100248336791992 -0.8209442496299744 2.760209560394287 4.214684778958144e-08 0.0\n", "0.9352098703384399 -0.7315458059310913 -1.216559648513794 -1.4901161193847656e-08 0.0\n", "2.568833827972412 -0.7045775055885315 1.833177924156189 -4.214684778958144e-08 0.0\n", "1.773956060409546 -0.6078402400016785 2.5342376232147217 -4.214684778958144e-08 0.0\n", "1.5694565773010254 -0.5785274505615234 2.5093085765838623 2.107342389479072e-08 0.0\n", "6.7839274406433105 -0.56248939037323 -2.986403703689575 8.429369557916289e-08 0.0\n", "1.114939570426941 -0.5575534105300903 1.69455087184906 0.0 0.0\n", "5.507236480712891 -0.5244992971420288 1.4929091930389404 0.0 0.0\n", "1.4401556253433228 -0.43264350295066833 -0.8002614974975586 -2.107342389479072e-08 0.0\n", "0.9767805337905884 -0.4173221290111542 2.409954309463501 -1.4901161193847656e-08 0.0\n", "1.0076097249984741 -0.33927080035209656 -0.8337658643722534 0.0 0.0\n", "0.9146650433540344 -0.25581979751586914 2.703824281692505 -1.053671194739536e-08 0.0\n", "2.7623322010040283 -0.23812629282474518 1.6750667095184326 4.214684778958144e-08 0.0\n", "3.0144832134246826 -0.1469791680574417 -2.739244222640991 0.0 0.0\n", "1.2508047819137573 -0.10098464041948318 1.2938188314437866 -2.107342389479072e-08 0.0\n", "1.5031671524047852 -0.08642241358757019 0.2731858789920807 0.0 0.0\n", "1.6019104719161987 0.04195768013596535 2.943544864654541 2.9802322387695312e-08 0.0\n", "1.2830278873443604 0.10771942883729935 -1.7636317014694214 1.4901161193847656e-08 0.0\n", "1.0977004766464233 0.12400612235069275 -2.623702049255371 1.4901161193847656e-08 0.0\n", "2.416353940963745 0.14923568069934845 -2.7312326431274414 2.9802322387695312e-08 0.0\n", "0.9454912543296814 0.16614419221878052 -0.15826834738254547 -1.053671194739536e-08 0.0\n", "1.4195258617401123 0.1856943517923355 -1.3715684413909912 0.0 0.0\n", "1.466599464416504 0.19532646238803864 -2.791978597640991 0.0 0.0\n", "1.2122124433517456 0.33461156487464905 -2.915593385696411 0.0 0.0\n", "1.063982367515564 0.3451996445655823 2.4413726329803467 -1.4901161193847656e-08 0.0\n", "1.974306344985962 0.40378034114837646 -1.3983423709869385 0.0 0.0\n", "1.2610113620758057 0.4231224060058594 1.3117077350616455 -2.5809567816281742e-08 0.0\n", "1.067973017692566 0.4646882116794586 -1.5197961330413818 0.0 0.0\n", "0.9496509432792664 0.454303115606308 -1.5131986141204834 1.4901161193847656e-08 0.0\n", "5.379319190979004 0.507723867893219 -1.5240904092788696 -1.1920928955078125e-07 0.0\n", "1.0865429639816284 0.5226010084152222 -1.3985254764556885 2.107342389479072e-08 0.0\n", "2.5317349433898926 0.5376036763191223 -1.3957425355911255 -4.214684778958144e-08 0.0\n", "2.101804256439209 0.567628800868988 -1.4079632759094238 -2.9802322387695312e-08 0.0\n", "1.073519229888916 0.5969709753990173 2.5630249977111816 -2.5809567816281742e-08 0.0\n", "1.2746238708496094 0.6607993841171265 -2.3673558235168457 -2.9802322387695312e-08 0.0\n", "1.4170644283294678 0.7265937924385071 -1.0004215240478516 0.0 0.0\n", "21.549448013305664 0.7210296988487244 2.681602716445923 3.3717478231665154e-07 0.0\n", "1.186550498008728 0.9094470739364624 -1.1081290245056152 2.9802322387695312e-08 0.0\n", "5.117948055267334 0.9290409684181213 2.0253491401672363 -8.429369557916289e-08 0.0\n", "1.4861501455307007 0.927351713180542 2.08944034576416 2.9802322387695312e-08 0.0\n", "1.6318336725234985 0.9757713675498962 2.031212568283081 0.0 0.0\n", "2.2725889682769775 1.0470476150512695 1.774751901626587 4.214684778958144e-08 0.0\n", "2.2264885902404785 1.0503500699996948 2.0158731937408447 4.214684778958144e-08 0.0\n", "2.373934507369995 1.0720634460449219 1.7128148078918457 5.960464477539063e-08 0.0\n", "1.510032296180725 1.0847829580307007 1.788780689239502 -4.214684778958144e-08 0.0\n", "1.0372703075408936 1.1195467710494995 1.7879420518875122 -2.107342389479072e-08 0.0\n", "1.6704843044281006 1.1290236711502075 2.63218092918396 0.0 0.0\n", "1.5184695720672607 1.1395208835601807 0.6326195597648621 0.0 0.0\n", "2.458073854446411 1.1461107730865479 2.1871731281280518 -5.960464477539063e-08 0.0\n", "0.9845534563064575 1.1658501625061035 -2.487612009048462 4.214684778958144e-08 0.0\n", "1.1499491930007935 1.2241127490997314 2.0117104053497314 0.0 0.0\n", "2.342416524887085 1.2601044178009033 -2.865402936935425 8.429369557916289e-08 0.0\n", "1.6687431335449219 1.264404535293579 -2.7039778232574463 0.0 0.0\n", "0.942179262638092 1.2608128786087036 -2.173363447189331 2.107342389479072e-08 0.0\n", "2.430110216140747 1.3443554639816284 1.084045648574829 0.0 0.0\n", "1.1220529079437256 1.3586798906326294 -2.7192015647888184 2.9802322387695312e-08 0.0\n", "0.9340591430664062 1.407522201538086 -1.102454662322998 -2.9802322387695312e-08 0.0\n", "1.0246495008468628 1.462624192237854 1.6913436651229858 0.0 0.0\n", "1.4762156009674072 1.5041680335998535 -2.0925133228302 -5.960464477539063e-08 0.0\n", "1.1961791515350342 1.6974965333938599 2.9264731407165527 -4.214684778958144e-08 0.0\n", "1.170003056526184 1.7321628332138062 -1.885603904724121 7.300048565639372e-08 0.0\n", "0.8677659034729004 1.776269555091858 -1.0198577642440796 2.9802322387695312e-08 0.0\n", "1.2435728311538696 1.792218565940857 2.3297061920166016 4.214684778958144e-08 0.0\n", "1.5453228950500488 1.886936902999878 1.781978964805603 0.0 0.0\n", "1.3733431100845337 1.930077075958252 -1.5155688524246216 0.0 0.0\n", "1.8659189939498901 1.9565192461013794 -2.7270472049713135 -8.429369557916289e-08 0.0\n", "0.7111741900444031 1.9646193981170654 0.9764125943183899 0.0 0.0\n", "0.9559435248374939 1.990791916847229 -1.3449255228042603 -4.214684778958144e-08 0.0\n", "0.5481534004211426 2.0411131381988525 2.115036964416504 2.9802322387695312e-08 0.0\n", "0.6668163537979126 2.11537766456604 -2.5837104320526123 4.214684778958144e-08 0.0\n", "0.8508790731430054 2.116328001022339 2.6630513668060303 -5.960464477539063e-08 0.0\n", "0.574717104434967 2.1371636390686035 -1.8287789821624756 0.0 0.0\n", "0.8047783970832825 2.178757667541504 -1.245346188545227 -7.300048565639372e-08 0.0\n", "0.8451277017593384 2.2011194229125977 -2.35445237159729 5.960464477539063e-08 0.0\n", "0.5195921659469604 2.2657599449157715 1.3243736028671265 5.1619135632563484e-08 0.0\n", "1.773646593093872 2.3771986961364746 -1.769016981124878 -1.1920928955078125e-07 0.0\n", "0.8486307263374329 2.3816046714782715 2.2308528423309326 5.960464477539063e-08 0.0\n", "0.5535151362419128 2.3867456912994385 2.7641613483428955 0.0 0.0\n", "2.14668345451355 -2.3751988410949707 2.311453342437744 0.0 0.0\n", "0.6837480664253235 -2.186457633972168 -2.4202277660369873 7.300048565639372e-08 0.0\n", "1.3086609840393066 -2.2517738342285156 -2.0693366527557373 1.1920928955078125e-07 0.0\n", "1.37867271900177 -2.3172683715820312 0.28218093514442444 1.1920928955078125e-07 0.0\n", "1.4008444547653198 -2.1907434463500977 1.6201627254486084 -1.4600097131278744e-07 0.0\n", "0.6493402123451233 -2.285156726837158 2.7235107421875 -4.214684778958144e-08 0.0\n", "1.9425572156906128 -2.1691806316375732 -1.8143287897109985 -1.6858739115832577e-07 0.0\n", "4.072310447692871 -2.1499369144439697 -0.32157376408576965 -2.384185791015625e-07 0.0\n", "2.0302693843841553 -2.0925817489624023 0.8865287899971008 -1.1920928955078125e-07 0.0\n", "0.6822447180747986 -2.1702165603637695 2.6732733249664307 5.960464477539063e-08 0.0\n", "2.26128888130188 -2.0112273693084717 -0.5584373474121094 0.0 0.0\n", "0.7309778332710266 -1.9732179641723633 -0.48347586393356323 5.1619135632563484e-08 0.0\n", "0.9792591333389282 -1.9414142370224 1.3102360963821411 -5.960464477539063e-08 0.0\n", "0.7947579026222229 -1.871991515159607 0.043286506086587906 4.214684778958144e-08 0.0\n", "2.9958581924438477 -1.894801139831543 1.3340555429458618 0.0 0.0\n", "1.3717169761657715 -1.770559310913086 0.2786767780780792 5.960464477539063e-08 0.0\n", "1.6252373456954956 -1.6567153930664062 -0.9181476831436157 -1.1920928955078125e-07 0.0\n", "1.0862658023834229 -1.669396996498108 0.12108343839645386 5.960464477539063e-08 0.0\n", "0.9765737056732178 -1.709842324256897 2.9964423179626465 4.214684778958144e-08 0.0\n", "1.3598674535751343 -1.6167751550674438 -1.387428641319275 -5.960464477539063e-08 0.0\n", "1.540661096572876 -1.6482267379760742 -0.6648080348968506 -5.960464477539063e-08 0.0\n", "0.9882071614265442 -1.5459697246551514 3.0894415378570557 4.214684778958144e-08 0.0\n", "5.031430721282959 -1.3029768466949463 0.6553076505661011 -1.1920928955078125e-07 0.0\n", "4.969926357269287 -0.7845442891120911 0.1257995218038559 0.0 0.0\n", "3.623232126235962 -0.729340672492981 1.2001070976257324 8.429369557916289e-08 0.0\n", "2.3016204833984375 -0.7202723622322083 2.8280344009399414 -4.214684778958144e-08 0.0\n", "3.707531452178955 0.10967028141021729 2.6346709728240967 0.0 0.0\n", "4.368841171264648 0.27448317408561707 2.8184525966644287 0.0 0.0\n", "5.135048866271973 0.3629467785358429 -1.9716287851333618 0.0 0.0\n", "6.2958502769470215 0.5086323022842407 -1.33573317527771 1.1920928955078125e-07 0.0\n", "18.9145450592041 0.5627573132514954 -1.526337742805481 4.129530850605079e-07 0.0\n", "27.008743286132812 0.5341193675994873 -1.4042218923568726 3.3717478231665154e-07 0.0\n", "4.9520182609558105 0.8790699243545532 1.5594884157180786 0.0 0.0\n", "9.025590896606445 0.952949583530426 1.991207242012024 0.0 0.0\n", "2.931777238845825 0.9628041982650757 0.594099760055542 0.0 0.0\n", "7.537154197692871 1.0371758937835693 1.971123456954956 2.384185791015625e-07 0.0\n", "1.747841715812683 0.9850072860717773 3.0346620082855225 2.9802322387695312e-08 0.0\n", "4.371508598327637 1.1126658916473389 2.414412260055542 -8.429369557916289e-08 0.0\n", "4.516269683837891 1.2004128694534302 -1.5071179866790771 1.6858739115832577e-07 0.0\n", "1.1334846019744873 1.6010987758636475 0.7184727787971497 4.214684778958144e-08 0.0\n", "1.9245989322662354 1.7122374773025513 -0.4310254156589508 1.0323827126512697e-07 0.0\n", "0.6634104251861572 1.8963481187820435 -2.920619249343872 -5.1619135632563484e-08 0.0\n", "2.821107864379883 2.0347177982330322 -1.4565924406051636 -1.1920928955078125e-07 0.0\n", "0.7319841384887695 1.9863393306732178 0.5638716220855713 0.0 0.0\n", "3.1192986965179443 2.1410231590270996 -2.515263557434082 2.384185791015625e-07 0.0\n", "1.8092724084854126 2.1304163932800293 -1.3424131870269775 -8.429369557916289e-08 0.0\n", "2.0621554851531982 2.0444157123565674 -1.0585908889770508 0.0 0.0\n", "1.0223002433776855 2.093787431716919 0.09411664307117462 8.429369557916289e-08 0.0\n", "3.8310790061950684 2.1458427906036377 2.119062900543213 -2.384185791015625e-07 0.0\n", "0.8777185082435608 2.09102201461792 2.960874319076538 -4.214684778958144e-08 0.0\n", "0.6919015645980835 2.1753132343292236 -2.4146268367767334 4.214684778958144e-08 0.0\n", "1.3393781185150146 2.2663276195526123 -1.5143184661865234 -8.429369557916289e-08 0.0\n", "1.5414893627166748 2.301482915878296 -1.2570381164550781 0.0 0.0\n", "1.2063852548599243 2.2947213649749756 2.9315013885498047 8.429369557916289e-08 0.0\n", "0.64225172996521 2.3136825561523438 3.0582072734832764 0.0 0.0\n", "0.8877096176147461 2.3556394577026367 -0.6877276301383972 0.0 0.0\n", "0.5291316509246826 2.3665153980255127 0.487789511680603 4.214684778958144e-08 0.0\n" ] } ], "execution_count": 6 }, { "metadata": { "ExecuteTime": { "end_time": "2025-05-13T08:51:59.698564Z", "start_time": "2025-05-13T08:51:58.939680Z" } }, "cell_type": "code", "source": [ "pid_masses = {}\n", "for i in range(100):\n", " e = next(datasets[\"CMS FullSim\"])\n", " for i in range(len(e.pfcands)):\n", " pid = e.pfcands.pid[i].item()\n", " if pid not in pid_masses:\n", " pid_masses[pid] = []\n", " pid_masses[pid].append(e.pfcands.mass[i].item())" ], "id": "f16775ce378fd545", "outputs": [], "execution_count": 6 }, { "metadata": {}, "cell_type": "code", "source": "e = next(datasets[\"CMS FullSim\"])", "id": "3b87ced12eea20ac", "outputs": [], "execution_count": null }, { "metadata": {}, "cell_type": "code", "source": "pid_masses[211]", "id": "b7c865969840fb02", "outputs": [], "execution_count": null }, { "metadata": { "ExecuteTime": { "end_time": "2025-05-27T15:00:46.445192Z", "start_time": "2025-05-27T15:00:46.424756Z" } }, "cell_type": "code", "source": [ "from tqdm import tqdm\n", "ch_pids = torch.tensor([211, -211])\n", "nh_pids = torch.tensor([130, 2112.0])\n", "def get_stats(ds):\n", " LE_pfcands_PID= []\n", " result = {\n", " \"n_pfcands\": [],\n", " \"pfcands_pt\": [],\n", " \"pfcands_eta\": [],\n", " \"pfcands_phi\": [],\n", " \"pfcands_pid\": [],\n", " \"pfcands_mass\": [],\n", " \"n_genp\": [],\n", " \"n_parton_level\": [],\n", " \"genp_pt\": [],\n", " \"parton_level_pt\": [],\n", " \"pt_ch\": [], # low-pt CH\n", " \"pt_nh\": [], # low-pt NH\n", " \"pt_gamma\": [],\n", " \"E_vis\": [],\n", " \"n_ch\": [],\n", " \"n_nh\": [],\n", " \"n_gamma\": []\n", " # \"n_dq\": []\n", " }\n", " for _ in tqdm(range(10000)):\n", " event = next(ds)\n", " result[\"n_pfcands\"].append(len(event.pfcands))\n", " result[\"pfcands_pt\"] += torch.log10(event.pfcands.pt).tolist()\n", " result[\"pfcands_eta\"] += event.pfcands.eta.tolist()\n", " result[\"pfcands_phi\"] += event.pfcands.phi.tolist()\n", " result[\"pfcands_pid\"] += event.pfcands.pid.tolist()\n", " result[\"pfcands_mass\"] += event.pfcands.mass.tolist()\n", " result[\"n_genp\"].append(len(event.final_gen_particles))\n", " result[\"n_parton_level\"].append(len(event.final_parton_level_particles))\n", " result[\"genp_pt\"] += torch.log10(event.final_gen_particles.pt).tolist()\n", " result[\"parton_level_pt\"] += torch.log10(event.final_parton_level_particles.pt).tolist()\n", "# result[\"pt_ch\"] += event.pfcands.pt[event.pfcands.pid.isin(ch_pids)].tolist()\n", " #result[\"n_dq\"].append(len(event.matrix_element_gen_particles))\n", " result[\"pt_ch\"] += torch.log10(event.pfcands.pt[torch.isin(event.pfcands.pid, ch_pids)]).tolist()\n", " result[\"pt_nh\"] += torch.log10(event.pfcands.pt[torch.isin(event.pfcands.pid, nh_pids)]).tolist()\n", " result[\"pt_gamma\"] += torch.log10(event.pfcands.pt[event.pfcands.pid == 22]).tolist()\n", " result[\"E_vis\"].append(torch.sum(event.pfcands.E).item())\n", " result[\"n_ch\"].append(torch.isin(event.pfcands.pid, ch_pids).sum().item())\n", " result[\"n_nh\"].append(torch.isin(event.pfcands.pid, nh_pids).sum().item())\n", " result[\"n_gamma\"].append((event.pfcands.pid == 22).sum().item())\n", " return result, LE_pfcands_PID" ], "id": "e0d491f2943f20e9", "outputs": [], "execution_count": 4 }, { "metadata": { "ExecuteTime": { "end_time": "2025-05-27T15:01:46.975430Z", "start_time": "2025-05-27T15:00:50.166395Z" } }, "cell_type": "code", "source": [ "results = {\n", " key: get_stats(value)[0] for key, value in datasets.items()\n", "}\n", "\n", "#results_PID = {\n", "# key: get_stats(value)[1] for key, value in datasets.items()\n", "#}" ], "id": "87c6ab0ccf50fa58", "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "100%|██████████| 10000/10000 [00:31<00:00, 322.14it/s]\n", "100%|██████████| 10000/10000 [00:25<00:00, 388.36it/s]\n" ] } ], "execution_count": 5 }, { "metadata": { "ExecuteTime": { "end_time": "2025-05-27T15:03:25.674440Z", "start_time": "2025-05-27T15:03:25.324847Z" } }, "cell_type": "code", "source": [ "fig, ax = plt.subplots(figsize=(4,4))\n", "for key in results:\n", " ax.hist(results[key][\"n_pfcands\"], bins=np.linspace(0, 600, 100), histtype=\"step\", label=key, density=0)\n", "\n", "ax.legend()\n", "fig.show()" ], "id": "60d9dfce90fc3301", "outputs": [ { "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAFjCAYAAAA3jBD+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAARLFJREFUeJzt3Xtck2XDB/DfYDDOBwU8zAMiojyaqSlp5aP5aJqlr1Jq+uQhzaeD6aNopWUeK+p98hBimpCW+nrItEfLNLVMzTT5GGpmoRimggcQGMLGOOx6/5j33GAgg42N7ff9fPYR7l27d+0e/nbvuq+DTAghQERETsfN3hUgIiLbYMATETkpBjwRkZNiwBMROSkGPBGRk2LAExE5KQY8EZGTktu7Arag0+mQlZUFf39/yGQye1eHiKjOhBC4ffs2mjdvDje3mp2bO2XAZ2VloWXLlvauBhGR1V25cgUtWrSoUVmnDHh/f38A+gMREBBg59oQEdVdQUEBWrZsaci3mnDKgJeaZQICAhjwRORULGl25kVWIiInxYAnInJSDHgiIifFgCciclIMeCIiJ+WUvWjKy8vRqlUrlJSUoLi42N7VISIyy93dHR4eHjbbv8yZVnQSQuD69evIzc3F5cuX0apVqxqP+CIisgeFQoGQkJB7dukuKChAYGAgVCpVjbt/O9UZvEqlQn5+PkJDQ6HRaBAeHg53d3d7V4uIqBIhBEpLS6FSqZCZmQkAVh+34zQBL4TAzZs3ERAQgMaNG+Py5cvw8vJiwBORw/L29oa/vz+uXr2KnJwcqwe807RflJeXo7y8nCNXiahBkclkCAwMhFarRWlpqVX37TQBX1ZWBgCQy53mSwkRuQjpQmt5eblV9+t0acjpgalKZSWATn8iADc5IPe0b32I7rBVbjldwBOZVVYCZP8OCJ3+d5kbEBrNkCen5jRNNETV0pXpwz2otf4mdHfP5omclMucwWfma5BXVGLvahgE+3pCGeRt72q4HrmXvWtAVG9cIuAz8zXov+QQNKXWvYBRF94e7jgws4/dQn7ChAn47LPP4ETj3IioApcI+LyiEmhKy7F8VBdEhvnZuzpIv1mI6VtPIa+ohGfxtbR+/XosW7YMf/zxBwICAjBkyBDEx8cjNDT0no+9efMmXp85HyfP/YmrmVlQq9Vo0aIF+vTpgzlz5iAyMrIeXkHd/PDDD3j00UdrVFb6EJcec/DgQfTt29cq9bhx4wbmz5+P3bt348aNG2jatCmGDx+OhQsXIigoqFL5tLQ0vP766zh06BBKSkrQrVs3LFy4EP369atUVqVSYe7cudixYwdu3bqFtm3b4pVXXsGLL75o0UXJ69evY8WKFdi7dy8uXryIoqIiBAcH47777sPjjz+O5557Do0bN7bodZeVlaFly5YoLy9HZmZmldMN/Pnnn4iMjET//v2xb98+i57DGlwi4CWRYX7opAy0dzUcQlJSElavXm3vatTKsmXLEBcXhz59+uDDDz/E1atXsXTpUhw7dgwnTpyAr69vtY/Py8vH+T8v47H+/0DriEh4e3vjwoULWLt2LbZt24bjx4/jb3/7Wz29mtqJjo7Ghg0bqrx/9+7d2LJlCx5++GGb1eHmzZt48MEHkZWVhRdeeAGdOnXC2bNnsWrVKhw+fBhHjx6Fj4+PofzFixfx0EMPQS6X47XXXkNgYCCSkpIwcOBA7NmzB/379zeULSkpwYABA5CamoqpU6ciOjoae/bswcsvv4wbN25gwYIFNarj3r178cwzz0CtViM2NhZjx45FYGAgcnJycOzYMbz55ptISkpCWlqaRa9dLpdj/PjxeP/99/H1119j+PDhZst9+umnEEJg4sSJFu3faoST0Gg04ty5c0Kj0YiysjKRkpIiysrKhBBC/Ho1X7R+/Wvx69V8O9dSzxb1KSsrE0VFRVbbn6PKzs4WPj4+okePHob3Vwghdu3aJQCId955p/KDSrVCFN0SIvMXIbRF+pv0s5ETJ04IAOKll16y9cuwqXPnzgl/f3/RrFkzce3aNcP2gwcPCgDi4MGDVnmef//73wKA2LRpk8n2TZs2CQBi8eLFJttHjBgh3NzcRGpqqmHb7du3RatWrURUVJTQ6XSG7StXrhQAREJCgsk+YmNjhYeHh7h06dI963f27Fnh4+MjWrZsKc6dO2e2zPXr18Ubb7xxz32Zk5aWJgCIIUOGmL2/vLxctGrVSjRq1EgUFxdXuy/j/KqKSqUSAIRKpapxHRnwdlDX+qxbt04AEPv37xeLFi0SERERQi6Xi3Xr1tV4H+PHjxcVP9+lbfn5+eLFF18UoaGhQqFQiIceekgcP37cUO7cuXMCgJgxY4bZfT/zzDPCw8ND3Lx5s1avrzpJSUkCgFi/fn2l+yIiIkR0dLTpxlKtEFmn9IGedUr/exUBf+PGDQFAPPPMMzWqi7a0XKi1pUKtLRXa0nIhxN0QXbdunVi5cqWIiooSCoVCdOrUSXz11VdCCCHOnDkjBg4cKPz9/UWjRo3E1KlTRUlJSS2ORmX5+fkiKipKeHp6ip9++snkPmsHfOfOnYW3t7dJMAuhDzYvLy8RERFh2FZYWCgUCoXo169fpf0sWrRIABA///yzYdvDDz8sfHx8KgXe4cOHBQDx/vvv37N+sbGxAoDYt2+fpS9NnD9/Xjz77LOiadOmwsPDQ7Ru3VrMmjVLFBYWmpTr3bu3kMvlJh+kkn379gkA4pVXXrnn89kq4F2qicbZzJo1C6WlpZg8eTICAgLQvn17q+x34MCBCA0Nxbx583Dr1i0sXboUTzzxBDIyMuDv74/o6Gj06NEDmzZtwn/+8x+T+X4KCgqwc+dOPP7449W2h+fk5NS4PoGBgYY2zpSUFABAr169KpXr2bMnNm/ejMLCQvj53bnWYtw90tNP3++9RN89srS0FKqCHJSWliI9Pd3wtX/w4MH3rFNJmQ7nb9yG7k77tptMhqgmd1e7X7lyJfLy8vD888/Dy8sLCQkJGD58OLZt24bJkydj9OjRGDZsGPbt24cVK1YgLCwMc+fOrfExMUcIgWeffRbnz5/HqlWrzB6jinQ6HXJzc2v8HI0aNTLM0KrVauHl5VWpPdzNzQ3e3t74888/kZOTg5CQEJw5cwZarbbK9w3Qv7cxMTHQ6XT45Zdf0K1bN3h5mfZ6iomJgUwmM/wdVKW4uBi7d+9G69atMWDAgBq/PgA4efIk+vXrh6CgILzwwgtQKpU4ffo0EhIScPToURw6dMjw9zhx4kQcOXIEGzZswKuvvmqyn3Xr1gEAJk2aZNHzW1WNPwocnCuewUdFRdW6Waa6M/iKTRSff/65ACBWr15t2JaYmCgAiN27d5uUTU5OFgDE9u3bq31+ADW+GZ9xPvnkkwKAUKvVlfb56quvCgAiLS3t7kZzZ+t3tn214wuT52nSpIlYsmRJtfWWqLWl4vSVPJFbpBW5RVpx+kqeUGtLDWfJzZs3F/n5d9/f06dPCwBCJpNVOjbdunUTTZs2rdHzVuett94SAMTEiRNr/JiMjAyL3ouMjAzDY6UzZOMmFyGESE1NNZQ/efKkEEKIL77QH+uPPvqoUh1+++03AUDMmTNHCCFETk6OACBGjhxpts6hoaGiV69e1b6uM2fOCABi6NChle7TaDQiOzvb5FZaWmq4v3PnzqJ9+/aioKDA5HE7duwwfDuTFBYWCn9//0rfHPPy8oSXl5fo2rVrtfU0rhPP4MnESy+9ZHIRy1pmzJhh8rvUw+HChQuGbaNHj0ZcXBzWr19vcsa7fv16NGrUCE8++WS1z7F///4a1+f+++83/KxWqwHo59CuSDrbk8rcS88He2D//v3QaDQ4d+4ctmzZgry8PJSVldV4TiMvufmxghMmTEBg4N0L+p07d0ZAQAD8/f0RGxtrUvaRRx5BQkKC6TcPC+3cuRNvv/02evTogY8++qjGj2vatKlF70XTpk0NP0+fPh3//e9/MXLkSCxfvhydOnXCb7/9hunTp8PDwwOlpaWG98KS9626slL5e73HBQUFAMxPv5ucnIypU6eabEtJSUH37t3x66+/4syZM1i4cCG0Wi20Wq2hzCOPPAJfX1/s27cPEyZMAAD4+vrimWeeQVJSEn7++Wc8+OCDAIAtW7aguLjYvmfvcLFeNM4mKirKJvuNiIgw+V3qQnbr1i3DNinEd+7ciYKCAgQEBODSpUs4cuQIXnrpJXh6Vj8FgHGPCUtIH2harRbe3qZdTKXVu2r6oRcSEoL+/VsBAIYMGYKxY8eic+fOuHnzJj7++ONa1U9S8RgCQHBwMFq2bGl2O6A/vrUJ+D/++APjxo1DSEgItm/fXmUwmuPl5VXr96J3797YsmULpk2bhieeeAKAfoWi559/Hh07dsSXX35pCFjj962iiu9bdWWl8vd6j6XnlYLe2LBhw9ChQwcA+hMS495Iv//+OwBg/vz5mD9/vtl937hxw+T3SZMmISkpCWvXrjUE/Nq1a+Hl5YUxY8ZUW09bY8A3YLY4ewdQ5Rz6osKgqHHjxmHHjh34/PPP8fzzz2PDhg0QQmD8+PH3fI7r16/XuD6NGjUyfGA0b94cAJCZmVmpv3pmZiZkMpmhjKWaN2+O/v3745NPPkFCQoJFQVlRVcewuvUJKh7fmigoKMDw4cOhVquxc+dOsx8g1SkvL0d2dnaNy4eGhpq8hhEjRiA2Nha//vorbt++jfbt2yMsLAwxMTGQy+WG98j4fatI2qZUKgHoP/C8vb3NltVqtcjJyUGfPn2qrWe7du2gUChw+vTpSve1aNECLVq0AAD8+OOPJvdJ78HMmTMxaNAgs/uWPpAlDz74IDp27IitW7di+fLl+PPPP5GSkoLRo0dXKlvfGPBUa4MHD0ZISAjWr19vCPgOHTogJibmno9t1qxZjZ/HeGBOjx49sGbNGhw7dqxSwB8/fhzt27evdTMHAGg0GpSXl6OgoKBGg6bsSQiBcePG4Y8//sDSpUtrNXjpypUraNOmTY3LZ2RkIDw83GSbu7s7unTpYvj9+vXrSE1NRZ8+fQwnIffddx8UCgWOHTtWaZ/Hjx8HAHTv3h2A/iJtt27dkJqaCq1Wa/JBe+LECQghDGWr4uXlhSeeeAI7duzA/v37a3yhtV27dobXZMk3m4kTJ2LmzJnYsWMHUlNTDdvsrc4Br1ar0alTJ2RkZGDKlClITEw0ud8eI9eofnh4eGDMmDFYsWIFNm3ahAsXLiA+Pt6kzOXLl6FWq9G2bVuT0X61bYP/n//5H0ybNg2JiYkYM2aM4Wzyq6++wp9//onFixdXeP4rUGdloG1gBDzutBrduHEDTYxPpO9MI3zu99/x3XffoW3btg4f7gCwePFi7Ny5E6NHj6503aSm6tIGb45Op8O0adNQXl6ON99807Ddz88PQ4YMwY4dO3D69GnDe1pYWIjk5GS0a9fO5MRg9OjROHr0KNasWWPSXr58+XLI5XKMGjXqnnVdtGgR9u7di0mTJuHbb79FdHR0pTIVvzV17doVnTp1wurVq/HCCy9UamorKytDQUEBGjVqZLJ97NixmD17NtasWYO0tDSEh4fjH//4xz3raGt1Dvh58+ZV+RXPHiPXqpN+s7DO+7AGR6mHNYwfPx4JCQl46aWX4Obmhmeffdbk/nHjxuHQoUOVzvxq2+4bGhqKxYsXY9asWejfvz9Gjx6NzMxMLFmyBB06dMD06dNNn3/SZBw6fAQZaecQHqW/6Bn/vx9g/769eOLJoQgPbwNx+xrO/pGODdt3o7SsDCsTlpvsQxriP378eHz66ae1qre17du3DwsWLIC3tzf69u2LjRs3Vll2wIABaNKkidn76tIGX1hYiJiYGAwfPhxt2rSBSqXC5s2bcfLkSbzzzjuVplKIj4/Hd999h8ceewwzZsxAQEAAkpKSkJmZid27d5ucxE2ePBnr1q1DXFwcLl26hOjoaHzzzTf48ssvMXfu3ErfIszp2LEjtm/fjmeeeQb3338/YmNj0atXLwQEBCA7OxspKSnYuXMnAgMDDU0pMpkMGzZsQL9+/dC5c2dMnDgRHTt2hFqtRnp6Onbs2IH4+HjDRVZJaGgohg4diu3btwMAFixY4BAnpXUK+F9++QXLly/H//7v/2LmzJmV7p8zZw7y8/Nx8uRJw1e4cePGoWPHjpgyZQr++OMPw0FITk5GSkoKEhISDJ/YkydPxlNPPYV3330Xzz33HFq3bl2regb7esLbwx3Tt56q1eNtwdvDHcG+DX8u8m7duhmGqPfv39/QtmlLM2fOROPGjbFs2TJMmzYNAQEBGDlyJN57770aNc88OfhxXP0zDZ9v34GbN7NRXl4GZfPmGBE7DLMmxqLjw6bfLm/fvg3gbhuxI/jpp58ghIBGo8ELL7xQbdmDBw9WGfB14enpifvvvx+bNm3CtWvX4OPjgx49emDv3r0YOHBgpfKRkZE4evQoZs+ejffee8/wjX7v3r2VPmQ8PT1x4MABzJ07F5s3bzZ8o1+xYgWmTJlS4zoOGjQIv//+OxITE7Fnzx7s2bMHarUawcHB6NSpkyFbjOei6dKlC1JTUxEfH49du3Zh9erV8Pf3R3h4OCZMmFDlmfmkSZOwfft2uLm5VfoAsBeZqM2VHegvzsTExKBZs2ZITExEmzZtTJpoioqK0LhxYzz88MP47rvvTB67ePFizJs3Dz///LPha9kjjzyC1NRU3Lp1y2Rww5EjR/D3v/8d77//Pl577bUq61NcXIyMjAy0adMGHh4eSE1NRdeuXQ1f4TldsIsqUQM5aUBIe8DTp/I2wPzPnncvYMfFxeHTTz9Fenq64au5pqQMF24Wot2dyeukn709eVmLLGecXxUHd0kKCgoQGBgIlUpV47Wna/3XKM3kJ30lqai+R67dizLIm4FKtfLtt9/izTffrNTuSuToahXwGRkZmD9/PubNm4fw8HBcunSpUpmsrCwA5r/WStukblB5eXnQaDRmyyoUCoSEhJjtMiXRarUoLCyETqdDeXm5YSi1q1GpVNBoNNWW8fT0ZFBZ6Lfffqu35yosLERhYfXXaNzd3RvERWCyv1oF/IsvvoiIiAjExcVVWaY+R67Fx8fj008/xerVq+8ZcM7s3//+Nz777LNqy/Tp0wc//PBD/VSILPbBBx9g4cKF1ZZp3bq12ZMqooosDviNGzdi//79OHz4cJWT3AP1O3Jtzpw5eOWVV3Djxg2Eh4fDw8MDZ86cqdkLciKvvfZapV4sFdl74AVVb9y4cXjkkUeqLVNxBC9RVSwKeK1Wi7i4OAwePBhNmzZFeno6gLtNLSqVCunp6QgJCanXkWsKhQJCCGRnZ8Pd3b3a0YLO7G9/+5vDL1RB1YuIiDA7zQFRbVjUWK3RaJCdnY3du3ejXbt2hps0gm7jxo1o164dkpOT6zRyzVhNR64REZEpi87gfX19sW3btkrbs7Oz8fLLL2PQoEGYNGkSOnfubJeRa0REdJdFAe/h4YGnn3660nbpgk/btm1N7q/vkWtERHSXTUdl2GPkGhER6Vkl4MPDw6uc6jQ6Oho7d+6s0X6CgoKQmJhYacIyIiKynGuOCCIicgGuM3FG/hVAfeve5eqLT2MgyLLFGcjKyortXQMim3KNgM+/AqyMAUprtlZnvfDwAaacYMjbg5sckLkB+X/pf5e56bfpyuxbLyIrc42AV9/Sh3tsEhBim3VMLZJzHtgxWV+vOgR8QUEBPvzwQ3z55Ze4cOECysvLER4ejieffBKzZs1CWFiY2ceVlZVh/fr12Lx5M06dOgWVSgV/f3907twZsbGxmDRpkmHk8IQJE0ymP1AoFAgMDET79u3Ru3dvTJo0qeENzJF7AqHRdwPdTa7fVsKAJ+fiGgEvCYkCmnexdy2s4vz58xg4cCD++usvQyh7eHjg+PHjWL58OdatW4evv/7asAiwJDs7G0OHDsXx48fx4IMPYvr06WjWrBny8/Nx+PBhzJgxA0eOHMHnn39u8rhVq1bBz88PZWVlyMnJwYkTJ7BkyRJ88MEHiI+Pr3ZeIock9wTQ8OfjJ6qOawW8k1Cr1RgyZAgyMzPx1VdfGVa0B4B//etfePnll9G/f38MHToUv/76q+FMXgiBp59+GsePHzdZWEUSFxeHCxcumB3M9vTTTyMkJMRk2+XLl/Hkk09i5syZUCqVHIxG5GDYi6YB+uSTT3D+/HlMnz7dJNwl3bt3x7vvvoubN2/iP//5j2H7119/jcOHD2PUqFGVwl3Srl07vPHGGzWqR6tWrfDFF1/Azc3NZP1NInIMDPgG6IsvvgCgP1uvyoQJE+Dh4WGyIEtNHmepqKgo9O7dGxcvXkRaWprV9ktEdceAb4DOnj0Lf39/REZGVlnGx8cHHTp0QEZGhmEBibNnzwKAYX1ca+ncuTMA/XUBInIcDPgGSFqb8V6kdRulRaMLCgpMtluLtD9p/06jrES/fmuJWv8zUQPDi6wNUEBAQI3CtKCgAG5uboaLo8aBb82FP2z1wWFXZSVA9u+A0Ol/l7npu1bK2fOGGg6ewTdAnTp1QkFBgWHBFXPUajX++OMPtG7d2rDyVqdOnQAAqampVq2PtHpW+/btrbpfu9KV6cM9qLX+JnQcCEUNDgO+AZKmZE5OTq6yzPr161FaWmqyhN9TTz11z8dZ6vz58zhy5AjatWuHqCgHGERmbXIv/Y2oAWLAN0CTJk1CVFQUli5dir1791a6/5dffsGcOXPQrFkzk6mWhwwZgr///e/YvHkzPvroI7P7Tk9PR3x8fI3qcfnyZYwYMQI6nQ7vvPNO7V5MA1KiVaNUy/lrqOFwrTb4HAfp5VHHevj4+GDXrl0YNGgQnnjiCTz11FPo27cv5HI5Tpw4gQ0bNiA4OBi7du1CkyZNDI+TyWT44osvMGTIEEyZMgUbNmzA0KFD0bRpU+Tn5+PHH3/Erl27DGf6xr744gvDSNZbt27hxIkT2LVrF3Q6HZYvX44RI0bU6TU5slLhBjchg+ftKygXMpSGdABkrvVfhxom1/gr9Wmsn9xrx2R71+QuDx99vWqpffv2OH36ND788EPs2LED33zzDYqKigAAHTt2xI8//oigoKBKjwsNDcWRI0cMc9EsWbIEKpUKAQEBuP/++/Hhhx/iueeeq/S4l156CYB+YRZpLpqZM2di4sSJjjkXTVmJvs3cCjNGlsnkuCRaoJlXOYK0WSgtLwXkrvFfhxo2mahqpY4Gpri4GBkZGWjTpg08PDyQmpqKrl27wt3dXV/ABaYLLisrw4gRI/Df//4XS5cuxYwZM6y6/wajtj1gStRAThoQcudi8Z2fNfDEhZuFaB0gQ2DhnygOioSQe+PCzUK0C/MDAMPP3p4MfrKccX55eZm/5iN1j5ZOyGrCdf4ag1o6/dS8crkcW7duxfDhwxEXFwcvLy/DmbdLMD5rl3rAyL3uzhZpZyVlOpTr9B867m5u8JTzEhjZlusEvIvw9PTE7t277V2N+mfurN3TzyGCHdCH+/kbt6G784XZTSZDVBN/hjzZFAOenINxv/V6Omv3QBlkZRrDz9Up1+mgEwItG+nn2b+Sq75zNs+AJ9thwJNzkXsBnj42fxqZrhRRsqtwz9efkUfJZCjV+eJe/6W8eMZO9Yh/bUS1oSuDu0ygxL8lSvxbwl0mONKVHI7TncE7Sacgqikrdoe8u8+a70vnrrDe85LLslVuOU3Ay+/0Sy4rK4Onp2NcWCMbM3dh1a0Of9JVLsZd96oSVae0tBQA7nbrthKnCXh3d3e4u7ujoKDAsGA0OTlrX1jlYtxkB0IIqFQqKBQKw8SA1uI0AS+TyRAWFoZr164ZDlJxcbHVPxHJgZRogTIBlMkANzdAp7NSU82dS1N39qctKYMoK0FJiQzFZQJa7Z254c397Gb++aV9aIv190s/y3RO81+QLCSEQGlpKVQqFQoLC6FUKq3+HE711xUYGAiNRoPs7GxkZ2fD29sbbm68juy0ykuA29lAgTvgbrtmuZIyHW7e1qLcC/DWZqPMqxwAIC/ORamPDADgoc5GqY8MHp7mRyFK+8BtfZu99DP7wZNCoYBSqbTJegpOFfAymQzNmjWDl5cXBg8ejJMnT8LPz8/e1SJbufk7sHcmMHIDENbGZk9z/sZtLNh1Em/2Dkavn+fAW6Y/a9cIT1x/cj3ctCq0PjoTf/X/GK3bRFe7j1XPPgAAhp/bNPG3Wb3J8bm7u1u9WcaYUwW8xN3dHZcvX4anp2eV8zqQE5DLgMIr+n9t+D67ybXIvF2OAq9meOLWv7F+dFsAwLjNF7EmoCU8cvLhVXgF7jJR6e8tM1+DvKIS/Jlbgszb5XC7c41A+pl/n2RLThnwRLaShRAUh9x352dVtWUz8zXov+QQNKX6Jh1vD3cE+3oir4jru1L9YMAT2UheUQk0peVYPqoLIsP8EOzrCWWQNwOe6g0DnsjGIsP80EkZaO9qkAviJXwiIifFgCciclJsoiGXJ/V0AWBoJydyBgx4ahiMl1y04nKH5nq6HJjZhyFPToEBT44v/wqwMgYoVet/9/ABppywyq6Ne7oAwPStp5BXVMKAJ6fAgCfHp76lD/fYJP3vOyZbfQH1yLCaj3hOv1lY7f1Sk8+9yhHZGgOeGo6QKLs+fbCvJ7w93DF96ykAdwcuaXLulqlqcBORPTDgiWpIGeSNAzP7VLogm/7X3TJVDW4isgcGPJEFlEHeNQpsDm4iR8B+8ERETooBT2Qn6TcLkZmvsXc1yImxiYYappzzNtt1xd4vNe0NcyVXA5Xu3mWNL9ay3z3ZEgOeHJc0uMk4zH0a6/vB75is/93DR7/NCir2kjFWXW+YAG/9gg0f7EvDb6Lknj1npIu1KRm57HdPNsWAJ8dkbnCTNIJ1ygmbjGqt2EvGWHW9YcL89MvwffhMFxSH3FejnjPKIG/kWdD3nqg2GPDkmIwHN4VEmQZ5UEurhXpFNe0lY05kqB/QnD1nyHEw4MmxhUQBzbvYuxZEDRIDnshBcFZLsjYGPJED4KyWZAvsB0/kAIynOFg+qgs0peVcu5XqjGfwRA7Eklktie6FAU9kZ5xWmGyFAU9kJ1VNP8ymGbIWBjyRnVQ1/TADnqzFoousaWlp+Oc//4no6GgEBgbCx8cHHTp0QFxcHK5du2a2/LBhwxAcHAxfX1/07t0b33//vdl9q1QqTJ06FUqlEl5eXujYsSNWrVoFIUTtXhlRA6AM8kYnZSA6KQPZY4aszqIz+KtXr+LatWsYPnw4WrRoAblcjl9//RVr1qzBli1bcOrUKYSFhQEALl68iIceeghyuRyvvfYaAgMDkZSUhIEDB2LPnj3o37+/Yb8lJSUYMGAAUlNTMXXqVERHR2PPnj14+eWXcePGDSxYsMCqL5qIyCUIK/j8888FAPH+++8bto0YMUK4ubmJ1NRUw7bbt2+LVq1aiaioKKHT6QzbV65cKQCIhIQEk/3GxsYKDw8PcenSJYvqo1KpBAChUqlq94LI/jJThZgfoP/Xhn69mi9av/61+PVqfu13YuW6SnX68per4ter+eJqntoq+6WGrTa5ZpV+8K1btwYA5OXlAQCKioqwa9cu9O3bF126dDGU8/Pzw/PPP4/z588jJSXFsH3Tpk3w8fHB5MmTTfY7ffp0lJaWYuvWrdaoJjmy/CtA1in9Lf+KvWtjV8YXX59c8SP6LznEeeOpVmp1kbW4uBiFhYUoLi7GuXPn8PrrrwMABg8eDAA4c+YMtFotevXqVemxPXv2BACkpKQgJiYGOp0Ov/zyC7p16wYvLy+TsjExMZDJZCYfBuZotVpotVrD7wUFBbV5WWQv5maOjE2yb51qQ5rWuI4zXBpffE2/WcgphanWahXwycnJmDp1quH38PBwbNy4Eb179wYAZGVlAQCUSmWlx0rbMjMzAejP+jUajdmyCoUCISEhhrJViY+Px8KFC2vzUsgRGM8cCejnepemA24IzM1RP+VEnUP+XoEuzV3DeWuoKrUK+GHDhqFDhw4oLCxEamoqdu3ahZycHMP9arX+TEyhUFR6rHSWLpWprqxUXipTlTlz5iAuLs7we0FBAVq2tM10smRDIVH2rkHtGM9Rn3P+7geUjaY0BkznruG8NVSVWgV8ixYt0KJFCwD6sH/qqafQo0cPqNVqzJkzBz4+PgBg0mwiKS4uBgBDmerKSuWlMlVRKBRVfkAQ1QsbzlFvjjR3zdR+kVjxfTqbcMgsq1xk7dy5M7p27YqPPvoIANC8eXMAMNu0Im2TmmSCg4Ph7e1ttqxWq0VOTo7Z5hsiAkOdqmW12SQ1Gg1yc3MBAPfddx8UCgWOHTtWqdzx48cBAN27d9dXwM0N3bp1Q2pqaqWz+BMnTkAIYShLREQ1Z1HAX79+3ez2gwcP4uzZs4YeMn5+fhgyZAh++OEHnD592lCusLAQycnJaNeuHWJiYgzbR48eDbVajTVr1pjsd/ny5ZDL5Rg1apQl1SS6p8x8Dc5mqjjRFzk1i9rgX3rpJVy7dg39+vVD69atUVxcjJMnT2LLli3w9/fHkiVLDGXj4+Px3Xff4bHHHsOMGTMQEBCApKQkZGZmYvfu3ZDJZIaykydPxrp16xAXF4dLly4hOjoa33zzDb788kvMnTsX4eHhVnvBROYW1wj29bRzrYisz6KAHz16NNavX48NGzYgOzsbMpkMrVu3xgsvvIBXX30VrVq1MpSNjIzE0aNHMXv2bLz33nsoKSlBt27dsHfvXpNpCgDA09MTBw4cwNy5c7F582bcunULbdu2xYoVKzBlyhTrvFKiO4wX14gM82M3Q3JaFgX8yJEjMXLkyBqXj46Oxs6dO2tUNigoCImJiUhMTLSkSkS1Fhnmh07KQHtXg8hmOF0wOSaVa09XUBVpcBOvHVBNMODJsUijQg//R/+vT2N718hh8NoBWYoBT47FeFRoHed0cTbmrh1wcRCqDgOeHE89jwptaIyvHTDgqTpWG+hERESOhQFPROSkGPBERE6KAU9E5KQY8ERETooBT0TkpBjwREROigFPROSkGPBERE6KAU9E5KQY8ERETopz0RA1AJwemGqDAU/kwIJ9PeHt4Y7pW08B4BTBZBkGPJEDUwZ548DMPoZZI7m8IFmCAU/k4JRB3gx1qhVeZCUiclI8gyeXwfVMydUw4MklcD1TckUMeHIJ5tYzZbs2OTsGPLkU4/VMiZwdA57IlvKvAOpb+p99GnMxcapXDHgiW8m/AqyMAUrV+t89fIApJxjyVG8Y8OT0MvM19uk5o76lD/fYJP3vOyYDl4/pt/NsnuoBA56cmnHvGbv1nAmJ0ge6h48+5AGezVO9YMCTUzPuPdOjTSP79ZwJaqkPdPUtIOe8PujVtxjwZFMMeHIJkWF+9RvuOecrbwtqyUCnesWAJ7Imc00xPo3tWydyWQx4ImsybooBeDGV7IoBT2RtbIohB8GAJ/uRBgGZa68mojpjwJN9mBsExLZqIqtiwJN9GA8CkvqJs1mDyKoY8GRfIVFA8y72rgWRU2LAEzkBaSoGToNMxhjwRA1YsK8nvD3cMX3rKQD6hUwOzOzDkCcADHiiBk0Z5I0DM/sYliKcvvUU8opKGPAEgAFP1OApg7wZ6GSWm70rQEREtsGAJyJyUgx4IiInxYAnInJSDHgiIifFXjTkNDLzNcgrKgHAAT9EAAOe6puNZpA0XnsVuDvgh8iVMeCp/thwBknjtVcBYPrWU0jJyLXKvokaKgY81Z96mEEyMszP7PD9YF9Pqz6PVeSc5yyaZFMMeKp/Np5B0nj4PuCA7fHG67Z6+OiX+GPIkw0w4MkpOfTwfWnd1svH9CGvvmXVgOfMkiRhwBPZQ1DLuwtzWwlnlqSKGPBEToIzS1JFFg10On/+PObNm4eePXsiNDQU/v7+6NKlC9555x0UFRVVKp+WloZhw4YhODgYvr6+6N27N77//nuz+1apVJg6dSqUSiW8vLzQsWNHrFq1CkKI2r0yIhekDPJGJ2UgIsP87F0VcgAWncGvXbsWK1euxNChQ/HPf/4THh4eOHjwIObOnYvPP/8cx48fh7e3/mzh4sWLeOihhyCXy/Haa68hMDAQSUlJGDhwIPbs2YP+/fsb9ltSUoIBAwYgNTUVU6dORXR0NPbs2YOXX34ZN27cwIIFC6z6oomIXIKwQEpKisjPz6+0/c033xQAxIoVKwzbRowYIdzc3ERqaqph2+3bt0WrVq1EVFSU0Ol0hu0rV64UAERCQoLJfmNjY4WHh4e4dOmSJdUUKpVKABAqlcqix5GNZaYKMT9A/6+V/Xo1X7R+/Wvx69XKf58Oi8eDLFCbXLOoiaZ79+4IDAystH3UqFEAgLNnzwIAioqKsGvXLvTt2xddunQxlPPz88Pzzz+P8+fPIyUlxbB906ZN8PHxweTJk032O336dJSWlmLr1q2WVJOIiGClycauXr0KAGjSpAkA4MyZM9BqtejVq1elsj179gQAQ8DrdDr88ssv6Nq1K7y8vEzKxsTEQCaTmXwYEBFRzdS5F015eTkWL14MuVyOMWPGAACysrIAAEqlslJ5aVtmZiYAIC8vDxqNxmxZhUKBkJAQQ9mqaLVaaLVaw+8FBQW1ezFERE6kzmfw06dPx7Fjx7Bo0SK0b98eAKBW6+caUSgUlcpLZ+lSmerKSuWlMlWJj49HYGCg4dayJUcFEhHVKeDfeustJCYm4l//+hfmzJlj2O7j4wMAJmfVkuLiYpMy1ZWVyktlqjJnzhyoVCrD7cqVK5a/GCIiJ1PrJpoFCxbg7bffxnPPPYfVq1eb3Ne8eXMAMNu0Im2TmmSCg4Ph7e1ttqxWq0VOTg769Kl+2leFQlHlNwBybtIc8NLwfCK6q1YBv2DBAixcuBDjx49HcnIyZDKZyf333XcfFAoFjh07Vumxx48fB6DvkQMAbm5u6NatG1JTU6HVak2C+sSJExBCGMoSGTM3B7xDzhpJZCcWN9EsWrQICxcuxNixY7F27Vq4uVXehZ+fH4YMGYIffvgBp0+fNmwvLCxEcnIy2rVrh5iYGMP20aNHQ61WY82aNSb7Wb58OeRyuaEbJpEx4zngv576COddIarAojP4lStXYv78+WjVqhX69++PTZs2mdzfpEkTDBgwAID+wud3332Hxx57DDNmzEBAQACSkpKQmZmJ3bt3m5z1T548GevWrUNcXBwuXbqE6OhofPPNN/jyyy8xd+5chIeH1/2VktOKDPNDJ2Xl8RlErs6igJf6o1++fBnjx4+vdH+fPn0MAR8ZGYmjR49i9uzZeO+991BSUoJu3bph7969JtMUAICnpycOHDiAuXPnYvPmzbh16xbatm2LFStWYMqUKbV9bURELs2igP/000/x6aef1rh8dHQ0du7cWaOyQUFBSExMRGJioiVVIqJqcG5418bpgomcEOeGJ4ABT+SUODc8AQx4Iqfl0MsWUr2wymRjRETkeBjwREROik00RC6CPWpcDwOeyN5yzuv/9WkMBFl/JlT2qHFdDHgie/FpDHj4ADvurGTm4QNMOWH1kGePGtfFgCeyl6CW+kBX39Kfxe+YrP/ZBmfx7FHjmhjwRPYU1NImgU4EsBcNEZHT4hk8kSOx8QVXCXvUuAYGPJEjqKcLruxR41oY8ESOoJ4uuLJHjWthwBM5inq64MoeNa6DF1mJiJwUA56IyEmxiYbIxbFHjfNiwBO5KPaocX4MeLK9/Ct3e4eQw2CPGufHgCfbyr8CrIwBStX63z189H2+ySGwR41zY8CTbalv6cM9NgkIibL5CE0iuosBT/UjJApo3sXetSByKewmSUTkpBjwREROik00RI6qnmaWJOfFgCdyNPU0syQ5PwY8NTiZ+RpD322nVI9L+ZFzY8BTg5KZr0H/JYegKS0HoB99Gezraeda2QCX8iMrYMBTg5JXVAJNaTmWj+qCyDA/zp9CVA0GPDVIkWF+6KQMtHc1iBwau0kSETkpBjwRkZNiwBMROSkGPBGRk2LAExE5KfaiIWoI7DRtgTSoDOCSfg0RA55sg6s4WYcdpy0wN6iMS/o1LAx4sj6u4mQ9dpy2wHhQGQAu6dcAMeDJuvKvAJePcRUna7LztAWRYX52e26qGwY8WY/xmbuHD9CqF4OdyI4Y8GQ9xuuvMtyJ7I7dJMn6QqIY7kQOgAFPROSk2ERDDYLTL/JBZAMMeHJ4LrPIR01xrVaqIQY8OTwu8nEH12olCzHgqcFw+UU+uFYrWYgBT9SQ2HjQU/rNQtf9huSEGPDksHhhtf4E+3rC28Md07eeMsw5Qw0fA54cEi+s1i9lkDcOzOyDlIxcw5wz1PAx4MnhZOZrkJKRywur9UwZ5I08zjvjVBjw5FCMz9y9PdzRo00jBrsDkZrL+IHbMDDgyaEYd4lkuDsO4zZ6gHPDNxQMeHJIkWF+DA8HIrXRSxe9OTd8w2DxXDTx8fEYMWIEIiIiIJPJEB4eXm35n3/+Gf3794e/vz8CAgIwaNAgnDp1ymzZrKwsjBs3DqGhofD29kb37t2xbds2S6tI9S3/CpB1qk6rN2Xma3A2U8UeMw5MGeSNTspAzg/fgFh8Bv/GG2+gUaNG6NatG/Lz86ste/z4cfTt2xdKpRKLFi0CACQmJqJ379746aefcN999xnK5ubm4pFHHsHNmzcRFxeHFi1aYNOmTRg5ciTWrl2L5557ztKqUn2wwupN7DFTR9LyiACnLyATFgf8xYsXERERAQDo1KkTCgurPuOaNm0aPD09cfjwYSiVSgDAyJEjER0djZkzZ2Lfvn2Gsu+99x4yMjKwa9cuDBkyBAAwadIk9OrVC7NmzcKIESPg58czB4djPAd8LVdv4lQEdaC6Cqx73PQDltMX0B0WN9FI4X4v6enpSElJwYgRIwzhDgBKpRIjRozAgQMHcP36dcP2TZs2oW3btoZwBwB3d3dMnToVubm5+OabbyytKtWnkCigeZc6BYs0FQHD3QLGH7CxSfqfpbN5cnk2mw8+JSUFANCrV69K9/Xs2RNCCJw8eRIAcO3aNWRmZqJnz55myxrvzxytVouCggKTG5FLCYnS34iM2Czgs7KyAMDk7F0ibcvMzLS4rDnx8fEIDAw03Fq25NdTIiKbBbxarW8TVCgUle7z8vIyKWNJWXPmzJkDlUpluF25cqVulScicgI26wfv4+MDQN98UlFxcbFJGUvKmqNQKMx+OBBR7bC7qnOwWcA3b94cgPmmFWmb1PxiSVkish1zI1bZZbXhslnA9+jRAwBw7NgxPP/88yb3HT9+HDKZDA888AAAoFmzZlAqlTh+/Hil/UjbunfvbquqEtEdxiNWAc4509DZrA0+MjLSMBJVuogK6C+obtu2Df369UPTpk0N20ePHo2LFy/iq6++MmwrLy/HihUrEBQUhMGDB9uqqkRkRBqxyi6rDZ/FZ/AbNmzAX3/9BQDIzs5GSUkJ3n77bQBA69atMXbsWEPZDz/8EI8++ih69+6NqVOnAgBWrFgBnU6HJUuWmOx39uzZ2LZtG8aMGYO4uDgolUps3rwZKSkpSE5Ohr+/f61fJJHTUrFDAVXN4oD/5JNPcOjQIZNtb731FgCgT58+JgH/0EMP4YcffsDcuXMxd+5cyGQyPPTQQ9i2bRvuv/9+k300btwYR48exezZs7Fy5UoUFhbib3/7G7Zs2YJRo0bV5rUROS9pAe7D/7k7PQQHOFEFFgf8Dz/8YFH5Xr164bvvvqtRWaVSiQ0bNlhaJSLXY7wAtzQ9BAOeKuB0wVQ70gRXdZhBkuqoqgW4pfeEE4+5PAY8Wc4KM0iSDUjNNjsm63/nxGMujwFPlrPCDJJkA8bNNjnn9UGvvmWz94bL9zk+BjzVnjSDJDmOqpptrIjL9zUcDHgisgiX72s4GPBEZDFlkDcDvQGw2UhWIiKyLwY8EZGTYsATETkpBjwRkZNiwBMROSkGPBGRk2I3SSKymsx8DfKKSji61UEw4InIKjLzNei/5BA0peUc3eog2ERDRHWWfrMQKRm50JSWY2q/SGhKyw3L/pH98AyeyJnZeOpgc/PSdFIGWv15qHYY8ETOqJ6mDja3SDfP3B0HA57qlXQRDuA0szZVj1MHV5yXhgHvOBjwVHN1XMXJ+CIccHeaWbKRepg6mBwbA55qxgqrOOUVlUBTWo7lo7oAAKZvPYWUjFwrV5SIJAx4qhkrruIUGeZn9uJcsK+nFStMRAx4soyVVnEyd3GO7fFE1sWAJ7vhohFEtsWBTkRETooBT0TkpNhEQ9WrY9dIIrIfBjxVzQpdI4nIfhjwVDUrdo0kovrHgKd7s1LXSCKqX7zISkTkpHgGTzYnTTCWfrPQ3lUh4O6Fc4DNbk6OAU+VWbHnjLkJxjglgR2Zu3A+agPgE1IvYc/ZROsXA55MWbnnjPEEY9IcNPxPbUfGF859GgFbxwIbn9LfZ6M54yVVzSbKvwfbYcCTKRv1nIkM8+NKP/Zm/I1MunBuwznjpSY56UPd3GyieUUlDHgbYsCTeew54zzMre4kfSuzwZzx5mYKNZ73PzLMz6rPR1VjwJNN8MKqAzFe3QmweVu78Uyh6TcLOe+/HTHgSY8XVp1bPa/uJM0UWtW8/9KF1orNOGRdDHjihVWymerm/TfXjMO/E+tiwBMvrJJNmZv331wzDi+4Wh8Dnu7ihVWqRxWDn8011seAJyK7qqrXDUO+7hjwRGSqnqcyYHON7TDgiegu1VVg3eOmF9xtOLpVwvV5bYMBT3VWcX4RasCML7gDVh/dSvWLAU91Yq7P+6sD29u5VlRrqiv6f0Oi7m6TxkZw5skGhwHviiq2sdaC8UhVqc97sK8nXtxwEou+PsfBTQ2NNJ3B4f+YjoOoOMVBPTTXGJP+ztizpnYY8K7G3KAm6et4DZk7a+/RppHJxTL+h2xgjKczMD5Tt+FkZPdi/HfGnjW1w4B3NVW1sVbB3Pzd1Y1U5cWyBszcdAb1PMWBROoTryktx9R+kVjxfTpSMnKRV2GiMp5IVI8B76qM21ildtcKqpq/W8KRqmRt5vrE/z0qFMlHMgzbjPHMvnoMeFdWVbvrHVXN300uzMYXXKuau8Z4m8R4pso8znlkFgPelVXV7loB5+8ms3PK2+iCa1Vz11TcxhGw98aAd3UWtrFyfncXZXwyUPGCq50W8eYI2HtjwFONVDWvN7mQiicDOecBdY5+Xdd6Hvkq4UX96jHgXYUFC3qYW42punm9ycWYa655djugztVvu3xMv92OvW+M/z5duS+9QwW8TqfDhx9+iI8//hiXLl1CaGgoRo4ciUWLFsHX19fe1Wu4LFjQo7rVmHi2RACqXgIw/8rd4PfwAUZtAHxC6qXZxtw3zNVjHwAAvLjhZKW+9Oa6/zojmRBC2LsSkn//+99ISEjA8OHD8fjjj+P333/HihUr0Lt3bxw4cABubm412k9BQQECAwOhUqkQEBBg41o7gHu1gWadAtb0qXZBD+Oz9ulbT3E1Jqqd/CtATlrlZhtzYW/ltnvpb/hWUYkh1IG702cs+vqcyYjrit1/Hf3vvDa55jBn8L/99htWrFiB2NhYbN++3bC9TZs2mDZtGrZs2YIxY8bYsYYOytzZufSfSXKnWSZdNEexaINgeEJptIvqRqYSWURqp5fO8KU2+o1P6e+X2uiBe//dAhYFv/E3zIrNiQDwn2/TTM7wP5sYg7yiEpOLs852Zu8wAb9582YIITB9+nST7ZMnT8bs2bOxceNGBjxgetYD6MNbGpnq08j0P5MRtVBg3OaLyIKq0lfVlIxcrqFK1mV8QbZi7xupjb4Gf7cmHwj3Ots3+r+h9GkMpdK0jLlrSGczVQD0bffmzvwbepOOwwR8SkoK3NzcEBMTY7Ldy8sLXbp0QUpKSpWP1Wq10Gq1ht9VKv2bVlBQYHE9bl27jPycTIsfVx/kxXloeXAa3MqLTbbr3L1wsTQcpWXN4DFoJ9yK81BQXIol36ahuEwHACiWB2HuM72RX1SC2Tt+xaFf/0KQryemb0lFcakOXh5u6NBYjub+MgClKCgotcMrJKfkFgj4BQJlnkC5F7D5ef12uTcQ1AkIagGM/Q7Q5Jo+7lY68NU04OQ24If3gTLN3cfFrjG9jqS+Bez4V7Vl/O/cAACFQMENwLuoBJ11f+CjDecAAO3kbpg5sD1ua8qQ8P05pP5YjHRvucn/Ja87ZQK8PGp9SIJClGjcrJVFj5HyzKJWdeEgOnXqJMLCwszeN2LECAFAaLVas/fPnz9fAOCNN954c/rblStXapyrDnMGr1aroVAozN7n5eVlKOPpWbnv9Zw5cxAXF2f4XafTITc3F40bN4ZMJqtxHQoKCtCyZUtcuXLFNS7OOgged/vgcbeP2h53IQRu376N5s2b1/gxDhPwPj4+uHnzptn7iouLDWXMUSgUlT4cgoKCal2XgIAA/sHbAY+7ffC420dtjntgYKBF5WvW77AeNG/eHDk5OSZt6ZLMzEyEhISYPXsnIiLzHCbge/ToAZ1OhxMnTphsLy4uxqlTp9C9e3c71YyIqGFymIAfNWoUZDIZli9fbrI9KSkJarUa//znP21eB4VCgfnz51d5LYBsg8fdPnjc7aM+j7tDjWSdOnUqEhMTMXz4cAwePBi///47EhIS8PDDD+P777+v8UhWIiJysIAvLy/H8uXLsWbNGly6dAkhISEYNWoUFi1aBD8/zklORGQJhwp4IiKyHrZ5EBE5KQY8EZGTYsATETkplw94nU6HZcuWoUOHDvDy8kLLli0xc+ZMFBUV2btqDcr58+cxb9489OzZE6GhofD390eXLl3wzjvvmD2WaWlpGDZsGIKDg+Hr64vevXvj+++/N7tvlUqFqVOnQqlUwsvLCx07dsSqVassm3TJhajVakREREAmk+GVV16pdD+PvfXk5uZi1qxZiIyMhJeXF0JDQ/Hoo4/iyJEjJuV+/vln9O/fH/7+/ggICMCgQYNw6tQps/vMysrCuHHjEBoaCm9vb3Tv3h3btm2rXQUtmRDMGU2bNk0AEMOHDxdr1qwRM2bMEHK5XDz66KOivLzc3tVrMF5//XXh5+cnxowZIxISEsSqVavEyJEjBQDRuXNnoVarDWXT09NFo0aNRFhYmHj33XfFypUrRZcuXYRcLhf79+832a9WqxU9evQQcrlczJgxQ6xZs0YMHz5cABDz58+v51fZMMycOVP4+fkJAGLKlCkm9/HYW8+lS5dEeHi4CAkJEa+//rr45JNPxNKlS8WECRPE5s2bDeWOHTsmFAqFiIiIEEuXLhVLly4VERERws/PT5w5c8Zkn7du3RJt2rQRvr6+4q233hIff/yx6NOnjwAg1q5da3EdXTrgz549K2QymYiNjTXZnpCQIACI//u//7NTzRqelJQUkZ+fX2n7m2++KQCIFStWGLaNGDFCuLm5idTUVMO227dvi1atWomoqCih0+kM21euXCkAiISEBJP9xsbGCg8PD3Hp0iXrv5gG7OTJk8Ld3V0sWbLEbMDz2FvPI488Ilq0aCGysrKqLdejRw/h7+8vrl69ath29epV4e/vLwYMGGBS9tVXXxUAxK5duwzbysrKRI8ePUSjRo3E7du3LaqjSwe8FD6HDx822a7RaISPj494/PHH7VQz53HmzBkBQLzwwgtCCCEKCwuFQqEQ/fr1q1R20aJFAoD4+eefDdsefvhh4ePjIzQajUnZw4cPCwDi/ffft+0LaEDKyspEt27dxBNPPCEyMjIqBTyPvfUcOnTI5MOvpKREFBUVVSp34cIFAUBMnDix0n0TJ04UMplMXLt2zbBNqVSKtm3bViq7fv16AUBs3brVonq6dBt8XRYZoZq5evUqAKBJkyYAgDNnzkCr1aJXr16Vyvbs2RMADMddp9Phl19+QdeuXQ1TRktiYmIgk8n4HhlZtmwZ/vjjDyQmJpq9n8feer755hsAQKtWrTBkyBB4e3vD19cXUVFR2Lhxo6GcdIyqOuZCCJw8eRIAcO3aNWRmZhrei4pljfdXUy4d8FlZWQgJCTE7J4RSqUROTg5KSkrsUDPnUF5ejsWLF0MulxuWW8zKygKgP74VSdsyM/UrauXl5UGj0Zgtq1AoEBISYijr6jIyMjB//nzMmzcP4eHhZsvw2FtPWloaAP2Sorm5ufjss8+wdu1aeHp6YuzYsVi3bh0Ay465JWVrymHmg7eHuiwyQvc2ffp0HDt2DO+++y7at28PQH88AZg97sbH/F5lpfJSGVf34osvIiIiwmThm4p47K3n9u3bAAB/f38cPHjQkBHDhg1DREQE3njjDYwfP95qx7xi2Zpy6TN4Hx8fs/PPA/deZISq99ZbbyExMRH/+te/MGfOHMN26XiaO+4Vj3l1ZaXyfH+AjRs3Yv/+/Vi1ahU8PKpeJ5TH3nq8vfWLbo8ePdrkBDA4OBhDhw7F9evXkZaWZrVjXts8cumA5yIjtrFgwQK8/fbbeO6557B69WqT+6Tlxsx91ZS2SV9Hg4OD4e3tbbasVqtFTk6O2a+zrkSr1SIuLg6DBw9G06ZNkZ6ejvT0dPz1118A9P3Y09PTkZ+fz2NvRS1atAAANG3atNJ9zZo1A6Bv5rLkmFtStqZcOuC5yIj1LViwAAsXLsT48eORnJxcaU3c++67DwqFAseOHav02OPHjwOA4bi7ubmhW7duSE1NrfQhfOLECQghXP490mg0yM7Oxu7du9GuXTvDrW/fvgD0Z/ft2rVDcnIyj70VSR0zpE4ExqRtYWFh6NGjBwBUecxlMhkeeOABAPoPBqVSaXgvKpYFYPkxt6jPjZM5c+ZMtf3gN2zYYKeaNUwLFy4UAMTYsWOrHST29NNPCzc3N3Hq1CnDNqkvdrt27Uz6YicmJlbZF1sul4uMjAyrv46GpKSkRGzbtq3S7aOPPhIAxKBBg8S2bdtEWlqaEILH3lpyc3OFv7+/UCqVJn3Ts7KyhK+vr4iKijJs6969u/D39xeZmZmGbZmZmcLf31/84x//MNnvrFmzquwHHxQUJAoKCiyqp0sHvBBCvPLKK4aRrElJSSIuLk7I5XLRp08fjmS1gBQGrVq1Ep999pnYsGGDyW3fvn2GshcuXBDBwcEiLCxMxMfHG0ZTuru7i71795rsV6vVigceeEDI5XIRFxcnkpKSDKMp586dW98vs8Ew1w9eCB57a/r4448FANGxY0exZMkSER8fL1q1aiU8PDzEt99+ayh39OhR4enpKSIiIsSyZcvEsmXLREREhPD19TX5oBVCiJycHNG6dWvh5+cn5s2bJz7++GPRt29fAUAkJydbXEeXD/iysjLxwQcfiKioKOHp6SmaN28uZsyYYfGIMVc3fvx4AaDKW58+fUzKnzt3TgwdOlQEBgYKb29v8fDDD1caKi/Jy8sTU6ZMEc2aNROenp4iOjparFixwuRsk0xVFfBC8Nhb0/bt28WDDz4ofHx8hJ+fnxgwYID48ccfK5X76aefRL9+/YSvr6/w8/MTjz32mDh58qTZfV69elU8++yzonHjxkKhUIiuXbuKLVu21Kp+XPCDiMhJufRFViIiZ8aAJyJyUgx4IiInxYAnInJSDHgiIifFgCciclIMeCIiJ8WAJyJyUgx4IiInxYAnInJSDHgiIifFgCciclL/D3l5U4yakOgzAAAAAElFTkSuQmCC" }, "metadata": {}, "output_type": "display_data" } ], "execution_count": 9 }, { "metadata": { "ExecuteTime": { "end_time": "2025-04-30T10:10:59.379157Z", "start_time": "2025-04-30T10:10:58.996269Z" } }, "cell_type": "code", "source": [ "import pandas as pd\n", "for key in results:\n", " print(\"#######\", key, \"#######\")\n", " pids = results[key][\"pfcands_pid\"]\n", " print(pd.Series(pids).value_counts(normalize=True))\n", " print(\"dq\", pd.Series(results[key][\"n_dq\"]).value_counts())" ], "id": "1fbd0a62f4b32c62", "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "####### Delphes #######\n", "211.0 0.591530\n", "22.0 0.257798\n", "2112.0 0.150672\n", "Name: proportion, dtype: float64\n" ] }, { "ename": "KeyError", "evalue": "'n_dq'", "output_type": "error", "traceback": [ "\u001B[0;31m---------------------------------------------------------------------------\u001B[0m", "\u001B[0;31mKeyError\u001B[0m Traceback (most recent call last)", "Cell \u001B[0;32mIn[35], line 6\u001B[0m\n\u001B[1;32m 4\u001B[0m pids \u001B[38;5;241m=\u001B[39m results[key][\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mpfcands_pid\u001B[39m\u001B[38;5;124m\"\u001B[39m]\n\u001B[1;32m 5\u001B[0m \u001B[38;5;28mprint\u001B[39m(pd\u001B[38;5;241m.\u001B[39mSeries(pids)\u001B[38;5;241m.\u001B[39mvalue_counts(normalize\u001B[38;5;241m=\u001B[39m\u001B[38;5;28;01mTrue\u001B[39;00m))\n\u001B[0;32m----> 6\u001B[0m \u001B[38;5;28mprint\u001B[39m(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mdq\u001B[39m\u001B[38;5;124m\"\u001B[39m, pd\u001B[38;5;241m.\u001B[39mSeries(\u001B[43mresults\u001B[49m\u001B[43m[\u001B[49m\u001B[43mkey\u001B[49m\u001B[43m]\u001B[49m\u001B[43m[\u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mn_dq\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m]\u001B[49m)\u001B[38;5;241m.\u001B[39mvalue_counts())\n", "\u001B[0;31mKeyError\u001B[0m: 'n_dq'" ] } ], "execution_count": 35 }, { "metadata": { "ExecuteTime": { "end_time": "2025-05-14T20:11:07.612392Z", "start_time": "2025-05-14T20:11:03.681914Z" } }, "cell_type": "code", "source": [ "bins = {\n", " \"n_pfcands\": np.linspace(0, 600, 50),\n", " \"pfcands_pt\": np.linspace(-0.6, 2, 200),\n", " \"pfcands_eta\": np.linspace(-2.4, 2.4, 200),\n", " \"pfcands_phi\": np.linspace(-3.14, 3.14, 200),\n", " \"pfcands_mass\": np.linspace(0, 2, 100),\n", " \"n_genp\": np.linspace(0,600,50),\n", " \"n_parton_level\": np.linspace(0,600,50),\n", " \"genp_pt\": np.linspace(-1, 3, 200),\n", " \"parton_level_pt\": np.linspace(-1, 3, 200),\n", " \"pt_ch\": np.linspace(-1, 3, 200),\n", " \"pt_nh\": np.linspace(-1, 3, 200),\n", " \"pt_gamma\": np.linspace(-1, 3, 200),\n", " \"E_vis\": np.linspace(500, 10000, 200),\n", " \"n_gamma\": np.linspace(0, 1200, 200),\n", " \"n_ch\": np.linspace(0, 1200, 200),\n", " \"n_nh\": np.linspace(0, 1200, 200),\n", " #\"n_dq\": np.linspace(0, 3, 3)\n", "}\n", "fig, ax = plt.subplots(10, 2, figsize=(10, 20))\n", "for key in results:\n", " for i, (k, v) in enumerate(results[key].items()):\n", " if k == \"pfcands_pid\":\n", " continue\n", " ax[i // 2, i % 2].hist(v, bins=bins[k], alpha=0.5, label=key, density=\"pt\" in k)\n", " ax[i // 2, i % 2].set_title(k)\n", " if k == \"pfcands_pt\" or \"mass\" in k:# or \"_pt\" in k:\n", " if not k == \"pfcands_pt\":\n", " ax[i//2, i%2].set_yscale(\"log\")\n", " #ax[i//2, i%2].set_xscale(\"log\")\n", " ax[i // 2, i % 2].legend()\n", "\n", "fig.show()\n" ], "id": "d819dae53f16cf8", "outputs": [ { "ename": "KeyboardInterrupt", "evalue": "", "output_type": "error", "traceback": [ "\u001B[0;31m---------------------------------------------------------------------------\u001B[0m", "\u001B[0;31mKeyboardInterrupt\u001B[0m Traceback (most recent call last)", "Cell \u001B[0;32mIn[12], line 25\u001B[0m\n\u001B[1;32m 23\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m k \u001B[38;5;241m==\u001B[39m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mpfcands_pid\u001B[39m\u001B[38;5;124m\"\u001B[39m:\n\u001B[1;32m 24\u001B[0m \u001B[38;5;28;01mcontinue\u001B[39;00m\n\u001B[0;32m---> 25\u001B[0m \u001B[43max\u001B[49m\u001B[43m[\u001B[49m\u001B[43mi\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m/\u001B[39;49m\u001B[38;5;241;43m/\u001B[39;49m\u001B[43m \u001B[49m\u001B[38;5;241;43m2\u001B[39;49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mi\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m%\u001B[39;49m\u001B[43m \u001B[49m\u001B[38;5;241;43m2\u001B[39;49m\u001B[43m]\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mhist\u001B[49m\u001B[43m(\u001B[49m\u001B[43mv\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mbins\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mbins\u001B[49m\u001B[43m[\u001B[49m\u001B[43mk\u001B[49m\u001B[43m]\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43malpha\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;241;43m0.5\u001B[39;49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mlabel\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mkey\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mdensity\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mpt\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m \u001B[49m\u001B[38;5;129;43;01min\u001B[39;49;00m\u001B[43m \u001B[49m\u001B[43mk\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 26\u001B[0m ax[i \u001B[38;5;241m/\u001B[39m\u001B[38;5;241m/\u001B[39m \u001B[38;5;241m2\u001B[39m, i \u001B[38;5;241m%\u001B[39m \u001B[38;5;241m2\u001B[39m]\u001B[38;5;241m.\u001B[39mset_title(k)\n\u001B[1;32m 27\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m k \u001B[38;5;241m==\u001B[39m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mpfcands_pt\u001B[39m\u001B[38;5;124m\"\u001B[39m \u001B[38;5;129;01mor\u001B[39;00m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mmass\u001B[39m\u001B[38;5;124m\"\u001B[39m \u001B[38;5;129;01min\u001B[39;00m k:\u001B[38;5;66;03m# or \"_pt\" in k:\u001B[39;00m\n", "File \u001B[0;32m/work/gkrzmanc/1gatr/lib/python3.10/site-packages/matplotlib/_api/deprecation.py:453\u001B[0m, in \u001B[0;36mmake_keyword_only..wrapper\u001B[0;34m(*args, **kwargs)\u001B[0m\n\u001B[1;32m 447\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;28mlen\u001B[39m(args) \u001B[38;5;241m>\u001B[39m name_idx:\n\u001B[1;32m 448\u001B[0m warn_deprecated(\n\u001B[1;32m 449\u001B[0m since, message\u001B[38;5;241m=\u001B[39m\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mPassing the \u001B[39m\u001B[38;5;132;01m%(name)s\u001B[39;00m\u001B[38;5;124m \u001B[39m\u001B[38;5;132;01m%(obj_type)s\u001B[39;00m\u001B[38;5;124m \u001B[39m\u001B[38;5;124m\"\u001B[39m\n\u001B[1;32m 450\u001B[0m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mpositionally is deprecated since Matplotlib \u001B[39m\u001B[38;5;132;01m%(since)s\u001B[39;00m\u001B[38;5;124m; the \u001B[39m\u001B[38;5;124m\"\u001B[39m\n\u001B[1;32m 451\u001B[0m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mparameter will become keyword-only in \u001B[39m\u001B[38;5;132;01m%(removal)s\u001B[39;00m\u001B[38;5;124m.\u001B[39m\u001B[38;5;124m\"\u001B[39m,\n\u001B[1;32m 452\u001B[0m name\u001B[38;5;241m=\u001B[39mname, obj_type\u001B[38;5;241m=\u001B[39m\u001B[38;5;124mf\u001B[39m\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mparameter of \u001B[39m\u001B[38;5;132;01m{\u001B[39;00mfunc\u001B[38;5;241m.\u001B[39m\u001B[38;5;18m__name__\u001B[39m\u001B[38;5;132;01m}\u001B[39;00m\u001B[38;5;124m()\u001B[39m\u001B[38;5;124m\"\u001B[39m)\n\u001B[0;32m--> 453\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[43mfunc\u001B[49m\u001B[43m(\u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43margs\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mkwargs\u001B[49m\u001B[43m)\u001B[49m\n", "File \u001B[0;32m/work/gkrzmanc/1gatr/lib/python3.10/site-packages/matplotlib/__init__.py:1521\u001B[0m, in \u001B[0;36m_preprocess_data..inner\u001B[0;34m(ax, data, *args, **kwargs)\u001B[0m\n\u001B[1;32m 1518\u001B[0m \u001B[38;5;129m@functools\u001B[39m\u001B[38;5;241m.\u001B[39mwraps(func)\n\u001B[1;32m 1519\u001B[0m \u001B[38;5;28;01mdef\u001B[39;00m\u001B[38;5;250m \u001B[39m\u001B[38;5;21minner\u001B[39m(ax, \u001B[38;5;241m*\u001B[39margs, data\u001B[38;5;241m=\u001B[39m\u001B[38;5;28;01mNone\u001B[39;00m, \u001B[38;5;241m*\u001B[39m\u001B[38;5;241m*\u001B[39mkwargs):\n\u001B[1;32m 1520\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m data \u001B[38;5;129;01mis\u001B[39;00m \u001B[38;5;28;01mNone\u001B[39;00m:\n\u001B[0;32m-> 1521\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[43mfunc\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m 1522\u001B[0m \u001B[43m \u001B[49m\u001B[43max\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1523\u001B[0m \u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;28;43mmap\u001B[39;49m\u001B[43m(\u001B[49m\u001B[43mcbook\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43msanitize_sequence\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43margs\u001B[49m\u001B[43m)\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1524\u001B[0m \u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43m{\u001B[49m\u001B[43mk\u001B[49m\u001B[43m:\u001B[49m\u001B[43m \u001B[49m\u001B[43mcbook\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43msanitize_sequence\u001B[49m\u001B[43m(\u001B[49m\u001B[43mv\u001B[49m\u001B[43m)\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;28;43;01mfor\u001B[39;49;00m\u001B[43m \u001B[49m\u001B[43mk\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mv\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;129;43;01min\u001B[39;49;00m\u001B[43m \u001B[49m\u001B[43mkwargs\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mitems\u001B[49m\u001B[43m(\u001B[49m\u001B[43m)\u001B[49m\u001B[43m}\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 1526\u001B[0m bound \u001B[38;5;241m=\u001B[39m new_sig\u001B[38;5;241m.\u001B[39mbind(ax, \u001B[38;5;241m*\u001B[39margs, \u001B[38;5;241m*\u001B[39m\u001B[38;5;241m*\u001B[39mkwargs)\n\u001B[1;32m 1527\u001B[0m auto_label \u001B[38;5;241m=\u001B[39m (bound\u001B[38;5;241m.\u001B[39marguments\u001B[38;5;241m.\u001B[39mget(label_namer)\n\u001B[1;32m 1528\u001B[0m \u001B[38;5;129;01mor\u001B[39;00m bound\u001B[38;5;241m.\u001B[39mkwargs\u001B[38;5;241m.\u001B[39mget(label_namer))\n", "File \u001B[0;32m/work/gkrzmanc/1gatr/lib/python3.10/site-packages/matplotlib/axes/_axes.py:7006\u001B[0m, in \u001B[0;36mAxes.hist\u001B[0;34m(self, x, bins, range, density, weights, cumulative, bottom, histtype, align, orientation, rwidth, log, color, label, stacked, **kwargs)\u001B[0m\n\u001B[1;32m 7003\u001B[0m stacked \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;01mTrue\u001B[39;00m\n\u001B[1;32m 7005\u001B[0m \u001B[38;5;66;03m# Massage 'x' for processing.\u001B[39;00m\n\u001B[0;32m-> 7006\u001B[0m x \u001B[38;5;241m=\u001B[39m \u001B[43mcbook\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_reshape_2D\u001B[49m\u001B[43m(\u001B[49m\u001B[43mx\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;124;43m'\u001B[39;49m\u001B[38;5;124;43mx\u001B[39;49m\u001B[38;5;124;43m'\u001B[39;49m\u001B[43m)\u001B[49m\n\u001B[1;32m 7007\u001B[0m nx \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mlen\u001B[39m(x) \u001B[38;5;66;03m# number of datasets\u001B[39;00m\n\u001B[1;32m 7009\u001B[0m \u001B[38;5;66;03m# Process unit information. _process_unit_info sets the unit and\u001B[39;00m\n\u001B[1;32m 7010\u001B[0m \u001B[38;5;66;03m# converts the first dataset; then we convert each following dataset\u001B[39;00m\n\u001B[1;32m 7011\u001B[0m \u001B[38;5;66;03m# one at a time.\u001B[39;00m\n", "File \u001B[0;32m/work/gkrzmanc/1gatr/lib/python3.10/site-packages/matplotlib/cbook.py:1409\u001B[0m, in \u001B[0;36m_reshape_2D\u001B[0;34m(X, name)\u001B[0m\n\u001B[1;32m 1407\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m:\n\u001B[1;32m 1408\u001B[0m is_1d \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;01mFalse\u001B[39;00m\n\u001B[0;32m-> 1409\u001B[0m xi \u001B[38;5;241m=\u001B[39m \u001B[43mnp\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43masanyarray\u001B[49m\u001B[43m(\u001B[49m\u001B[43mxi\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 1410\u001B[0m nd \u001B[38;5;241m=\u001B[39m np\u001B[38;5;241m.\u001B[39mndim(xi)\n\u001B[1;32m 1411\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m nd \u001B[38;5;241m>\u001B[39m \u001B[38;5;241m1\u001B[39m:\n", "\u001B[0;31mKeyboardInterrupt\u001B[0m: " ] }, { "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1QAAAZMCAYAAAAJ3MMMAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA8uhJREFUeJzs3Xt8lOWd///3hJATOQCGgwk5EAERlUUlkSI04ELr4YcttEABAami7goUEtQiBUFOrRWCIUg5qOVgcVfZbbVQrbaAtahkqay1gBaEAEmtHCQhhEwkuX5/8M2sQ2YgueeeU/J6Ph55aK657zvX/Znk/vCemfu+HcYYIwAAAABAk0UEewIAAAAAEK4IVAAAAABgEYEKAAAAACwiUAEAAACARQQqAAAAALCIQAUAAAAAFhGoAAAAAMAiAhUAAAAAWESgAgAAAACLCFSAH+3du1d33nmn2rdvr4iICDkcDu3YsSPY0/LJjh075HA4NGjQoGBPBQAAIOgigz0BoLmqrKzUsGHDdPz4cfXr10/du3dXRESEOnfuHOypAQAAwCYEKsBPdu/erePHj2vgwIF65513gj0dAAAA+AEf+QP85Pjx45KkrKysIM8EAAAA/kKgQthzOBxyOBySpI0bN6pv376Ki4tT+/bt9f3vf1+HDh3yafvz5s2Tw+HQvHnz9Nlnn2nMmDHq2LGjYmJi9C//8i/6xS9+IWOMa/n6c4wmTpwoSVq/fr1rjpeed/TFF1/oiSeeUO/evRUfH6+EhAT17NlTDz/8sD7++GO3Zbds2aL77rtPvXr1UlJSkmJjY9WzZ0/NnDlTJ0+e9Dj3zMxMORwOHTlyRNu2bdPAgQOVkJCgxMRE3XHHHfrLX/7idb//8Ic/aPDgwUpISFDbtm11++236w9/+MNla7Vz50595zvfUWZmpqKjo3XVVVfp+uuv17/927/5/DwAAACEIgIVmo0nnnhC999/v9q2bau77rpLcXFx2rJliwYOHKhTp075vP3PPvtMffv21bvvvqvbb79dubm52r9/v/7t3/5NDz30kGu5zp07a+LEibrtttskSddcc40mTpyoiRMn6o477nAtt2fPHt14441asmSJ/vnPf2rIkCG644471KZNG61du1avvvqq288fPXq0/uu//kuJiYn69re/rcGDB+vLL7/U0qVLlZ2drRMnTnid++rVqzVs2DBJ0p133qmOHTvqzTff1De/+U19+umnDZbfuHGjhg4dqh07dqhXr1666667dOrUKX3rW9/Sf/3Xf3n8GS+88IIGDRqk3/72t0pNTdWIESPUr18/SdIvfvELFRcXN7LSAAAAYcQAYU6SkWQ6dOhg/vrXv7rGz549a2699VYjycyfP9/y9p988knXzxg9erSprq52Pfa///u/pn379kaS+c1vfuO23osvvmgkmYkTJzbYZkVFhUlJSTGSTF5ennE6nW6PHz161PzP//yP29h//ud/mqqqKrex8+fPm/vvv99IMg899FCDn5ORkWEkmZiYGLNjxw7XeE1Njfnud79rJJlJkya5rXP8+HHTpk0bI8ls2rTJ7bFnnnnGVYvc3Fy3xzIzM40k89577zWYx9///nfz2WefNRgHAAAId7xDhWbjqaee0g033OD6Pj4+XjNnzpQkbd++3eftx8XFqaioSNHR0a6x3r1767HHHpMkPfvss43e1rp161RWVqbbb79dS5cuVVRUlNvjaWlpuuWWW9zGRo4cqdjYWLexmJgYrVixQpGRkdqyZYvXn/ejH/1Iubm5ru9bt26t2bNnS2pYm+eff17nzp3TnXfeqXHjxrk9lp+f32Be9b744gu1bdvW9a7U13Xr1k1du3b1Oj8AAIBwxVX+0GzceeedDcauvfZaSVJZWZnP2//Wt76l5OTkBuP33nuvfvzjH2vXrl26cOGCIiOv/Gf1xhtvSJJ++MMfNmkO+/fv15tvvqlDhw7p3LlzqqurkyRFRUXp5MmT+vLLL9WuXbsG6zWlNjt37pSkBmGq3r333qs9e/Y0GO/bt6/eeecd3XfffZoxY4Z69+7tOrcNAACguSJQodlIS0trMJaQkCBJcjqdPm8/MzPT43hKSoqioqJUXV2tU6dOqVOnTlfc1tGjRyX9X6i5kgsXLuihhx7SCy+8cNnlKioqPAaqy9WmpqbGbby0tFSS9/31Nr5q1SqNGDFC69ev1/r169WuXTv169dP3/72tzVhwgSP8wIAAAh3fOQPzUZERPj8Ojf1nZvly5frhRdeUGpqqv7zP/9Tx44dk9PplDFGxhhdffXVkuR2tcGvC0RtevXqpb/+9a/63e9+px/96Efq2rWr3nzzTU2fPl3dunXz+K4WAABAuAuff4ECQVZSUuJxvKysTDU1Na7LhDdGenq6JHm8wp4n9Vf8+8UvfqGRI0eqS5curvOuzp07p88//7xR22mM1NRUSd7398iRI17Xbd26te644w4tX75ce/bs0T/+8Q9NnDhRp0+f1pQpU2ybIwAAQKggUAGN9Pvf/97j5dd/9atfSZL69+/fqPOnpIvnY0m64kf46p0+fVqS54/uvfzyy17fmbLim9/8pqT/269LvfTSS43eVseOHbV48WJJ0kcffeT75AAAAEIMgQpopHPnzmnatGlu5xx9/PHH+tnPfiZJmjp1aqO39cADD+jqq6/WH/7wBz3++OMNzmM6duyY20fkevbsKenieUpfD0979+7VrFmzLO2PN/fff7/i4uK0detWbd682e2x5cuX63/+538arFNVVaWCggKPNxj+7W9/K+n/3pUDAABoTghUQCONHz9ev/vd79StWzf94Ac/0B133KFbbrlFp06d0g9/+EMNHz680dtKTEzUr3/9ayUnJ+vpp59Wenq6RowYoZEjR+qWW25RZmamXn/9ddfyP/7xj9W6dWutXr1a1113nX7wgx/o9ttvV9++fTVkyBBlZGTYtp9dunTRc889J4fDobFjx6pfv34aO3as+vTpo7y8PI/BsaamRnl5eercubNuueUWjR49Wj/4wQ9000036aGHHlJkZKQreAIAADQnBCqgkbKysrR7927169dPf/jDH7Rjxw5de+21Kioq0tq1a5u8vZycHH300UfKz89X27Zt9bvf/U5vvvmmqqqq9PDDD2vUqFGuZfv376/3339fd9xxh06fPq3XX39dp06d0jPPPKNNmzbZuZuSpIkTJ+rNN99Ubm6uPv74Y/32t79V27Zt9eabb2rEiBENlo+Pj9dzzz2n733ve6qsrNTvfvc7/fa3v9X58+f1wx/+UB9++KHuuece2+cJAAAQbA5j58kXQDM0b948zZ8/X08++aTmzZsX7OkAAAAghPAOFQAAAABYRKACADRLS5Ys0ciRI5WVlSWHw+H1ptRXsmHDBt10002KjY1Vp06d9MADD+jEiRP2ThYAELYad41noJn49a9/rV//+teNWrZnz5768Y9/7N8JAfCbJ554Qu3bt9fNN9+sM2fOWNpGQUGB8vLylJubq2effVbHjx/XsmXL9N5772n37t1q06aNvZMGAIQdzqFCi1J/PlRj5ObmaseOHf6dEAC/+eyzz5SVlSVJuuGGG1RZWXnZG1Nf6uTJk8rIyND111+v9957T61atZIkvf7667rnnnu0aNEiPfHEE/6YOgAgjBCoAADNnpVAtW7dOk2ePFkbNmzQ+PHj3R675pprFB0drX379tk8UwBAuOEcKgAAPCguLpYkfeMb32jwWL9+/XTgwAFVVlYGeloAgBDTLM+hqqurU1lZmRISEuRwOII9HQBoMYwxOnv2rFJSUhQREd6v2ZWVlUmSUlNTGzyWmpoqY4zKysrUo0ePBo87nU45nU7X93V1dTp9+rSuuuoq+hIABJi/e1OzDFRlZWVKS0sL9jQAoMU6duyYunTpEuxp+KSqqkqSFB0d3eCxmJgYt2UutWTJkkafrwkACAx/9aZmGagSEhIkXSxaYmJikGcDAC1HRUWF0tLSXMfhcBYXFyfp4rtNsbGxbo9VV1e7LXOpWbNmKS8vz/V9eXm50tPT6UsAEAT+7k3NMlDVf5wiMTGRxgUAQdAcPtaWkpIiSSotLVW3bt3cHistLZXD4XAtc6no6GiP72zRlwAgePzVm8L7A+4AAPhJdna2JOm9995r8Nj777+va6+9VvHx8YGeFgAgxBCoAAAt3tGjR3XgwAF99dVXrrHvfOc7io2NVVFRkWpra13jr7/+uj777DONGzcuGFMFAISYZvmRPwAANm7cqJKSEknSiRMnVFNTo4ULF0qSMjIy3O4tNWHCBO3cuVOHDx9WZmamJKlDhw5asGCBZs6cqSFDhmjMmDEqLS3V0qVL1bNnT02fPj3QuwQACEEEKiBEFLz1qcfxGUMbXpIZwJU9//zz2rlzp9vYnDlzJEm5ubkNbtbrSX5+vq666ioVFBRo2rRpSkxM1KhRo/TTn/6Uj/sBACQRqAAAzdSOHTtsWfa+++7Tfffd5/N8AADNE4FKUm1trdvn5gFJat26tVq1ahXsaQAAACCEtehAZYzR559/rvLychljgj0dhBiHw6GkpCR17ty5WVwCGgAAAPZr0YGqvLxcZ86cUYcOHdSmTRv+0QwXY4zOnTunEydOKDY2Vm3btg32lAAAABCCWmygMsboiy++UGJiopKTk4M9HYSg2NhYOZ1OffHFF0pKSiJwAwAAoIEWG6hqa2tVW1vLHetxWYmJiaqoqFBtba0iI0Pvz4UrAwIAAARXi72x74ULFyQpJP+RjNBR//tR//sCAAAAfF2LDVT1+BgXLoffDwAAAFxOiw9UAAAAAGAVgQoAAAAALOIEIthix44dGjx4sF588UXdd999lrYxaNAgHTlyREeOHLF1bqHE20UkAAAAEJ4IVF6E2j98fb1qW33gqRcREaHExESlpqbqlltu0ZgxY/Ttb3+bc4ZCUKj9LgIAAOD/EKhamDFjxuiuu+6SMUZnz57VJ598ol//+tfasGGDhgwZoldeeYWb2AIAAACNRKBqYW6++Wbde++9bmPLli3TY489pmXLlmnMmDH63e9+F6TZAQAAAOGFi1JArVq10tKlSzVgwAC98cYbevfdd12PlZeX6/HHH1e3bt0UHR2tDh06aMyYMfrss8+uuN0dO3bI4XDol7/8pVasWKEePXooJiZGPXr00IoVK7yuV1ZWpjFjxqhdu3aKi4vTt7/9bX36acOPvTmdTi1evFjXX3+9YmJi1LZtWw0bNkwffvih23J1dXVavny5evfurYSEBCUmJuraa6/V/fffr6+++qoJlWq8grc+9fgFAACA5oV3qOBy//33691339XWrVs1YMAAlZeXq3///jp69Kh++MMf6vrrr9c//vEPPffcc7r11lv1P//zP8rIyLjidlesWKHPP/9cDz30kBISErR582ZNmzZNp0+f1pNPPum27Llz5/TNb35T/fr10+LFi3X48GE9++yz+s53vqOPP/5YrVq1kiR99dVXuuOOO7Rr1y6NHz9eU6ZMUXl5udauXavbbrtN77zzjvr27StJWrRokebOnathw4bp4YcfVqtWrXT48GG99tprcjqdat26tf3FBAAAQItAoIJL7969Jcn1btDcuXP12Wef6f3339e//Mu/uJa77777dOONN+rJJ5/UL3/5yytu99NPP9X+/fvVpUsXSdIjjzyiAQMGaOHChbr//vtd45J08uRJPfroo3rsscdcYx06dNBjjz2mt99+W9/+9rclSUVFRdqxY4feeOMN15gk/fu//7tuuOEGzZw5Uzt27JAk/fd//7euu+46vfbaa27z+ulPf9qE6gAAAAANEajgkpiYKEmqqKiQMUYvvfSSvvnNbyo1NVUnT550LdemTRv169dPv//97xu13XHjxrmFpqioKM2YMUNjx47V66+/rn/7t39zPRYREaFp06a5rX/77bdLkv7+97+7wtOmTZvUs2dP3XLLLW5zk6ShQ4dq/fr1On/+vGJjY5WUlKRDhw7p3Xff1YABA5pQkfB1uY8X+nrFSAAAAPwfAhVcKioqJF0MVidOnNCpU6f0+9//Xh06dPC4fERE407Bu+666xqM9erVS5IanIuVkpKimJgYt7GrrrpKknTq1CnX2P79+3X+/Hmvc5MuvtuVlpamxYsX67vf/a4GDhyolJQUDRo0SHfffbe+//3vKyoqqlH7AAAAAHhCoILLRx99JEm69tprZYyRJA0ZMkSPP/54wOZQf46UJ/Vzqv//G2+8UcuWLfO6fH3Y+sY3vqFDhw7pzTff1Pbt27V9+3b96le/0sKFC/Xuu++qffv29u0AAAAAWhQCFVyef/55SdLdd9+tDh06qG3btqqoqNCQIUN82u7+/fsbjO3bt0+SlJWVZWmb3bt314kTJ3T77bc36p2y+Ph4fe9739P3vvc9SdJzzz2nRx55RM8//7weffRRS3MAAAAAuGw6VFtbq5kzZ+rdd9/VXXfdpdtuu00REREaN26cdu/erVdffdXjel988UWjtv/SSy/p+PHjru9rampUUFCgVq1a6f/7//4/S3OeMGGCPv/8c6/vUP3zn/90/f+l51hJF+/HJUmnT5+29PPDGZd0BwAAsA/vULUwf/nLX7Rp0yZJ0tmzZ/XJJ5/o17/+tUpKSvStb31Lv/rVr1zLLlq0SH/+8581atQojRo1Sv369VNUVJRKSkq0bds23XLLLY26yl+PHj1066236uGHH1ZCQoJ+9atfqbi4WHPmzFFaWpql/fjRj36kt956S48++qj++Mc/6vbbb1diYqKOHj2qP/zhD4qJidH27dslXTyHq1+/frr11luVkpKif/zjH1qzZo2ioqL0gx/8wNLPBwAAACQCVYuzefNmbd68WREREYqPj1eXLl2Um5urMWPG6I477nBbNikpSX/+85+1dOlS/ed//qd+85vfKDIyUl26dNGAAQP0wAMPNOpnTp06VRUVFVqxYoWOHj2q9PR0LV++XD/60Y8s70fr1q21detWPffcc9q4caPrflYpKSnKycnRxIkTXcvm5+dr27ZtKiwsVHl5uTp27Kh+/fpp1qxZbpeDBwAAAJrKYb5+pn8zUVFRoaSkJJWXl7suBX6p6upqHT58WF27dm1wVTnYY8eOHRo8eLBefPFF3XfffcGejiVWf0/C8SN0XE4ddmjM8bcloi4AEDz+PgZzDhUAAAAAWMRH/gCLwvFdKAAAANiLd6gAAAAAwCLeoYLfDBo0SM3wFD0AAADAhXeoAAAAAMAiAhUAAAAAWNTiP/LHR9JwOS3p9+NyF9ngkuoAAACetdh3qCIjL2bJCxcuBHkmCGX1vx/1vy8AAADA17XYQNWqVSu1atVKFRUVwZ4KQlhFRYXrdwUAAAC4VIt92d3hcKhjx476xz/+oejoaLVp00YOhyPY00KIMMbo3Llzqqio0NVXX83vBgAAADxqcqDy9g/LNm3aqLKy0m3sk08+0eOPP66dO3eqpqZGN998s+bPn6/bb7+9wfrl5eX6yU9+ov/6r//SqVOndM0112jKlCl6+OGH/faP2aSkJJ0/f14nT57UiRMn/PIzEL4cDofatm2rpKSkYE8FAAAAIcrSO1QDBw7Ugw8+6DbWunVrt+8PHTqk/v37KzIyUo899piSkpK0du1affvb39bvfvc7DRkyxLVsTU2Nhg4dqg8//FBTp07Vddddp9/97nf693//d/3zn//UvHnzrEzzihwOh66++mp17NhRX331lV9+BsJX69at+agfAAAALstSoMrKytK999572WVmzZqlM2fOaM+ePerTp48kacKECbr++uv1yCOP6MCBA653ntatW6fi4mIVFhZq6tSpkqTJkyfre9/7nhYvXqxJkyYpIyPDylQbhXNkAAAAAFhh+aIUNTU1DT7iV+/cuXN67bXXNGjQIFeYkqT4+Hg98MAD+vTTT1VcXOwa/9WvfqW4uDhNnjzZbTvTp0/XV199pf/4j/+wOk0AAAAA8BtL71C9+uqr2rRpk2pra9WhQweNHj1aCxcudJ1r8tFHH8npdOob3/hGg3X79esnSSouLlZOTo7q6ur0l7/8RTfffLNiYmLcls3JyZHD4XALX0AgXe7eTAAAAECTA1VOTo5Gjhypbt26qaKiQtu2bVNRUZF27typXbt2KT4+XmVlZZKk1NTUBuvXj5WWlkqSvvzyS50/f97jstHR0UpOTnYt643T6ZTT6XR9z6XQAQAAAARCkwPVBx984Pb9hAkT1Lt3b82ePVvPPvusZs+eraqqKkkXA9Gl6t+Fql/mcsvWL1+/jDdLlizR/Pnzm7YjAAAAAOAjW27s++ijjyoqKkpbt26VJMXFxUmS27tG9aqrq92Wudyy9cvXL+PNrFmzVF5e7vo6duyYtR0BAAAAgCaw5ca+rVu3VkpKik6ePClJSklJkSSPH9WrH6v/iF+7du0UGxvrcVmn06mTJ08qNzf3sj8/Ojra6ztcAAAAAOAvtrxDVV1drePHj6tTp06SpBtvvFHR0dF67733Giz7/vvvS5L69u17cQIREbr55pv14YcfNniXavfu3TLGuJYFAAAAgFDSpEB16tQpj+Nz5szRhQsXNGzYMEkXL48+bNgw7dixQ//7v//rWq6yslLr1q1T9+7dlZOT4xofM2aMqqqqtGbNGrftLl++XJGRkRo9enRTpgkAAAAAAdGkj/wtXLhQ77//vgYPHqz09HRVVlZq27Zt2r59u2699VbXTXmlixeK+MMf/qBvfetbmjFjhhITE7V27VqVlpZq69atrpv6Shdv4vviiy8qLy9PR44c0XXXXadt27bpv//7v/WTn/xEmZmZtu0wAAAAANilSYFq0KBB2rdvn9avX69Tp06pVatW6t69uxYtWqS8vDy3+0h169ZNf/7zn/XjH/9YP/3pT1VTU6Obb75Zb7zxhoYMGeK23aioKL399tv6yU9+os2bN+vUqVO65pprtGLFCj3yyCP27CkAy7zdj2vG0B4BngkAAEBocRhjTLAnYbeKigolJSWpvLxciYmJwZ4Owhg39r08AhUuxfHXM+oCAMHj72OwLRelAAAAAICWiEAFAAAAABYRqAAAAADAIgIVAAAAAFhEoAIANEt1dXUqKChQz549FRMTo7S0NOXn5+vcuXONWt/hcHj8io+P9/PMAQDhpEmXTQcAIFzMmDFDhYWFGj58uPLz87V//34VFhbqww8/1Ntvv62IiCu/pjhw4EA9+OCDbmOtW7f215QBAGGIQAUAaHb+9re/acWKFRoxYoS2bNniGu/ataumTZuml19+WWPHjr3idrKysnTvvff6c6oAgDBHoALE/aaA5mbz5s0yxmj69Olu45MnT9aPf/xjbdq0qVGBSpJqampUU1PDR/0AAB4RqABYdrkgyk1/EUzFxcWKiIhQTk6O23hMTIz69Omj4uLiRm3n1Vdf1aZNm1RbW6sOHTpo9OjRWrhwoZKSkvwxbQBAGCJQAQCanbKyMiUnJys6OrrBY6mpqdq1a5dqamoUFRXldRs5OTkaOXKkunXrpoqKCm3btk1FRUXauXOndu3addl3rJxOp5xOp+v7iooK33YIABCyCFQAgGanqqrKY5iSLr5LVb/M5QLVBx984Pb9hAkT1Lt3b82ePVvPPvusZs+e7XXdJUuWaP78+RZmDgAIN1w2HQDQ7MTFxbm9Q/R11dXVrmWa6tFHH1VUVJS2bt162eVmzZql8vJy19exY8ea/LMAAOGBd6gAAM1OSkqK9u3bJ6fT2eCdqtLSUiUnJ1/23SlvWrdurZSUFJ08efKyy0VHR3t9hwwA0LzwDhUAoNnJzs5WXV2ddu/e7TZeXV2tvXv3qm/fvpa2W11drePHj6tTp052TBMA0AwQqAAAzc7o0aPlcDi0fPlyt/G1a9eqqqpK48aNc40dOnRIBw4ccFvu1KlTHrc7Z84cXbhwQcOGDbN9zgCA8MRH/gAAzc6NN96oRx55REVFRRoxYoTuuusu7d+/X4WFhcrNzXW7B9W//uu/qqSkRMYY19jChQv1/vvva/DgwUpPT1dlZaW2bdum7du369Zbb9XUqVODsVsAgBBEoAIANEvLly9XZmam1qxZo61btyo5OVlTp07VU089pYiIy39AY9CgQdq3b5/Wr1+vU6dOqVWrVurevbsWLVqkvLw815UCAQBwmK+/JNdMVFRUKCkpSeXl5UpMTAz2dBAGLneDWljDjX1bJo6/nlEXAAgefx+DOYcKAAAAACwiUAEAAACARZxDBcAvvH2Mko8CAgCA5oR3qAAAAADAIgIVAAAAAFhEoAIAAAAAiziHCi0Gl0YHAACA3XiHCgAAAAAsIlABAAAAgEUEKgAAAACwiEAFAAAAABYRqAAAAADAIgIVAAAAAFhEoAIAAAAAiwhUAAAAAGARgQoAAAAALCJQAQAAAIBFBCoAAAAAsCgy2BMA0LIUvPWp18dmDO0RwJkAAAD4jkAFIGR4C1sELQAAEKoIVGh2LvcOCAAAAGAnzqECAAAAAIsIVAAAAABgEYEKAAAAACwiUAEAAACARQQqAAAAALCIq/whLHElPwAAAIQC3qECAAAAAIt4hwpAyLvcO5Lc9BcAAAQT71ABAAAAgEUEKgAAAACwiEAFAAAAABYRqAAAAADAIgIVAAAAAFhEoAIAAAAAiwhUAAAAAGARgQoAAAAALCJQAQAAAIBFkcGeAAD4ouCtT70+NmNojwDOBAAAtES8QwUAAAAAFvEOFULa5d59AAAAAIKNd6gAAAAAwCICFQAAAABYRKACAAAAAIsIVAAAAABgERelANBsebuoCZdTBwAAdiFQIei4kh8CjXtXAQAAu/CRPwAAAACwiEAFAAAAABYRqAAAAADAIs6hQsBwrhQAAACam5AKVHV1dXr22We1evVqHTlyRB06dNCoUaP01FNPqU2bNsGeHoAWwErw50IWocvXvkJfAgBcSUgFqhkzZqiwsFDDhw9Xfn6+9u/fr8LCQn344Yd6++23FRHBJxRDHe9CAQglvvYV+hIA4EpCJlD97W9/04oVKzRixAht2bLFNd61a1dNmzZNL7/8ssaOHRvEGQKAZ9zvKjT52lfoSwCAxgiZl9Y2b94sY4ymT5/uNj558mTFxcVp06ZNwZkYPCp461OPXwAQKnztK/QlAEBjhMw7VMXFxYqIiFBOTo7beExMjPr06aPi4uIgzQwArOF8rODyta/QlwAAjREygaqsrEzJycmKjo5u8Fhqaqp27dqlmpoaRUVFNXjc6XTK6XS6vi8vL5ckVVRU+G/CzcjKPx4M9hQA/D9Lfv2XJq/zyO3d/DATa+qPu8aYIM/Et77i6/r0JQAIHf7uTSETqKqqqjw2Leniq4H1y3hqXEuWLNH8+fMbjKelpdk7SQAIQU8EewIenD17VklJSUGdgy99xdf16UsAEHpOnTrll94UMoEqLi5OX3zxhcfHqqurXct4MmvWLOXl5bm+r6ur0+nTp3XVVVfJ4XA0eS4VFRVKS0vTsWPHlJiY2OT1ERg8T+GD5yp8+PpcGWN09uxZpaSk+GF2TeNLX/F1/Uv70pkzZ5SRkaGjR48GPWiGGo4PnlEX76iNZ9TFu/LycqWnp6t9+/Z+2X7IBKqUlBTt27dPTqezwSuCpaWlSk5O9voqYnR0dIN12rZt6/OcEhMT+YUMAzxP4YPnKnz48lyFSmDwpa/4ur6nviRdrA1/A55xfPCMunhHbTyjLt7561YXIXOVv+zsbNXV1Wn37t1u49XV1dq7d6/69u0bpJkBAMKRr32FvgQAaIyQCVSjR4+Ww+HQ8uXL3cbXrl2rqqoqjRs3LjgTAwCEpab0lUOHDunAgQOW1wcAtFwh85G/G2+8UY888oiKioo0YsQI3XXXXa470ufm5gb05onR0dF68sknvZ6MjNDA8xQ+eK7CR3N6rprSV/71X/9VJSUlbleAsrMvNae62o3aeEZdvKM2nlEX7/xdG4cJhWvb/j+1tbVavny51qxZoyNHjig5OVmjR4/WU089pfj4+GBPDwAQZhrbVzIzMxsEqqasDwBouUIqUAEAAABAOAmZc6gAAAAAINwQqAAAAADAIgIVAAAAAFhEoPp/6urqVFBQoJ49eyomJkZpaWnKz8/XuXPngj21Zu/TTz/V3Llz1a9fP3Xo0EEJCQnq06ePFi1a5LH+n3zyib773e+qXbt2atOmjQYOHKg//vGPHrddXl6uqVOnKjU1VTExMbr++uu1atWqBieew5qqqiplZWXJ4XBoypQpDR7nuQqu06dPa+bMmerWrZtiYmLUoUMHDR48WH/605/clvvggw80ZMgQJSQkKDExUXfccYf27t3rcZtlZWWaMGGCOnTooNjYWPXt21evvPJKAPYm9PjaN5pz3/Fl35raE8KJnc/5lY6/4caO2jT2mBdOfK1LZWWlFi9erBtvvFEJCQlKTk5W//799ctf/jLs++uSJUs0cuRI199BZmampe1s2LBBN910k2JjY9WpUyc98MADOnHiRNM2YmCMMWbatGlGkhk+fLhZs2aNmTFjhomMjDSDBw82tbW1wZ5es/b444+b+Ph4M3bsWFNYWGhWrVplRo0aZSSZ3r17m6qqKteyBw8eNO3btzcdO3Y0ixcvNitXrjR9+vQxkZGR5q233nLbrtPpNNnZ2SYyMtLMmDHDrFmzxgwfPtxIMk8++WSA97J5ys/PN/Hx8UaSeeSRR9we47kKriNHjpjMzEyTnJxsHn/8cfP888+bZcuWmfvuu89s3rzZtdx7771noqOjTVZWllm2bJlZtmyZycrKMvHx8eajjz5y2+apU6dM165dTZs2bcycOXPM6tWrTW5urpFkXnjhhUDvYtD52jeac9/xZd+a0hPCjZ3P+eWOv+HI19o09pgXbnypS21trRkwYICJiIgwkyZNMqtXrzYFBQUmJyfHSDKPPfZYgPbCPySZ9u3bmyFDhph27dqZjIyMJm9j2bJlRpLJzc01q1evNnPmzDFt2rQxvXr1MpWVlY2fS5N/cjP08ccfG4fDYUaMGOE2XlhYaCSZl156KUgzaxmKi4vNmTNnGozPnj3bSDIrVqxwjY0cOdJERESYDz/80DV29uxZk56ebnr06GHq6upc4ytXrjSSTGFhodt2R4wYYVq3bm2OHDli/860IHv27DGtWrUyS5cu9djQea6Ca8CAAaZLly6mrKzssstlZ2ebhIQEc/z4cdfY8ePHTUJCghk6dKjbso8++qiRZF577TXX2IULF0x2drZp3769OXv2rL07EcJ87RvNue/4um9N6QnhxM7n/ErH33BjR20ae8wLJ77WZdeuXUaSmT59utu40+k0Xbt2NUlJSXZPOaAOHTrk+v/rr7++yYHqxIkTJi4uzmRnZ5sLFy64xl977TUjySxatKjR2yJQmf87SL/zzjtu4+fPnzdxcXHmzjvvDNLMWraPPvrISDIPPfSQMcaYyspKEx0dbW6//fYGyz711FNGkvnggw9cY7fddpuJi4sz58+fd1v2nXfeMZLMz372M//uQDN24cIFc/PNN5u7777bHD58uEFD57kKrp07d7oF1JqaGnPu3LkGy/397383kswPf/jDBo/98Ic/NA6Hw/zjH/9wjaWmppprrrmmwbIbNmwwksx//Md/2LgXoc3XvtGc+46/9u3SnhBu7KrLlY6/4cjX2jT2mBdufK3LG2+8YSSZp59+usFj2dnZJiUlxdb5BpOVQLV27VojyWzYsKHBY1lZWea6665r9LY4h0pScXGxIiIilJOT4zYeExOjPn36qLi4OEgza9mOHz8uSerUqZMk6aOPPpLT6dQ3vvGNBsv269dPklzPVV1dnf7yl7/opptuUkxMjNuyOTk5cjgcPK8+KCgo0IEDB1RUVOTxcZ6r4Nq2bZskKT09XcOGDVNsbKzatGmjHj16aNOmTa7l6uvq7XkyxmjPnj2SpH/84x8qLS11PX+XLvv17bUEvvaN5tx3/LVvl/aEcGNXXa50/A1Hvtamsce8cONrXXJyctS2bVs9/fTTeuWVV3T06FEdOHBAs2bN0p49ezRv3jw/zj70XakHHjhwQJWVlY3aFoFKF0+yTk5OVnR0dIPHUlNTdfLkSdXU1ARhZi1XbW2tFixYoMjISI0dO1bSxedJuvicXKp+rLS0VJL05Zdf6vz58x6XjY6OVnJysmtZNM3hw4f15JNPau7cuV5PAOW5Cq5PPvlEkjR58mSdPn1a69ev1wsvvKCoqCiNHz9eL774oqSmPU9NWbYl8LVvNOe+449989QTwo0ddWnM8Tcc+Vqbxh7zwo2vdWnXrp1ee+01tW/fXqNGjVJGRoauu+46rVy5Ulu2bNHkyZP9Of2Qd6W+ZoxxLXMlkbbOLExVVVV5/GWV5HrFvKqqSlFRUYGcVos2ffp0vffee1q8eLGuvfZaSRefA0ken6uvP09XWrZ++fpl0DQPP/ywsrKylJeX53UZnqvgOnv2rCQpISFB27dvdx27vvvd7yorK0tPPPGEJk6caNvzdOmyLYGvfaM59x1/7JunnhBu7KhLY46/4cjX2jT2mBcREV7vI9jxOxMfH68bbrhB99xzj/r376/Tp09r5cqVGjt2rH7zm99o6NChfpl7OLCzr4XXb5afxMXFyel0enysurratQwCY86cOSoqKtKDDz6oWbNmucbrnwNPz9Wlz9Pllq1fnue06TZt2qS33npLq1atUuvWrb0ux3MVXLGxsZKkMWPGuDXadu3a6Z577tHnn3+uTz75xLbnqSUeJ33tG82579i9b956QrjxtS6NPf6GI19r09hjXrjxtS5//etf1b9/fw0dOlQ///nPNXz4cN1///1699131blzZ02ePFm1tbV+mXs4sLOvEagkpaSk6OTJkx4LWlpaquTk5LB8lTAczZs3TwsXLtSkSZP0i1/8wu2xlJQUSZ4/VlQ/Vv+2bbt27RQbG+txWafTqZMnT3p8ixfeOZ1O5eXl6a677lLnzp118OBBHTx4UCUlJZIu3kfq4MGDOnPmDM9VkHXp0kWS1Llz5waPXX311ZIuftSyKc9TU5ZtCXztG82579i5b5frCeHGl7o05fgbjnz9nWnsMS/c+FqXgoICVVdXa+TIkW7jcXFxuvvuu1VSUqIjR47YPe2wcaW+5nA4XMtciW2BKqRurtVE2dnZqqur0+7du93Gq6urtXfvXvXt29evPx8XzZs3T/Pnz9fEiRO1bt06ORwOt8dvvPFGRUdH67333muw7vvvvy9JrucqIiJCN998sz788MMGB6Ldu3fLGMPz2kTnz5/XiRMntHXrVnXv3t31NWjQIEkXXz3t3r271q1bx3MVZPUnMNefxP919WMdO3ZUdna2JHl9nhwOh2655RZJF/9Rkpqa6nr+Ll1WUsg9T/7sS7169fKpbzTnvmPXvl2pJ4QbX+rSlONvOPL1d6axx7xw42td6oOCp3ehLly44PbfluhKPfDaa69VfHx84zbWpOsLXoZC6OZaTfXRRx9d9jr/Gzdu9NvPxkXz5883ksz48eMve6O673//+yYiIsLs3bvXNVZ/b6Pu3bu73duoqKjI672NIiMjzeHDh23fj+aspqbGvPLKKw2+nnvuOSPJ3HHHHeaVV14xn3zyiTGG5yqYTp8+bRISEkxqaqrbvaHKyspMmzZtTI8ePVxjffv2NQkJCaa0tNQ1VlpaahISEsy//uu/um135syZXu9D1bZtW1NRUeHHvWo6f/ala665xkhqVN84ePCg2b9/v9tyzbnvNGXfPNXGmMb3hHDiS12aevwNN77+zjTlmBdOfK3L9OnTPd565MsvvzRXX321adeundv9l8LZlS6bXlJSYvbv329qampcY1988YWJjY01OTk5Hu9DtWDBgkb/fNsCVSjdXMuKKVOmuO5EvXbtWpOXl2ciIyNNbm5uszmYh6r6f0ynp6eb9evXm40bN7p9/f73v3ct+/e//920a9fOdOzY0SxZssSsXLnS9OnTx7Rq1cq88cYbbtt1Op3mlltuMZGRkSYvL8+sXbvWDB8+3EgyP/nJTwK9m82Wt/ug8FwF1+rVq40kc/3115ulS5eaJUuWmPT0dNO6dWvz5ptvupb785//bKKiokxWVpYpKCgwBQUFJisry7Rp08YtDBtjzMmTJ01GRoaJj483c+fONatXrzaDBg0yksy6desCvYtX5O++1K9fv0b1jYyMDOPp9cvm3Hcau2+eatOUnhBufKmLJ83lPlTG+F6bxh7zwo0vdTly5Ihp3769cTgc5t577zWrVq0yixYtMpmZmUaSWblyZaB3x1YbNmwwCxYsMAsWLDAdO3Y0bdu2dX1/6b2lcnNzjaQGL9A+88wzRpIZNGiQWb16tZk7d65p06aN6dmzZ5NuVu+XG/sG++ZaVly4cME888wzpkePHiYqKsqkpKSYGTNmNKmYsGbixIlGktev3Nxct+X37dtn7rnnHpOUlGRiY2PNbbfdZt566y2P2/7yyy/NI488Yq6++moTFRVlrrvuOrNixQq3d0fgm8s1dJ6r4NqyZYu59dZbTVxcnImPjzdDhw417777boPldu3aZW6//XbTpk0bEx8fb771rW+ZPXv2eNzm8ePHzb333muuuuoqEx0dbW666Sbz8ssv+3tXfOavvtSYvuHtH4DNue80dt881aapPSGc+FIXT5pToLKjNo095oUTX+ty8OBBM2HCBJOammoiIyNNQkKCGThwoNmyZUugdsFv6kNSY44T3gKVMca8+OKLpnfv3iY6Otp06NDBTJo0yfzzn/9s0lwcxhjTuA8HNt4NN9ygysrKJp3o9tBDD2nNmjX6+9//rm7durk9Nm7cOG3evFkVFRWN/ywjAAD/D30JAOAvIXMfqsbeXKtHjx4NHnc6nW4ns9fV1en06dO66qqrwv4kVgAIJ8YYnT17VikpKWF3z5dL0ZcAoHnwd28KmUDly821lixZovnz5/tvcgCAJjl27JjrUsbhir4EAM2Lv3pTyASqr99cq/4GbfWudHOtWbNmud01vLy8XOnp6Tp27JgSExP9NGMAwKUqKiqUlpamhISEYE/FZ/QlAGge/N2bQiZQff3mWpd+Vv1KN9eKjo72+ApiYmIijQsAgqA5fKyNvgQAzYu/elPIfMDd1ptrAQDgI/oSAKAxghKojh49qgMHDuirr75yjX3nO99RbGysioqK3O7o/Prrr+uzzz7TuHHjgjFVAEALQF8CAFhl20f+Nm7cqJKSEknSiRMnVFNTo4ULF0qSMjIyNH78eNeyEyZM0M6dO3X48GFlZmZKkjp06KAFCxZo5syZGjJkiMaMGaPS0lItXbpUPXv21PTp0+2aKgCgBaAvAQACwbZA9fzzz2vnzp1uY3PmzJEk5ebmujUub/Lz83XVVVepoKBA06ZNU2JiokaNGqWf/vSnfKwCANAk9CUAQCD45ca+wVZRUaGkpCSVl5dz8i8ABBDHX8+oCwAEj7+PwSFzUQoAAAAACDcEKgAAAACwiEAFAAAAABYRqAAAAADAIgIVAAAAAFhEoAIAAAAAiwhUAAAAAGARgQoAAAAALCJQAQAAAIBFBCoAAAAAsIhABQAAAAAWEagAAAAAwCICFQAAAABYRKACAAAAAIsIVAAAAABgEYEKAAAAACwiUAEAAACARQQqAAAAALCIQAUAAAAAFhGoAAAAAMAiAhUAAAAAWESgAgAAAACLCFQAAAAAYBGBCgAAAAAsIlABAAAAgEUEKgAAAACwiEAFAAAAABYRqAAAAADAIgIVAAAAAFhEoAIAAAAAiwhUAAAAAGARgQoAAAAALCJQAQAAAIBFBCoAAAAAsIhABQAAAAAWEagAAAAAwCICFQAAAABYRKACAAAAAIsIVAAAAABgEYEKAAAAACwiUAEAAACARQQqAAAAALCIQAUAAAAAFhGoAAAAAMAiAhUAAAAAWESgAgAAAACLCFQAAAAAYBGBCgAAAAAsIlABAAAAgEUEKgAAAACwiEAFAAAAABbZFqjq6upUUFCgnj17KiYmRmlpacrPz9e5c+catb7D4fD4FR8fb9cUAQAtCH0JABAIkXZtaMaMGSosLNTw4cOVn5+v/fv3q7CwUB9++KHefvttRURcObsNHDhQDz74oNtY69at7ZoiAKAFoS8BAALBlkD1t7/9TStWrNCIESO0ZcsW13jXrl01bdo0vfzyyxo7duwVt5OVlaV7773XjikBAFow+hIAIFBs+cjf5s2bZYzR9OnT3cYnT56suLg4bdq0qdHbqqmpUWVlpR3TAgC0UPQlAECg2BKoiouLFRERoZycHLfxmJgY9enTR8XFxY3azquvvqq4uDglJCSoY8eOmjp1qsrLy+2YIgCgBaEvAQACxZaP/JWVlSk5OVnR0dENHktNTdWuXbtUU1OjqKgor9vIycnRyJEj1a1bN1VUVGjbtm0qKirSzp07tWvXrsueBOx0OuV0Ol3fV1RU+LZDAICwRl8CAASKLYGqqqrKY9OSLr4aWL/M5RrXBx984Pb9hAkT1Lt3b82ePVvPPvusZs+e7XXdJUuWaP78+RZmDgBojuhLAIBAseUjf3FxcW6vxH1ddXW1a5mmevTRRxUVFaWtW7dedrlZs2apvLzc9XXs2LEm/ywAQPNBXwIABIot71ClpKRo3759cjqdDV4RLC0tVXJy8mVfBfSmdevWSklJ0cmTJy+7XHR0tNdXIgEALQ99CQAQKLa8Q5Wdna26ujrt3r3bbby6ulp79+5V3759LW23urpax48fV6dOneyYJgCghaAvAQACxZZANXr0aDkcDi1fvtxtfO3ataqqqtK4ceNcY4cOHdKBAwfcljt16pTH7c6ZM0cXLlzQsGHD7JgmAKCFoC8BAALFYYwxdmxo6tSpKioq0vDhw3XXXXe57kh/22236Y9//KPrjvSZmZkqKSnR13/sjBkz9P7772vw4MFKT09XZWWltm3bpu3bt+vWW2/V9u3bFRsb2+i5VFRUKCkpSeXl5UpMTLRj9wAAjRBKx1/6EgBA8v8x2JZzqCRp+fLlyszM1Jo1a7R161YlJydr6tSpeuqpp1xNy5tBgwZp3759Wr9+vU6dOqVWrVqpe/fuWrRokfLy8lxXZAIAoLHoSwCAQLDtHapQwiuBABAcHH89oy4AEDz+Pgbbcg4VAAAAALREBCoAAAAAsIhABQAAAAAWEagAAAAAwCICFQAAAABYRKACAAAAAIsIVAAAAABgEYEKAAAAACwiUAEAAACARQQqAAAAALCIQAUAAAAAFhGoAAAAAMAiAhUAAAAAWESgAgAAAACLCFQAAAAAYBGBCgAAAAAsIlABAAAAgEUEKgAAAACwiEAFAAAAABYRqAAAAADAIgIVAAAAAFhEoAIAAAAAiwhUAAAAAGARgQoAAAAALCJQAQAAAIBFBCoAAAAAsIhABQAAAAAWEagAAAAAwCICFQAAAABYRKACAAAAAIsIVAAAAABgEYEKAAAAACwiUAEAAACARQQqAAAAALCIQAUAAAAAFhGoAAAAAMAiAhUAAAAAWESgAgAAAACLCFQAAAAAYBGBCgAAAAAsIlABAAAAgEUEKgAAAACwiEAFAAAAABYRqAAAAADAIgIVAAAAAFhEoAIAAAAAiwhUAAAAAGARgQoAAAAALCJQAQAAAIBFBCoAAAAAsIhABQAAAAAW2Rao6urqVFBQoJ49eyomJkZpaWnKz8/XuXPnArI+AACXojcBAPzNtkA1Y8YM5eXlqVevXlqxYoVGjhypwsJCDRs2THV1dX5fHwCAS9GbAAB+Z2zw8ccfG4fDYUaMGOE2XlhYaCSZl156ya/rX6q8vNxIMuXl5U1aDwDgm1A6/oZSbwqlugBAS+PvY7At71Bt3rxZxhhNnz7dbXzy5MmKi4vTpk2b/Lo+AACXojcBAALBlkBVXFysiIgI5eTkuI3HxMSoT58+Ki4u9uv6AABcit4EAAiESDs2UlZWpuTkZEVHRzd4LDU1Vbt27VJNTY2ioqL8sr7T6ZTT6XR9X15eLkmqqKiwsjsAAIvqj7vGmCDPJLi9ib4EAKHD373JlkBVVVXlseFIF1/Jq1/GW9Pydf0lS5Zo/vz5DcbT0tKuOHcAgP1OnTqlpKSkoM4hmL2JvgQAocdfvcmWQBUXF6cvvvjC42PV1dWuZfy1/qxZs5SXl+f6/syZM8rIyNDRo0eD3tBDSUVFhdLS0nTs2DElJiYGezohhdp4Rl28ozaelZeXKz09Xe3btw/2VILam+hLjcffkmfUxTtq4xl18c7fvcmWQJWSkqJ9+/bJ6XQ2eDWvtLRUycnJXl8BtGP96Ohoj68iJiUl8QvlQWJiInXxgtp4Rl28ozaeRUQE/77xwexN9KWm42/JM+riHbXxjLp456/eZMtWs7OzVVdXp927d7uNV1dXa+/everbt69f1wcA4FL0JgBAINgSqEaPHi2Hw6Hly5e7ja9du1ZVVVUaN26ca+zQoUM6cOCA5fUBAGgMehMAICDsuqHVlClTjCQzfPhws3btWpOXl2ciIyNNbm6uqa2tdS2XkZFhPP3Yxq7fGNXV1ebJJ5801dXVPu9Xc0JdvKM2nlEX76iNZ6FWl1DpTaFWl1BCbTyjLt5RG8+oi3f+ro3DGHuuH1hbW6vly5drzZo1OnLkiJKTkzV69Gg99dRTio+Pdy2XmZmpkpKSBpctbOz6AAA0Fr0JAOBvtgUqAAAAAGhpgn8ZJgAAAAAIUwQqAAAAALCIQAUAAAAAFoVNoKqrq1NBQYF69uypmJgYpaWlKT8/X+fOnQvI+qHKl/369NNPNXfuXPXr108dOnRQQkKC+vTpo0WLFoV9XSR7n/OqqiplZWXJ4XBoypQpfpht4NhRl9OnT2vmzJnq1q2bYmJi1KFDBw0ePFh/+tOf/Dhz//K1LpWVlVq8eLFuvPFGJSQkKDk5Wf3799cvf/nLBhc6CDdLlizRyJEjXX8DmZmZlrazYcMG3XTTTYqNjVWnTp30wAMP6MSJE/ZONoDoS97RmzyjL3lHb/KM3uRdSPUmv1w70A+mTZvmunTtmjVrzIwZM0xkZKQZPHhwoy5d6+v6ocqX/Xr88cdNfHy8GTt2rCksLDSrVq0yo0aNMpJM7969TVVVVYD2wj/sfM7z8/NNfHy8kWQeeeQRP804MHyty5EjR0xmZqZJTk42jz/+uHn++efNsmXLzH333Wc2b94cgD3wD1/qUltbawYMGGAiIiLMpEmTzOrVq01BQYHJyckxksxjjz0WoL3wD0mmffv2ZsiQIaZdu3YmIyOjydtYtmyZkWRyc3PN6tWrzZw5c0ybNm1Mr169TGVlpf2TDgD6knf0Js/oS97RmzyjN3kXSr0pLALVxx9/bBwOhxkxYoTbeGFhoZFkXnrpJb+uH6p83a/i4mJz5syZBuOzZ882ksyKFStsnW8g2fmc79mzx7Rq1cosXbo07BuXHXUZMGCA6dKliykrK/PXNAPO17rs2rXLSDLTp093G3c6naZr164mKSnJ7ikH1KFDh1z/f/311ze5aZ04ccLExcWZ7Oxsc+HCBdf4a6+9ZiSZRYsW2TXVgKEveUdv8oy+5B29yTN60+WFUm8Ki0BVfxB955133MbPnz9v4uLizJ133unX9UOVv/bro48+MpLMQw89ZMc0g8Ku2ly4cMHcfPPN5u677zaHDx8O+8bla1127txpJJnCwkJjjDE1NTXm3LlzfptvoPhalzfeeMNIMk8//XSDx7Kzs01KSoqt8w0mK01r7dq1RpLZsGFDg8eysrLMddddZ9PsAoe+5B29yTP6knf0Js/oTY0X7N4UFudQFRcXKyIiQjk5OW7jMTEx6tOnj4qLi/26fqjy134dP35cktSpUyef5xgsdtWmoKBABw4cUFFRkT+mGXC+1mXbtm2SpPT0dA0bNkyxsbFq06aNevTooU2bNvlt3v7ma11ycnLUtm1bPf3003rllVd09OhRHThwQLNmzdKePXs0b948P84+9NXX7xvf+EaDx/r166cDBw6osrIy0NPyCX3JO3qTZ/Ql7+hNntGb/MvO3hQWgaqsrEzJycmKjo5u8FhqaqpOnjypmpoav60fqvyxX7W1tVqwYIEiIyM1duxYu6YacHbU5vDhw3ryySc1d+5cyyc6hhpf6/LJJ59IkiZPnqzTp09r/fr1euGFFxQVFaXx48frxRdf9Nvc/cnXurRr106vvfaa2rdvr1GjRikjI0PXXXedVq5cqS1btmjy5Mn+nH7IKysrk3SxlpdKTU2VMca1TLigL3lHb/KMvuQdvckzepN/2dmbIm2dmZ9UVVV5/GWSLqb0+mWioqL8sn6o8sd+TZ8+Xe+9954WL16sa6+91pZ5BoMdtXn44YeVlZWlvLw8v8wxGHyty9mzZyVJCQkJ2r59u2u57373u8rKytITTzyhiRMnKiIiLF6rcbHj9yU+Pl433HCD7rnnHvXv31+nT5/WypUrNXbsWP3mN7/R0KFD/TL3cFBVVSVJHmv89fqGE/qSd/Qmz+hL3tGbPKM3+ZedvSksfrPi4uLkdDo9PlZdXe1axl/rhyq792vOnDkqKirSgw8+qFmzZtkyx2DxtTabNm3SW2+9pVWrVql169Z+mWMw+FqX2NhYSdKYMWPcDuDt2rXTPffco88//9z1SmE48bUuf/3rX9W/f38NHTpUP//5zzV8+HDdf//9evfdd9W5c2dNnjxZtbW1fpl7OKivnacah+sxmL7kHb3JM/qSd/Qmz+hN/mVnbwqLQJWSkqKTJ0963OHS0lIlJydfNp37un6osnO/5s2bp4ULF2rSpEn6xS9+YfdUA86X2jidTuXl5emuu+5S586ddfDgQR08eFAlJSWSpPLych08eFBnzpzx5y74ha+/M126dJEkde7cucFjV199tSTpyy+/tGm2geNrXQoKClRdXa2RI0e6jcfFxenuu+9WSUmJjhw5Yve0w0ZKSoqki7W8VGlpqRwOh2uZcEFf8o7e5Bl9yTt6k2f0Jv+yszeFRaDKzs5WXV2ddu/e7TZeXV2tvXv3qm/fvn5dP1TZtV/z5s3T/PnzNXHiRK1bt04Oh8Mf0w0oX2pz/vx5nThxQlu3blX37t1dX4MGDZJ08VXC7t27a926df7cBb/w9Xem/sTY+pPDv65+rGPHjjbNNnB8rUv9wdjTK30XLlxw+29LlJ2dLUl67733Gjz2/vvv69prr1V8fHygp+UT+pJ39CbP6Eve0Zs8ozf5l629qUnXF7yMxYsXm+9///uma9euRpKlm2sZY8z69etNnz59TExMjOnYsaO5//77zY4dOy57Hf6NGze6xg4ePGj279/vttxHH33U6PXDSVP2y1NdjDFm/vz5RpIZP3582N9I8ut8qU1NTY155ZVXGnw999xzRpK54447zCuvvGI++eSTgO2PXXz9nTl9+rRJSEgwqamp5uzZs67xsrIy06ZNG9OjRw//7oCf+FqX6dOnG0nmZz/7mdv4l19+aa6++mrTrl07t3tchLMrXZq2pKTE7N+/39TU1LjGvvjiCxMbG2tycnI83utjwYIFfpkrfSk46E2e0Ze8ozd5Rm9qvGD3JtsClfx8t+KHHnrIdafotWvXmry8PBMZGWlyc3PdDrYZGRnGU06cMmVKo9YPN43dL091KSoqMpJMenq6Wb9+vdm4caPb1+9///tA746tfKmNJ83lfh++1mX16tVGkrn++uvN0qVLzZIlS0x6erpp3bq1efPNNwO5K7bypS5Hjhwx7du3Nw6Hw9x7771m1apVZtGiRSYzM9NIMitXrgz07thqw4YNZsGCBWbBggWmY8eOpm3btq7vL71/R25urpFkDh8+7Db+zDPPGElm0KBBZvXq1Wbu3LmmTZs2pmfPnm7/ALITfSl46E2e0Ze8ozd5Rm/yLpR6k22Byt93K16wYIF55plnTI8ePUxUVJRJSUkxM2bMaLCz3v7QLly40Kj1w01j98tTXSZOnGgkef3Kzc0N4J7Yz5faeNJcGpcdddmyZYu59dZbTVxcnImPjzdDhw417777biCm7ze+1uXgwYNmwoQJJjU11URGRpqEhAQzcOBAs2XLlkDtgt/UN6LGHCe8NS1jjHnxxRdN7969TXR0tOnQoYOZNGmS+ec//+m3edOXgofe5Bl9yTt6k2f0Ju9CqTc5jDHmch8JtOKGG25QZWVlk050W7dunSZPnqwNGzZo/Pjxbo9dc801io6O1r59+2yeKQCgJaAvAQD8JWTuQ3WluxVv3rxZlZWVHk8OczqdbldAqaur0+nTp3XVVVeF/UmsABBOjDE6e/asUlJSwu6eL5eiLwFA8+Dv3hQygaqxdyvu0aNHg8eXLFmi+fPn+32OAIDGOXbsmOtSxuGKvgQAzYu/elPIBCpf7lY8a9Yst7uGl5eXKz09XceOHVNiYqIfZgsA8KSiokJpaWlKSEgI9lR8Rl8CgObB370pZALV1+9WXH/H63pXultxdHS0x4aXmJhI4wKAIGgOH2ujLwFA8+Kv3hQyH3C3827FAAD4ir4EAGiMkAlUtt6tGAAAH9GXAACNEZRAdfToUR04cEBfffWVa+w73/mOYmNjVVRUpNraWtf466+/rs8++0zjxo0LxlQBAC0AfQkAYJVt51Bt3LhRJSUlkqQTJ06opqZGCxculCRlZGS43cNjwoQJ2rlzpw4fPqzMzExJUocOHbRgwQLNnDlTQ4YM0ZgxY1RaWqqlS5eqZ8+emj59ul1TBQC0APQlAEAg2Baonn/+ee3cudNtbM6cOZKk3NzcBjdF9CQ/P19XXXWVCgoKNG3aNCUmJmrUqFH66U9/yscqAABNQl8CAASCwxhjgj0Ju1VUVCgpKUnl5eVcTQkAAojjr2fUBQCCx9/H4JC5KAUAAAAAhBsCFQAAAABYRKACAAAAAIsIVAAAAABgEYEKAAAAACwiUAEAAACARQQqAAAAALCIQAUAAAAAFhGoAAAAAMAiAhUAAAAAWESgAgAAAACLCFQAAAAAYBGBCgAAAAAsIlABAAAAgEUEKgAAAACwiEAFAAAAABYRqAAAAADAIgIVAAAAAFhEoAIAAAAAiwhUAAAAAGARgQoAAAAALCJQAQAAAIBFBCoAAAAAsIhABQAAAAAWEagAAAAAwCICFQAAAABYRKACAAAAAIsIVAAAAABgEYEKAAAAACwiUAEAAACARQQqAAAAALCIQAUAAAAAFhGoAAAAAMAiAhUAAAAAWESgAgAAAACLCFQAAAAAYBGBCgAAAAAsIlABAAAAgEUEKgAAAACwiEAFAAAAABYRqAAAAADAIgIVAAAAAFhEoAIAAAAAiwhUAAAAAGARgQoAAAAALCJQAQAAAIBFBCoAAAAAsIhABQAAAAAWEagAAAAAwCICFQAAAABYRKACAAAAAItsC1R1dXUqKChQz549FRMTo7S0NOXn5+vcuXONWt/hcHj8io+Pt2uKAIAWhL4EAAiESLs2NGPGDBUWFmr48OHKz8/X/v37VVhYqA8//FBvv/22IiKunN0GDhyoBx980G2sdevWdk0RANCC0JcAAIFgS6D629/+phUrVmjEiBHasmWLa7xr166aNm2aXn75ZY0dO/aK28nKytK9995rx5QAAC0YfQkAECi2fORv8+bNMsZo+vTpbuOTJ09WXFycNm3a1Oht1dTUqLKy0o5pAQBaKPoSACBQbAlUxcXFioiIUE5Ojtt4TEyM+vTpo+Li4kZt59VXX1VcXJwSEhLUsWNHTZ06VeXl5XZMEQDQgtCXAACBYstH/srKypScnKzo6OgGj6WmpmrXrl2qqalRVFSU123k5ORo5MiR6tatmyoqKrRt2zYVFRVp586d2rVr12VPAnY6nXI6na7vKyoqfNshAEBYoy8BAALFlkBVVVXlsWlJF18NrF/mco3rgw8+cPt+woQJ6t27t2bPnq1nn31Ws2fP9rrukiVLNH/+fAszBwA0R/QlAECg2PKRv7i4OLdX4r6uurratUxTPfroo4qKitLWrVsvu9ysWbNUXl7u+jp27FiTfxYAoPmgLwEAAsWWd6hSUlK0b98+OZ3OBq8IlpaWKjk5+bKvAnrTunVrpaSk6OTJk5ddLjo62usrkQCAloe+BAAIFFveocrOzlZdXZ12797tNl5dXa29e/eqb9++lrZbXV2t48ePq1OnTnZMEwDQQtCXAACBYkugGj16tBwOh5YvX+42vnbtWlVVVWncuHGusUOHDunAgQNuy506dcrjdufMmaMLFy5o2LBhdkwTANBC0JcAAIHiMMYYOzY0depUFRUVafjw4brrrrtcd6S/7bbb9Mc//tF1R/rMzEyVlJTo6z92xowZev/99zV48GClp6ersrJS27Zt0/bt23Xrrbdq+/btio2NbfRcKioqlJSUpPLyciUmJtqxewCARgil4y99CQAg+f8YbMs5VJK0fPlyZWZmas2aNdq6dauSk5M1depUPfXUU66m5c2gQYO0b98+rV+/XqdOnVKrVq3UvXt3LVq0SHl5ea4rMgEA0Fj0JQBAINj2DlUo4ZVAAAgOjr+eURcACB5/H4NtOYcKAAAAAFoiAhUAAAAAWESgAgAAAACLCFQAAAAAYBGBCgAAAAAsIlABAAAAgEUEKgAAAACwiEAFAAAAABYRqAAAAADAIgIVAAAAAFhEoAIAAAAAiwhUAAAAAGARgQoAAAAALCJQAQAAAIBFBCoAAAAAsIhABQAAAAAWEagAAAAAwCICFQAAAABYRKACAAAAAIsIVAAAAABgEYEKAAAAACwiUAEAAACARQQqAAAAALCIQAUAAAAAFhGoAAAAAMAiAhUAAAAAWESgAgAAAACLCFQAAAAAYBGBCgAAAAAsIlABAAAAgEUEKgAAAACwiEAFAAAAABYRqAAAAADAIgIVAAAAAFhEoAIAAAAAiwhUAAAAAGARgQoAAAAALCJQAQAAAIBFBCoAAAAAsIhABQAAAAAWEagAAAAAwCICFQAAAABYRKACAAAAAIsIVAAAAABgEYEKAAAAACwiUAEAAACARQQqAAAAALCIQAUAAAAAFhGoAAAAAMAiAhUAAAAAWESgAgAAAACLbAtUdXV1KigoUM+ePRUTE6O0tDTl5+fr3LlzAVkfAIBL0ZsAAP5mW6CaMWOG8vLy1KtXL61YsUIjR45UYWGhhg0bprq6Or+vDwDApehNAAC/Mzb4+OOPjcPhMCNGjHAbLywsNJLMSy+95Nf1L1VeXm4kmfLy8iatBwDwTSgdf0OpN4VSXQCgpfH3MdiWd6g2b94sY4ymT5/uNj558mTFxcVp06ZNfl0fAIBL0ZsAAIFgS6AqLi5WRESEcnJy3MZjYmLUp08fFRcX+3V9AAAuRW8CAARCpB0bKSsrU3JysqKjoxs8lpqaql27dqmmpkZRUVF+Wd/pdMrpdLq+Ly8vlyRVVFRY2R0AgEX1x11jTJBnEtzeRF8CgNDh795kS6Cqqqry2HCki6/k1S/jrWn5uv6SJUs0f/78BuNpaWlXnDsAwH6nTp1SUlJSUOcQzN5EXwKA0OOv3mRLoIqLi9MXX3zh8bHq6mrXMv5af9asWcrLy3N9f+bMGWVkZOjo0aNBb+ihpKKiQmlpaTp27JgSExODPZ2QQm08oy7eURvPysvLlZ6ervbt2wd7KkHtTfSlxuNvyTPq4h218Yy6eOfv3mRLoEpJSdG+ffvkdDobvJpXWlqq5ORkr68A2rF+dHS0x1cRk5KS+IXyIDExkbp4QW08oy7eURvPIiKCf9/4YPYm+lLT8bfkGXXxjtp4Rl2881dvsmWr2dnZqqur0+7du93Gq6urtXfvXvXt29ev6wMAcCl6EwAgEGwJVKNHj5bD4dDy5cvdxteuXauqqiqNGzfONXbo0CEdOHDA8voAADQGvQkAEBB23dBqypQpRpIZPny4Wbt2rcnLyzORkZEmNzfX1NbWupbLyMgwnn5sY9dvjOrqavPkk0+a6upqn/erOaEu3lEbz6iLd9TGs1CrS6j0plCrSyihNp5RF++ojWfUxTt/18ZhjD3XD6ytrdXy5cu1Zs0aHTlyRMnJyRo9erSeeuopxcfHu5bLzMxUSUlJg8sWNnZ9AAAai94EAPA32wIVAAAAALQ0wb8MEwAAAACEKQIVAAAAAFhEoAIAAAAAi8ImUNXV1amgoEA9e/ZUTEyM0tLSlJ+fr3PnzgVk/VDly359+umnmjt3rvr166cOHTooISFBffr00aJFi8K+LpK9z3lVVZWysrLkcDg0ZcoUP8w2cOyoy+nTpzVz5kx169ZNMTEx6tChgwYPHqw//elPfpy5f/lal8rKSi1evFg33nijEhISlJycrP79++uXv/xlgwsdhJslS5Zo5MiRrr+BzMxMS9vZsGGDbrrpJsXGxqpTp0564IEHdOLECXsnG0D0Je/oTZ7Rl7yjN3lGb/IupHqTX64d6AfTpk1zXbp2zZo1ZsaMGSYyMtIMHjy4UZeu9XX9UOXLfj3++OMmPj7ejB071hQWFppVq1aZUaNGGUmmd+/epqqqKkB74R92Puf5+fkmPj7eSDKPPPKIn2YcGL7W5ciRIyYzM9MkJyebxx9/3Dz//PNm2bJl5r777jObN28OwB74hy91qa2tNQMGDDARERFm0qRJZvXq1aagoMDk5OQYSeaxxx4L0F74hyTTvn17M2TIENOuXTuTkZHR5G0sW7bMSDK5ublm9erVZs6cOaZNmzamV69eprKy0v5JBwB9yTt6k2f0Je/oTZ7Rm7wLpd4UFoHq448/Ng6Hw4wYMcJtvLCw0EgyL730kl/XD1W+7ldxcbE5c+ZMg/HZs2cbSWbFihW2zjeQ7HzO9+zZY1q1amWWLl0a9o3LjroMGDDAdOnSxZSVlflrmgHna1127dplJJnp06e7jTudTtO1a1eTlJRk95QD6tChQ67/v/7665vctE6cOGHi4uJMdna2uXDhgmv8tddeM5LMokWL7JpqwNCXvKM3eUZf8o7e5Bm96fJCqTeFRaCqP4i+8847buPnz583cXFx5s477/Tr+qHKX/v10UcfGUnmoYcesmOaQWFXbS5cuGBuvvlmc/fdd5vDhw+HfePytS47d+40kkxhYaExxpiamhpz7tw5v803UHytyxtvvGEkmaeffrrBY9nZ2SYlJcXW+QaTlaa1du1aI8ls2LChwWNZWVnmuuuus2l2gUNf8o7e5Bl9yTt6k2f0psYLdm8Ki3OoiouLFRERoZycHLfxmJgY9enTR8XFxX5dP1T5a7+OHz8uSerUqZPPcwwWu2pTUFCgAwcOqKioyB/TDDhf67Jt2zZJUnp6uoYNG6bY2Fi1adNGPXr00KZNm/w2b3/ztS45OTlq27atnn76ab3yyis6evSoDhw4oFmzZmnPnj2aN2+eH2cf+urr941vfKPBY/369dOBAwdUWVkZ6Gn5hL7kHb3JM/qSd/Qmz+hN/mVnbwqLQFVWVqbk5GRFR0c3eCw1NVUnT55UTU2N39YPVf7Yr9raWi1YsECRkZEaO3asXVMNODtqc/jwYT355JOaO3eu5RMdQ42vdfnkk08kSZMnT9bp06e1fv16vfDCC4qKitL48eP14osv+m3u/uRrXdq1a6fXXntN7du316hRo5SRkaHrrrtOK1eu1JYtWzR58mR/Tj/klZWVSbpYy0ulpqbKGONaJlzQl7yjN3lGX/KO3uQZvcm/7OxNkbbOzE+qqqo8/jJJF1N6/TJRUVF+WT9U+WO/pk+frvfee0+LFy/Wtddea8s8g8GO2jz88MPKyspSXl6eX+YYDL7W5ezZs5KkhIQEbd++3bXcd7/7XWVlZemJJ57QxIkTFRERFq/VuNjx+xIfH68bbrhB99xzj/r376/Tp09r5cqVGjt2rH7zm99o6NChfpl7OKiqqpIkjzX+en3DCX3JO3qTZ/Ql7+hNntGb/MvO3hQWv1lxcXFyOp0eH6uurnYt46/1Q5Xd+zVnzhwVFRXpwQcf1KxZs2yZY7D4WptNmzbprbfe0qpVq9S6dWu/zDEYfK1LbGysJGnMmDFuB/B27drpnnvu0eeff+56pTCc+FqXv/71r+rfv7+GDh2qn//85xo+fLjuv/9+vfvuu+rcubMmT56s2tpav8w9HNTXzlONw/UYTF/yjt7kGX3JO3qTZ/Qm/7KzN4VFoEpJSdHJkyc97nBpaamSk5Mvm859XT9U2blf8+bN08KFCzVp0iT94he/sHuqAedLbZxOp/Ly8nTXXXepc+fOOnjwoA4ePKiSkhJJUnl5uQ4ePKgzZ874cxf8wtffmS5dukiSOnfu3OCxq6++WpL05Zdf2jTbwPG1LgUFBaqurtbIkSPdxuPi4nT33XerpKRER44csXvaYSMlJUXSxVpeqrS0VA6Hw7VMuKAveUdv8oy+5B29yTN6k3/Z2ZtsC1T+vLlWr169VFdXp927d7stW11drb1796pv376X3WZ2drZP64cqu/Zr3rx5mj9/viZOnKh169bJ4XD4Y7oB5Uttzp8/rxMnTmjr1q3q3r2762vQoEGSLr5K2L17d61bt86fu+AXvv7O1J8YW39y+NfVj3Xs2NGm2QaOr3WpPxh7eqXvwoULbv9tibKzsyVJ7733XoPH3n//fV177bWKj4+3/efSl4KD3uQZfck7epNn9Cb/srU3Nen6gpchP95c65prrjGSvF6Hf+PGja6xgwcPmv3797st99FHH132Ov5fXz+cNGW/PNXFGGPmz59vJJnx48eH/Y0kv86X2tTU1JhXXnmlwddzzz1nJJk77rjDvPLKK+aTTz4J2P7YxdffmdOnT5uEhASTmppqzp496xovKyszbdq0MT169PDvDviJr3WZPn26kWR+9rOfuY1/+eWX5uqrrzbt2rVzu8dFOLvSpWlLSkrM/v37TU1NjWvsiy++MLGxsSYnJ8fjvT4WLFjgl7nSl4KD3uQZfck7epNn9KbGC3Zvsi1Q+fvmWv369XPdKXrt2rUmLy/PREZGmtzcXLeDbUZGhvGUE6dMmdKo9cNNY/fLU12KioqMJJOenm7Wr19vNm7c6Pb1+9//PtC7YytfauNJc7nfh691Wb16tZFkrr/+erN06VKzZMkSk56eblq3bm3efPPNQO6KrXypy5EjR0z79u2Nw+Ew9957r1m1apVZtGiRyczMNJLMypUrA707ttqwYYNZsGCBWbBggenYsaNp27at6/tL79+Rm5trJJnDhw+7jT/zzDNGkhk0aJBZvXq1mTt3rmnTpo3p2bOn2z+A7ERfCh56k2f0Je/oTZ7Rm7wLpd7klxv7+uvmWs8884zp0aOHiYqKMikpKWbGjBkNdtbbH9qFCxcatX64aex+earLxIkTjSSvX7m5uQHcE/v5UhtPmkvjsqMuW7ZsMbfeequJi4sz8fHxZujQoebdd98NxPT9xte6HDx40EyYMMGkpqaayMhIk5CQYAYOHGi2bNkSqF3wm/pG1JjjhLemZYwxL774oundu7eJjo42HTp0MJMmTTL//Oc/A7IP9KXAojd5Rl/yjt7kGb3Ju1DqTQ5jjPH+gUBrbrjhBlVWVjbpRLeHHnpIa9as0d///nd169bN7bFx48Zp8+bNqqio8Mvn7AEAzRt9CQDgLyFzH6rG3lyrR48eDR53Op1uV0Cpq6vT6dOnddVVV4X9SawAEE6MMTp79qxSUlLC7p4vl6IvAUDz4O/eFDKBypebay1ZskTz58/33+QAAE1y7Ngx16WMwxV9CQCaF3/1ppAJVF+/uVb9DdrqXenmWrNmzXK7a3h5ebnS09N17NgxJSYm+mnGAIBLVVRUKC0tTQkJCcGeis/oSwDQPPi7N4VMoPr6zbUu/az6lW6uFR0d7fEVxMTERBoXAARBc/hYG30JAJoXf/WmkPmAe7Bu/AgAgCf0JQBAYwQlUB09elQHDhzQV1995Rr7zne+o9jYWBUVFbnd0fn111/XZ599pnHjxgVjqgCAFoC+BACwyraP/G3cuFElJSWSpBMnTqimpkYLFy6UJGVkZGj8+PGuZSdMmKCdO3fq8OHDyszMlCR16NBBCxYs0MyZMzVkyBCNGTNGpaWlWrp0qXr27Knp06fbNVUAQAtAXwIABIJtger555/Xzp073cbmzJkjScrNzXVrXN7k5+frqquuUkFBgaZNm6bExESNGjVKP/3pT/lYBQCgSehLAIBA8MuNfYOtoqJCSUlJKi8v5+RfAAggjr+eURcACB5/H4ND5qIUAAAAABBuCFQAAAAAYBGBCgAAAAAsIlABAAAAgEUEKgAAAACwiEAFAAAAABYRqAAAAADAIgIVAAAAAFhEoAIAAAAAiwhUAAAAAGARgQoAAAAALCJQAQAAAIBFBCoAAAAAsIhABQAAAAAWEagAAAAAwCICFQAAAABYRKACAAAAAIsIVAAAAABgEYEKAAAAACwiUAEAAACARQQqAAAAALCIQAUAAAAAFhGoAAAAAMAiAhUAAAAAWESgAgAAAACLCFQAAAAAYBGBCgAAAAAsIlABAAAAgEUEKgAAAACwiEAFAAAAABYRqAAAAADAIgIVAAAAAFhEoAIAAAAAiwhUAAAAAGARgQoAAAAALCJQAQAAAIBFBCoAAAAAsIhABQAAAAAWEagAAAAAwCICFQAAAABYRKACAAAAAIsIVAAAAABgEYEKAAAAACwiUAEAAACARQQqAAAAALCIQAUAAAAAFhGoAAAAAMAiAhUAAAAAWESgAgAAAACLCFQAAAAAYBGBCgAAAAAssi1Q1dXVqaCgQD179lRMTIzS0tKUn5+vc+fONWp9h8Ph8Ss+Pt6uKQIAWhD6EgAgECLt2tCMGTNUWFio4cOHKz8/X/v371dhYaE+/PBDvf3224qIuHJ2GzhwoB588EG3sdatW9s1RQBAC0JfAgAEgi2B6m9/+5tWrFihESNGaMuWLa7xrl27atq0aXr55Zc1duzYK24nKytL9957rx1TAgC0YPQlAECg2PKRv82bN8sYo+nTp7uNT548WXFxcdq0aVOjt1VTU6PKyko7pgUAaKHoSwCAQLElUBUXFysiIkI5OTlu4zExMerTp4+Ki4sbtZ1XX31VcXFxSkhIUMeOHTV16lSVl5fbMUUAQAtCXwIABIotH/krKytTcnKyoqOjGzyWmpqqXbt2qaamRlFRUV63kZOTo5EjR6pbt26qqKjQtm3bVFRUpJ07d2rXrl2XPQnY6XTK6XS6vq+oqPBthwAAYY2+BAAIFFsCVVVVlcemJV18NbB+mcs1rg8++MDt+wkTJqh3796aPXu2nn32Wc2ePdvrukuWLNH8+fMtzBwA0BzRlwAAgWLLR/7i4uLcXon7uurqatcyTfXoo48qKipKW7duvexys2bNUnl5uevr2LFjTf5ZAIDmg74EAAgUW96hSklJ0b59++R0Ohu8IlhaWqrk5OTLvgroTevWrZWSkqKTJ09edrno6Givr0QCAFoe+hIAIFBseYcqOztbdXV12r17t9t4dXW19u7dq759+1rabnV1tY4fP65OnTrZMU0AQAtBXwIABIotgWr06NFyOBxavny52/jatWtVVVWlcePGucYOHTqkAwcOuC136tQpj9udM2eOLly4oGHDhtkxTQBAC0FfAgAEisMYY+zY0NSpU1VUVKThw4frrrvuct2R/rbbbtMf//hH1x3pMzMzVVJSoq//2BkzZuj999/X4MGDlZ6ersrKSm3btk3bt2/Xrbfequ3btys2NrbRc6moqFBSUpLKy8uVmJhox+4BABohlI6/9CUAgOT/Y7At51BJ0vLly5WZmak1a9Zo69atSk5O1tSpU/XUU0+5mpY3gwYN0r59+7R+/XqdOnVKrVq1Uvfu3bVo0SLl5eW5rsgEAEBj0ZcAAIFg2ztUoYRXAgEgODj+ekZdACB4/H0MtuUcKgAAAABoiQhUAAAAAGARgQoAAAAALCJQAQAAAIBFBCoAAAAAsIhABQAAAAAWEagAAAAAwCICFQAAAABYRKACAAAAAIsIVAAAAABgEYEKAAAAACwiUAEAAACARQQqAAAAALCIQAUAAAAAFhGoAAAAAMAiAhUAAAAAWESgAgAAAACLCFQAAAAAYBGBCgAAAAAsIlABAAAAgEUEKgAAAACwiEAFAAAAABYRqAAAAADAIgIVAAAAAFhEoAIAAAAAiwhUAAAAAGARgQoAAAAALCJQAQAAAIBFBCoAAAAAsIhABQAAAAAWEagAAAAAwCICFQAAAABYRKACAAAAAIsIVAAAAABgEYEKAAAAACwiUAEAAACARQQqAAAAALCIQAUAAAAAFhGoAAAAAMAiAhUAAAAAWESgAgAAAACLCFQAAAAAYBGBCgAAAAAsIlABAAAAgEUEKgAAAACwiEAFAAAAABYRqAAAAADAIgIVAAAAAFhEoAIAAAAAiwhUAAAAAGARgQoAAAAALCJQAQAAAIBFtgWquro6FRQUqGfPnoqJiVFaWpry8/N17ty5gKwPAMCl6E0AAH+zLVDNmDFDeXl56tWrl1asWKGRI0eqsLBQw4YNU11dnd/XBwDgUvQmAIDfGRt8/PHHxuFwmBEjRriNFxYWGknmpZde8uv6lyovLzeSTHl5eZPWAwD4JpSOv6HUm0KpLgDQ0vj7GGzLO1SbN2+WMUbTp093G588ebLi4uK0adMmv64PAMCl6E0AgECwJVAVFxcrIiJCOTk5buMxMTHq06ePiouL/bo+AACXojcBAAIh0o6NlJWVKTk5WdHR0Q0eS01N1a5du1RTU6OoqCi/rO90OuV0Ol3fl5eXS5IqKiqs7A4AwKL6464xJsgzCW5voi8BQOjwd2+yJVBVVVV5bDjSxVfy6pfx1rR8XX/JkiWaP39+g/G0tLQrzh0AYL9Tp04pKSkpqHMIZm+iLwFA6PFXb7IlUMXFxemLL77w+Fh1dbVrGX+tP2vWLOXl5bm+P3PmjDIyMnT06NGgN/RQUlFRobS0NB07dkyJiYnBnk5IoTaeURfvqI1n5eXlSk9PV/v27YM9laD2JvpS4/G35Bl18Y7aeEZdvPN3b7IlUKWkpGjfvn1yOp0NXs0rLS1VcnKy11cA7Vg/Ojra46uISUlJ/EJ5kJiYSF28oDaeURfvqI1nERHBv298MHsTfanp+FvyjLp4R208oy7e+as32bLV7Oxs1dXVaffu3W7j1dXV2rt3r/r27evX9QEAuBS9CQAQCLYEqtGjR8vhcGj58uVu42vXrlVVVZXGjRvnGjt06JAOHDhgeX0AABqD3gQACAi7bmg1ZcoUI8kMHz7crF271uTl5ZnIyEiTm5tramtrXctlZGQYTz+2ses3RnV1tXnyySdNdXW1z/vVnFAX76iNZ9TFO2rjWajVJVR6U6jVJZRQG8+oi3fUxjPq4p2/a+Mwxp7rB9bW1mr58uVas2aNjhw5ouTkZI0ePVpPPfWU4uPjXctlZmaqpKSkwWULG7s+AACNRW8CAPibbYEKAAAAAFqa4F+GCQAAAADCFIEKAAAAACwKm0BVV1engoIC9ezZUzExMUpLS1N+fr7OnTsXkPVDlS/79emnn2ru3Lnq16+fOnTooISEBPXp00eLFi0K+7pI9j7nVVVVysrKksPh0JQpU/ww28Cxoy6nT5/WzJkz1a1bN8XExKhDhw4aPHiw/vSnP/lx5v7la10qKyu1ePFi3XjjjUpISFBycrL69++vX/7ylw3Oywk3S5Ys0ciRI11/A5mZmZa2s2HDBt10002KjY1Vp06d9MADD+jEiRP2TjaA6Eve0Zs8oy95R2/yjN7kXUj1Jr9c6sIPpk2b5rrS0po1a8yMGTNMZGSkGTx4cKOutOTr+qHKl/16/PHHTXx8vBk7dqwpLCw0q1atMqNGjTKSTO/evU1VVVWA9sI/7HzO8/PzTXx8vJFkHnnkET/NODB8rcuRI0dMZmamSU5ONo8//rh5/vnnzbJly8x9991nNm/eHIA98A9f6lJbW2sGDBhgIiIizKRJk8zq1atNQUGBycnJMZLMY489FqC98A9Jpn379mbIkCGmXbt2JiMjo8nbWLZsmZFkcnNzzerVq82cOXNMmzZtTK9evUxlZaX9kw4A+pJ39CbP6Eve0Zs8ozd5F0q9KSwC1ccff2wcDocZMWKE23hhYaGRZF566SW/rh+qfN2v4uJic+bMmQbjs2fPNpLMihUrbJ1vINn5nO/Zs8e0atXKLF26NOwblx11GTBggOnSpYspKyvz1zQDzte67Nq1y0gy06dPdxt3Op2ma9euJikpye4pB9ShQ4dc/3/99dc3uWmdOHHCxMXFmezsbHPhwgXX+GuvvWYkmUWLFtk11YChL3lHb/KMvuQdvckzetPlhVJvCotAVX8Qfeedd9zGz58/b+Li4sydd97p1/VDlb/266OPPjKSzEMPPWTHNIPCrtpcuHDB3Hzzzebuu+82hw8fDvvG5Wtddu7caSSZwsJCY4wxNTU15ty5c36bb6D4Wpc33njDSDJPP/10g8eys7NNSkqKrfMNJitNa+3atUaS2bBhQ4PHsrKyzHXXXWfT7AKHvuQdvckz+pJ39CbP6E2NF+zeFBbnUBUXFysiIkI5OTlu4zExMerTp4+Ki4v9un6o8td+HT9+XJLUqVMnn+cYLHbVpqCgQAcOHFBRUZE/phlwvtZl27ZtkqT09HQNGzZMsbGxatOmjXr06KFNmzb5bd7+5mtdcnJy1LZtWz399NN65ZVXdPToUR04cECzZs3Snj17NG/ePD/OPvTV1+8b3/hGg8f69eunAwcOqLKyMtDT8gl9yTt6k2f0Je/oTZ7Rm/zLzt4UFoGqrKxMycnJio6ObvBYamqqTp48qZqaGr+tH6r8sV+1tbVasGCBIiMjNXbsWLumGnB21Obw4cN68sknNXfuXMsnOoYaX+vyySefSJImT56s06dPa/369XrhhRcUFRWl8ePH68UXX/Tb3P3J17q0a9dOr732mtq3b69Ro0YpIyND1113nVauXKktW7Zo8uTJ/px+yCsrK5N0sZaXSk1NlTHGtUy4oC95R2/yjL7kHb3JM3qTf9nZmyJtnZmfVFVVefxlki6m9PploqKi/LJ+qPLHfk2fPl3vvfeeFi9erGuvvdaWeQaDHbV5+OGHlZWVpby8PL/MMRh8rcvZs2clSQkJCdq+fbtrue9+97vKysrSE088oYkTJyoiIixeq3Gx4/clPj5eN9xwg+655x71799fp0+f1sqVKzV27Fj95je/0dChQ/0y93BQVVUlSR5r/PX6hhP6knf0Js/oS97RmzyjN/mXnb0pLH6z4uLi5HQ6PT5WXV3tWsZf64cqu/drzpw5Kioq0oMPPqhZs2bZMsdg8bU2mzZt0ltvvaVVq1apdevWfpljMPhal9jYWEnSmDFj3A7g7dq10z333KPPP//c9UphOPG1Ln/961/Vv39/DR06VD//+c81fPhw3X///Xr33XfVuXNnTZ48WbW1tX6Zezior52nGofrMZi+5B29yTP6knf0Js/oTf5lZ28Ki0CVkpKikydPetzh0tJSJScnXzad+7p+qLJzv+bNm6eFCxdq0qRJ+sUvfmH3VAPOl9o4nU7l5eXprrvuUufOnXXw4EEdPHhQJSUlkqTy8nIdPHhQZ86c8ecu+IWvvzNdunSRJHXu3LnBY1dffbUk6csvv7RptoHja10KCgpUXV2tkSNHuo3HxcXp7rvvVklJiY4cOWL3tMNGSkqKpIu1vFRpaakcDodrmXBBX/KO3uQZfck7epNn9Cb/srM3hUWgys7OVl1dnXbv3u02Xl1drb1796pv375+XT9U2bVf8+bN0/z58zVx4kStW7dODofDH9MNKF9qc/78eZ04cUJbt25V9+7dXV+DBg2SdPFVwu7du2vdunX+3AW/8PV3pv7E2PqTw7+ufqxjx442zTZwfK1L/cHY0yt9Fy5ccPtvS5SdnS1Jeu+99xo89v777+vaa69VfHx8oKflE/qSd/Qmz+hL3tGbPKM3+ZetvalJ1xe8jMWLF5vvf//7pmvXrkaSpZtrGWPM+vXrTZ8+fUxMTIzp2LGjuf/++82OHTsuex3+jRs3usYOHjxo9u/f77bcRx991Oj1w0lT9stTXYwxZv78+UaSGT9+fNjfSPLrfKlNTU2NeeWVVxp8Pffcc0aSueOOO8wrr7xiPvnkk4Dtj118/Z05ffq0SUhIMKmpqebs2bOu8bKyMtOmTRvTo0cP/+6An/hal+nTpxtJ5mc/+5nb+Jdffmmuvvpq065dO7d7XISzK12atqSkxOzfv9/U1NS4xr744gsTGxtrcnJyPN7rY8GCBX6ZK30pOOhNntGXvKM3eUZvarxg9ybbApX8fLfihx56yHWn6LVr15q8vDwTGRlpcnNz3Q62GRkZxlNOnDJlSqPWDzeN3S9PdSkqKjKSTHp6ulm/fr3ZuHGj29fvf//7QO+OrXypjSfN5X4fvtZl9erVRpK5/vrrzdKlS82SJUtMenq6ad26tXnzzTcDuSu28qUuR44cMe3btzcOh8Pce++9ZtWqVWbRokUmMzPTSDIrV64M9O7YasOGDWbBggVmwYIFpmPHjqZt27au7y+9f0dubq6RZA4fPuw2/swzzxhJZtCgQWb16tVm7ty5pk2bNqZnz55u/wCyE30peOhNntGXvKM3eUZv8i6UepNtgcrfdytesGCBeeaZZ0yPHj1MVFSUSUlJMTNmzGiws97+0C5cuNCo9cNNY/fLU10mTpxoJHn9ys3NDeCe2M+X2njSXBqXHXXZsmWLufXWW01cXJyJj483Q4cONe+++24gpu83vtbl4MGDZsKECSY1NdVERkaahIQEM3DgQLNly5ZA7YLf1DeixhwnvDUtY4x58cUXTe/evU10dLTp0KGDmTRpkvnnP//pt3nTl4KH3uQZfck7epNn9CbvQqk3OYwx5nIfCbTihhtuUGVlZZNOdFu3bp0mT56sDRs2aPz48W6PXXPNNYqOjta+fftsnikAoCWgLwEA/CVkLkph592KAQDwFX0JANAYIXNj38berbhHjx4NHnc6nW6XlKyrq9Pp06d11VVXhf1VgQAgnBhjdPbsWaWkpITdTTQvRV8CgObB370pZAKVL3crXrJkiebPn++/yQEAmuTYsWOue8OEK/oSADQv/upNIROovn634vo7Xte70t2KZ82apby8PNf35eXlSk9P17Fjx5SYmOinGQMALlVRUaG0tDQlJCQEeyo+oy8BQPPg794UMoHq63cr7tatm9tjV7pbcXR0tMdXEBMTE2lcABAEzeFjbfQlAGhe/NWbQuYD7rberRgAAB/RlwAAjRGUQHX06FEdOHBAX331lWvsO9/5jmJjY1VUVKTa2lrX+Ouvv67PPvtM48aNC8ZUAQAtAH0JAGCVbR/527hxo0pKSiRJJ06cUE1NjRYuXChJysjIcLuHx4QJE7Rz504dPnxYmZmZkqQOHTpowYIFmjlzpoYMGaIxY8aotLRUS5cuVc+ePTV9+nS7pgoAaAHoSwCAQLAtUD3//PPauXOn29icOXMkSbm5uQ1uiuhJfn6+rrrqKhUUFGjatGlKTEzUqFGj9NOf/pSPVQAAmoS+BAAIBIcxxgR7EnarqKhQUlKSysvLOfkXAAKI469n1AUAgsffx+CQuSgFAAAAAIQbAhUAAAAAWESgAgAAAACLCFQAAAAAYBGBCgAAAAAsIlABAAAAgEUEKgAAAACwiEAFAAAAABYRqAAAAADAIgIVAAAAAFhEoAIAAAAAiwhUAAAAAGARgQoAAAAALCJQAQAAAIBFBCoAAAAAsIhABQAAAAAWEagAAAAAwCICFQAAAABYRKACAAAAAIsIVAAAAABgEYEKAAAAACwiUAEAAACARQQqAAAAALCIQAUAAAAAFhGoAAAAAMAiAhUAAAAAWESgAgAAAACLCFQAAAAAYBGBCgAAAAAsIlABAAAAgEUEKgAAAACwiEAFAAAAABYRqAAAAADAIgIVAAAAAFhEoAIAAAAAiwhUAAAAAGARgQoAAAAALCJQAQAAAIBFBCoAAAAAsIhABQAAAAAWEagAAAAAwCICFQAAAABYRKACAAAAAIsIVAAAAABgEYEKAAAAACwiUAEAAACARQQqAAAAALCIQAUAAAAAFhGoAAAAAMAiAhUAAAAAWESgAgAAAACLbAtUdXV1KigoUM+ePRUTE6O0tDTl5+fr3LlzjVrf4XB4/IqPj7drigCAFoS+BAAIhEi7NjRjxgwVFhZq+PDhys/P1/79+1VYWKgPP/xQb7/9tiIirpzdBg4cqAcffNBtrHXr1nZNEQDQgtCXAACBYEug+tvf/qYVK1ZoxIgR2rJli2u8a9eumjZtml5++WWNHTv2itvJysrSvffea8eUAAAtGH0JABAotnzkb/PmzTLGaPr06W7jkydPVlxcnDZt2tTobdXU1KiystKOaQEAWij6EgAgUGwJVMXFxYqIiFBOTo7beExMjPr06aPi4uJGbefVV19VXFycEhIS1LFjR02dOlXl5eV2TBEA0ILQlwAAgWLLR/7KysqUnJys6OjoBo+lpqZq165dqqmpUVRUlNdt5OTkaOTIkerWrZsqKiq0bds2FRUVaefOndq1a9dlTwJ2Op1yOp2u7ysqKnzbIQBAWKMvAQACxZZAVVVV5bFpSRdfDaxf5nKN64MPPnD7fsKECerdu7dmz56tZ599VrNnz/a67pIlSzR//nwLMwcANEf0JQBAoNjykb+4uDi3V+K+rrq62rVMUz366KOKiorS1q1bL7vcrFmzVF5e7vo6duxYk38WAKD5oC8BAALFlneoUlJStG/fPjmdzgavCJaWlio5OfmyrwJ607p1a6WkpOjkyZOXXS46OtrrK5EAgJaHvgQACBRb3qHKzs5WXV2ddu/e7TZeXV2tvXv3qm/fvpa2W11drePHj6tTp052TBMA0ELQlwAAgWJLoBo9erQcDoeWL1/uNr527VpVVVVp3LhxrrFDhw7pwIEDbsudOnXK43bnzJmjCxcuaNiwYXZMEwDQQtCXAACB4jDGGDs2NHXqVBUVFWn48OG66667XHekv+222/THP/7RdUf6zMxMlZSU6Os/dsaMGXr//fc1ePBgpaenq7KyUtu2bdP27dt16623avv27YqNjW30XCoqKpSUlKTy8nIlJibasXsAgEYIpeMvfQkAIPn/GGzLOVSStHz5cmVmZmrNmjXaunWrkpOTNXXqVD311FOupuXNoEGDtG/fPq1fv16nTp1Sq1at1L17dy1atEh5eXmuKzIBANBY9CUAQCDY9g5VKOGVQAAIDo6/nlEXAAgefx+DbTmHCgAAAABaIgIVAAAAAFhEoAIAAAAAiwhUAAAAAGARgQoAAAAALCJQAQAAAIBFBCoAAAAAsIhABQAAAAAWEagAAAAAwCICFQAAAABYRKACAAAAAIsIVAAAAABgEYEKAAAAACwiUAEAAACARQQqAAAAALCIQAUAAAAAFhGoAAAAAMAiAhUAAAAAWESgAgAAAACLCFQAAAAAYBGBCgAAAAAsIlABAAAAgEUEKgAAAACwiEAFAAAAABYRqAAAAADAIgIVAAAAAFhEoAIAAAAAiwhUAAAAAGARgQoAAAAALCJQAQAAAIBFBCoAAAAAsIhABQAAAAAWEagAAAAAwCICFQAAAABYRKACAAAAAIsIVAAAAABgEYEKAAAAACwiUAEAAACARQQqAAAAALCIQAUAAAAAFhGoAAAAAMAiAhUAAAAAWESgAgAAAACLCFQAAAAAYBGBCgAAAAAsIlABAAAAgEUEKgAAAACwiEAFAAAAABYRqAAAAADAIgIVAAAAAFhEoAIAAAAAi2wLVHV1dSooKFDPnj0VExOjtLQ05efn69y5cwFZHwCAS9GbAAD+ZlugmjFjhvLy8tSrVy+tWLFCI0eOVGFhoYYNG6a6ujq/rw8AwKXoTQAAvzM2+Pjjj43D4TAjRoxwGy8sLDSSzEsvveTX9S9VXl5uJJny8vImrQcA8E0oHX9DqTeFUl0AoKXx9zHYlneoNm/eLGOMpk+f7jY+efJkxcXFadOmTX5dHwCAS9GbAACBYEugKi4uVkREhHJyctzGY2Ji1KdPHxUXF/t1fQAALkVvAgAEQqQdGykrK1NycrKio6MbPJaamqpdu3appqZGUVFRflnf6XTK6XS6vi8vL5ckVVRUWNkdAIBF9cddY0yQZxLc3kRfAoDQ4e/eZEugqqqq8thwpIuv5NUv461p+br+kiVLNH/+/AbjaWlpV5w7AMB+p06dUlJSUlDnEMzeRF8CgNDjr95kS6CKi4vTF1984fGx6upq1zL+Wn/WrFnKy8tzfX/mzBllZGTo6NGjQW/ooaSiokJpaWk6duyYEhMTgz2dkEJtPKMu3lEbz8rLy5Wenq727dsHeypB7U30pcbjb8kz6uIdtfGMunjn795kS6BKSUnRvn375HQ6G7yaV1paquTkZK+vANqxfnR0tMdXEZOSkviF8iAxMZG6eEFtPKMu3lEbzyIign/f+GD2JvpS0/G35Bl18Y7aeEZdvPNXb7Jlq9nZ2aqrq9Pu3bvdxqurq7V371717dvXr+sDAHApehMAIBBsCVSjR4+Ww+HQ8uXL3cbXrl2rqqoqjRs3zjV26NAhHThwwPL6AAA0Br0JABAQdt3QasqUKUaSGT58uFm7dq3Jy8szkZGRJjc319TW1rqWy8jIMJ5+bGPXb4zq6mrz5JNPmurqap/3qzmhLt5RG8+oi3fUxrNQq0uo9KZQq0sooTaeURfvqI1n1MU7f9fGYYw91w+sra3V8uXLtWbNGh05ckTJyckaPXq0nnrqKcXHx7uWy8zMVElJSYPLFjZ2fQAAGoveBADwN9sCFQAAAAC0NMG/DBMAAAAAhCkCFQAAAABYRKACAAAAAIvCJlDV1dWpoKBAPXv2VExMjNLS0pSfn69z584FZP1Q5ct+ffrpp5o7d6769eunDh06KCEhQX369NGiRYvCvi6Svc95VVWVsrKy5HA4NGXKFD/MNnDsqMvp06c1c+ZMdevWTTExMerQoYMGDx6sP/3pT36cuX/5WpfKykotXrxYN954oxISEpScnKz+/fvrl7/8ZYMLHYSbJUuWaOTIka6/gczMTEvb2bBhg2666SbFxsaqU6dOeuCBB3TixAl7JxtA9CXv6E2e0Ze8ozd5Rm/yLqR6k1+uHegH06ZNc126ds2aNWbGjBkmMjLSDB48uFGXrvV1/VDly349/vjjJj4+3owdO9YUFhaaVatWmVGjRhlJpnfv3qaqqipAe+Efdj7n+fn5Jj4+3kgyjzzyiJ9mHBi+1uXIkSMmMzPTJCcnm8cff9w8//zzZtmyZea+++4zmzdvDsAe+IcvdamtrTUDBgwwERERZtKkSWb16tWmoKDA5OTkGEnmscceC9Be+Ick0759ezNkyBDTrl07k5GR0eRtLFu2zEgyubm5ZvXq1WbOnDmmTZs2plevXqaystL+SQcAfck7epNn9CXv6E2e0Zu8C6XeFBaB6uOPPzYOh8OMGDHCbbywsNBIMi+99JJf1w9Vvu5XcXGxOXPmTIPx2bNnG0lmxYoVts43kOx8zvfs2WNatWplli5dGvaNy466DBgwwHTp0sWUlZX5a5oB52tddu3aZSSZ/7+9u4+tsr7/P/46tfTm0BvBw42tvaEDrOgIW2hlTFNIJNk0uEG+QASBEVddMiC9cTMdAakVujmxrJQxKM5xY1jC+GMukN1l/NgMOhoz4hzUrQwKttkEKi2l9nRtP78/TE849DpYrnNd5waej6SZvc51HT7Xm/a89jqcc66ysrKg7X6/30yaNMlkZmY6veSIOnPmTOC/H3zwwVsOrYsXLxqv12uKiopMf39/YPtbb71lJJlNmzY5tdSIIZdCI5uskUuhkU3WyKabi6VsiotCNfQg+uc//zlo+6effmq8Xq/5+te/7urxscqt83r//feNJPPcc885scyocGo2/f395stf/rJ54oknzNmzZ+M+uMKdy7Fjx4wkU19fb4wxpq+vz1y7ds219UZKuHP57W9/aySZV155ZdhtRUVFJisry9H1RpOd0GpsbDSSzN69e4fdVlBQYB544AGHVhc55FJoZJM1cik0sska2TRy0c6muHgPVVNTkxISElRcXBy0PSUlRTNmzFBTU5Orx8cqt87ro48+kiRNmDAh7DVGi1OzqaurU3NzsxoaGtxYZsSFO5cjR45IknJzczV//nylpqZq9OjRmjp1qvbv3+/aut0W7lyKi4t1991365VXXtHBgwd1/vx5NTc3q6qqSu+99542btzo4upj39D8vvKVrwy7bdasWWpublZ3d3eklxUWcik0sskauRQa2WSNbHKXk9kUF4Wqvb1dPp9PycnJw27Lzs7WpUuX1NfX59rxscqN8xoYGFBNTY0SExO1dOlSp5YacU7M5uzZs3rxxRe1YcMG2290jDXhzuXDDz+UJJWWlqqjo0N79uzRz3/+cyUlJWn58uV64403XFu7m8Kdy5gxY/TWW29p7NixWrx4sfLy8vTAAw9o+/btOnTokEpLS91cfsxrb2+X9Nksb5SdnS1jTGCfeEEuhUY2WSOXQiObrJFN7nIymxIdXZlLenp6LH+YpM9a+tA+SUlJrhwfq9w4r7KyMr3zzjvavHmz7r//fkfWGQ1OzOY73/mOCgoKVFFR4coaoyHcuVy9elWSlJ6erqNHjwb2++Y3v6mCggL94Ac/0MqVK5WQEBfP1QQ48fOSlpamhx56SE8++aRmz56tjo4Obd++XUuXLtWvf/1rzZs3z5W1x4Oenh5Jspzx9fONJ+RSaGSTNXIpNLLJGtnkLiezKS5+srxer/x+v+Vtvb29gX3cOj5WOX1e69evV0NDg5599llVVVU5ssZoCXc2+/fv1x/+8Aft2LFDo0aNcmWN0RDuXFJTUyVJTz31VNAD+JgxY/Tkk0/qP//5T+CZwngS7lz+/ve/a/bs2Zo3b55+/OMfa8GCBXrmmWf09ttva+LEiSotLdXAwIAra48HQ7OzmnG8PgaTS6GRTdbIpdDIJmtkk7uczKa4KFRZWVm6dOmS5Qm3tbXJ5/PdtJ2He3yscvK8Nm7cqJdfflmrVq3Sz372M6eXGnHhzMbv96uiokKPP/64Jk6cqJaWFrW0tKi1tVWS1NnZqZaWFl25csXNU3BFuD8z9913nyRp4sSJw2679957JUmffPKJQ6uNnHDnUldXp97eXi1atChou9fr1RNPPKHW1ladO3fO6WXHjaysLEmfzfJGbW1t8ng8gX3iBbkUGtlkjVwKjWyyRja5y8lscqxQuXlxrWnTpmlwcFAnTpwI2re3t1cnT57UzJkzb3qfRUVFYR0fq5w6r40bN6q6ulorV67U7t275fF43FhuRIUzm08//VQXL17U4cOHNWXKlMDXnDlzJH32LOGUKVO0e/duN0/BFeH+zAy9MXbozeHXG9o2fvx4h1YbOeHOZejB2OqZvv7+/qD/vRMVFRVJkt55551ht7377ru6//77lZaW5vifSy5FB9lkjVwKjWyyRja5y9FsuqXPF7wJuXhxrS984QtGUsjP4d+3b19gW0tLizl9+nTQfu+///5NP8f/+uPjya2cl9VcjDGmurraSDLLly+P+wtJXi+c2fT19ZmDBw8O+/rpT39qJJmvfe1r5uDBg+bDDz+M2Pk4JdyfmY6ODpOenm6ys7PN1atXA9vb29vN6NGjzdSpU909AZeEO5eysjIjyfzoRz8K2v7JJ5+Ye++914wZMyboGhfx7PM+mra1tdWcPn3a9PX1BbZ9/PHHJjU11RQXF1te66OmpsaVtZJL0UE2WSOXQiObrJFNIxftbHKsULl9ca1Zs2YFrhTd2NhoKioqTGJioikpKQl6sM3LyzNWPXH16tUjOj7ejPS8rObS0NBgJJnc3FyzZ88es2/fvqCv3//+95E+HUeFMxsrt8v1PsKdy86dO40k8+CDD5otW7aY2tpak5uba0aNGmV+97vfRfJUHBXOXM6dO2fGjh1rPB6Pefrpp82OHTvMpk2bTH5+vpFktm/fHunTcdTevXtNTU2NqampMePHjzd333134Psbr99RUlJiJJmzZ88GbX/11VeNJDNnzhyzc+dOs2HDBjN69GhTWFgY9H+AnEQuRQ/ZZI1cCo1sskY2hRZL2eTKhX3durjWq6++aqZOnWqSkpJMVlaWKS8vH3ayoX7R+vv7R3R8vBnpeVnNZeXKlUZSyK+SkpIInonzwpmNldsluJyYy6FDh8zDDz9svF6vSUtLM/PmzTNvv/12JJbvmnDn0tLSYlasWGGys7NNYmKiSU9PN48++qg5dOhQpE7BNUNBNJLHiVChZYwxb7zxhpk+fbpJTk4248aNM6tWrTL//e9/I3IO5FJkkU3WyKXQyCZrZFNosZRNHmOMCf2CQHseeughdXd339Ib3Z577jnt2rVL//rXvzR58uSg25YtW6YDBw6oq6vLldfZAwBub+QSAMAtMXMdqpFeXGvq1KnDbvf7/UGfgDI4OKiOjg7dc889cf8mVgCIJ8YYXb16VVlZWXF3zZcbkUsAcHtwO5tiplCFc3Gt2tpaVVdXu7c4AMAtuXDhQuCjjOMVuQQAtxe3silmCtX1F9caukDbkM+7uFZVVVXQVcM7OzuVm5urCxcuKCMjw6UVAwBu1NXVpZycHKWnp0d7KWEjlwDg9uB2NsVMobr+4lo3vlb98y6ulZycbPkMYkZGBsEFAFFwO7ysjVwCgNuLW9kUMy9wj9aFHwEAsEIuAQBGIiqF6vz582pubtb//ve/wLZvfOMbSk1NVUNDQ9AVnX/zm9/o3//+t5YtWxaNpQIA7gDkEgDALsde8rdv3z61trZKki5evKi+vj69/PLLkqS8vDwtX748sO+KFSt07NgxnT17Vvn5+ZKkcePGqaamRs8//7wee+wxPfXUU2pra9OWLVtUWFiosrIyp5YKALgDkEsAgEhwrFC9/vrrOnbsWNC29evXS5JKSkqCgiuUyspK3XPPPaqrq9PatWuVkZGhxYsX64c//CEvqwAA3BJyCQAQCa5c2Dfaurq6lJmZqc7OTt78CwARxOOvNeYCANHj9mNwzHwoBQAAAADEGwoVAAAAANhEoQIAAAAAmyhUAAAAAGAThQoAAAAAbKJQAQAAAIBNFCoAAAAAsIlCBQAAAAA2UagAAAAAwCYKFQAAAADYRKECAAAAAJsoVAAAAABgE4UKAAAAAGyiUAEAAACATRQqAAAAALCJQgUAAAAANlGoAAAAAMAmChUAAAAA2EShAgAAAACbKFQAAAAAYBOFCgAAAABsolABAAAAgE0UKgAAAACwiUIFAAAAADZRqAAAAADAJgoVAAAAANhEoQIAAAAAmyhUAAAAAGAThQoAAAAAbKJQAQAAAIBNFCoAAAAAsIlCBQAAAAA2UagAAAAAwCYKFQAAAADYRKECAAAAAJsoVAAAAABgE4UKAAAAAGyiUAEAAACATRQqAAAAALCJQgUAAAAANlGoAAAAAMAmChUAAAAA2EShAgAAAACbKFQAAAAAYBOFCgAAAABsolABAAAAgE0UKgAAAACwiUIFAAAAADZRqAAAAADAJgoVAAAAANhEoQIAAAAAmyhUAAAAAGCTY4VqcHBQdXV1KiwsVEpKinJyclRZWalr166N6HiPx2P5lZaW5tQSAQB3EHIJABAJiU7dUXl5uerr67VgwQJVVlbq9OnTqq+v19/+9jf98Y9/VELC53e3Rx99VM8++2zQtlGjRjm1RADAHYRcAgBEgiOF6h//+Ie2bdumhQsX6tChQ4HtkyZN0tq1a/XLX/5SS5cu/dz7KSgo0NNPP+3EkgAAdzByCQAQKY685O/AgQMyxqisrCxoe2lpqbxer/bv3z/i++rr61N3d7cTywIA3KHIJQBApDhSqJqampSQkKDi4uKg7SkpKZoxY4aamppGdD+/+tWv5PV6lZ6ervHjx2vNmjXq7Ox0YokAgDsIuQQAiBRHXvLX3t4un8+n5OTkYbdlZ2fr+PHj6uvrU1JSUsj7KC4u1qJFizR58mR1dXXpyJEjamho0LFjx3T8+PGbvgnY7/fL7/cHvu/q6grvhAAAcY1cAgBEiiOFqqenxzK0pM+eDRza52bB9de//jXo+xUrVmj69Olat26dfvKTn2jdunUhj62trVV1dbWNlQMAbkfkEgAgUhx5yZ/X6w16Ju56vb29gX1u1fe+9z0lJSXp8OHDN92vqqpKnZ2dga8LFy7c8p8FALh9kEsAgEhx5F+osrKydOrUKfn9/mHPCLa1tcnn8930WcBQRo0apaysLF26dOmm+yUnJ4d8JhIAcOchlwAAkeLIv1AVFRVpcHBQJ06cCNre29urkydPaubMmbbut7e3Vx999JEmTJjgxDIBAHcIcgkAECmOFKolS5bI4/Fo69atQdsbGxvV09OjZcuWBbadOXNGzc3NQftdvnzZ8n7Xr1+v/v5+zZ8/34llAgDuEOQSACBSPMYY48QdrVmzRg0NDVqwYIEef/zxwBXpv/rVr+pPf/pT4Ir0+fn5am1t1fV/bHl5ud59913NnTtXubm56u7u1pEjR3T06FE9/PDDOnr0qFJTU0e8lq6uLmVmZqqzs1MZGRlOnB4AYARi6fGXXAIASO4/BjvyHipJ2rp1q/Lz87Vr1y4dPnxYPp9Pa9as0UsvvRQIrVDmzJmjU6dOac+ePbp8+bLuuusuTZkyRZs2bVJFRUXgE5kAABgpcgkAEAmO/QtVLOGZQACIDh5/rTEXAIgetx+DHXkPFQAAAADciShUAAAAAGAThQoAAAAAbKJQAQAAAIBNFCoAAAAAsIlCBQAAAAA2UagAAAAAwCYKFQAAAADYRKECAAAAAJsoVAAAAABgE4UKAAAAAGyiUAEAAACATRQqAAAAALCJQgUAAAAANlGoAAAAAMAmChUAAAAA2EShAgAAAACbKFQAAAAAYBOFCgAAAABsolABAAAAgE0UKgAAAACwiUIFAAAAADZRqAAAAADAJgoVAAAAANhEoQIAAAAAmyhUAAAAAGAThQoAAAAAbKJQAQAAAIBNFCoAAAAAsIlCBQAAAAA2UagAAAAAwCYKFQAAAADYRKECAAAAAJsoVAAAAABgE4UKAAAAAGyiUAEAAACATRQqAAAAALCJQgUAAAAANlGoAAAAAMAmChUAAAAA2EShAgAAAACbKFQAAAAAYBOFCgAAAABsolABAAAAgE0UKgAAAACwiUIFAAAAADZRqAAAAADAJgoVAAAAANhEoQIAAAAAmyhUAAAAAGAThQoAAAAAbHKsUA0ODqqurk6FhYVKSUlRTk6OKisrde3atYgcDwDAjcgmAIDbHCtU5eXlqqio0LRp07Rt2zYtWrRI9fX1mj9/vgYHB10/HgCAG5FNAADXGQd88MEHxuPxmIULFwZtr6+vN5LMm2++6erxN+rs7DSSTGdn5y0dBwAITyw9/sZSNsXSXADgTuP2Y7Aj/0J14MABGWNUVlYWtL20tFRer1f79+939XgAAG5ENgEAIsGRQtXU1KSEhAQVFxcHbU9JSdGMGTPU1NTk6vEAANyIbAIAREKiE3fS3t4un8+n5OTkYbdlZ2fr+PHj6uvrU1JSkivH+/1++f3+wPednZ2SpK6uLjunAwCwaehx1xgT5ZVEN5vIJQCIHW5nkyOFqqenxzJwpM+eyRvaJ1RohXt8bW2tqqurh23Pycn53LUDAJx3+fJlZWZmRnUN0cwmcgkAYo9b2eRIofJ6vfr4448tb+vt7Q3s49bxVVVVqqioCHx/5coV5eXl6fz581EP9FjS1dWlnJwcXbhwQRkZGdFeTkxhNtaYS2jMxlpnZ6dyc3M1duzYaC8lqtlELo0cv0vWmEtozMYacwnN7WxypFBlZWXp1KlT8vv9w57Na2trk8/nC/kMoBPHJycnWz6LmJmZyQ+UhYyMDOYSArOxxlxCYzbWEhKif934aGYTuXTr+F2yxlxCYzbWmEtobmWTI/daVFSkwcFBnThxImh7b2+vTp48qZkzZ7p6PAAANyKbAACR4EihWrJkiTwej7Zu3Rq0vbGxUT09PVq2bFlg25kzZ9Tc3Gz7eAAARoJsAgBEhFMXtFq9erWRZBYsWGAaGxtNRUWFSUxMNCUlJWZgYCCwX15enrH6Y0d6/Ej09vaaF1980fT29oZ9XrcT5hIas7HGXEJjNtZibS6xkk2xNpdYwmysMZfQmI015hKa27PxGOPM5wcODAxo69at2rVrl86dOyefz6clS5bopZdeUlpaWmC//Px8tba2DvvYwpEeDwDASJFNAAC3OVaoAAAAAOBOE/2PYQIAAACAOEWhAgAAAACbKFQAAAAAYFPcFKrBwUHV1dWpsLBQKSkpysnJUWVlpa5duxaR42NVOOf1z3/+Uxs2bNCsWbM0btw4paena8aMGdq0aVPcz0Vy9u+8p6dHBQUF8ng8Wr16tQurjRwn5tLR0aHnn39ekydPVkpKisaNG6e5c+fqL3/5i4srd1e4c+nu7tbmzZv1xS9+Uenp6fL5fJo9e7Z+8YtfDPugg3hTW1urRYsWBX4H8vPzbd3P3r179aUvfUmpqamaMGGCvv3tb+vixYvOLjaCyKXQyCZr5FJoZJM1sim0mMomVz470AVr164NfHTtrl27THl5uUlMTDRz584d0UfXhnt8rArnvF544QWTlpZmli5daurr682OHTvM4sWLjSQzffp009PTE6GzcIeTf+eVlZUmLS3NSDLf/e53XVpxZIQ7l3Pnzpn8/Hzj8/nMCy+8YF5//XXz2muvmW9961vmwIEDETgDd4Qzl4GBAfPII4+YhIQEs2rVKrNz505TV1dniouLjSTz/e9/P0Jn4Q5JZuzYseaxxx4zY8aMMXl5ebd8H6+99pqRZEpKSszOnTvN+vXrzejRo820adNMd3e384uOAHIpNLLJGrkUGtlkjWwKLZayKS4K1QcffGA8Ho9ZuHBh0Pb6+nojybz55puuHh+rwj2vpqYmc+XKlWHb161bZySZbdu2ObreSHLy7/y9994zd911l9myZUvcB5cTc3nkkUfMfffdZ9rb291aZsSFO5fjx48bSaasrCxou9/vN5MmTTKZmZlOLzmizpw5E/jvBx988JZD6+LFi8br9ZqioiLT398f2P7WW28ZSWbTpk1OLTViyKXQyCZr5FJoZJM1sunmYimb4qJQDT2I/vnPfw7a/umnnxqv12u+/vWvu3p8rHLrvN5//30jyTz33HNOLDMqnJpNf3+/+fKXv2yeeOIJc/bs2bgPrnDncuzYMSPJ1NfXG2OM6evrM9euXXNtvZES7lx++9vfGknmlVdeGXZbUVGRycrKcnS90WQntBobG40ks3fv3mG3FRQUmAceeMCh1UUOuRQa2WSNXAqNbLJGNo1ctLMpLt5D1dTUpISEBBUXFwdtT0lJ0YwZM9TU1OTq8bHKrfP66KOPJEkTJkwIe43R4tRs6urq1NzcrIaGBjeWGXHhzuXIkSOSpNzcXM2fP1+pqakaPXq0pk6dqv3797u2breFO5fi4mLdfffdeuWVV3Tw4EGdP39ezc3Nqqqq0nvvvaeNGze6uPrYNzS/r3zlK8NumzVrlpqbm9Xd3R3pZYWFXAqNbLJGLoVGNlkjm9zlZDbFRaFqb2+Xz+dTcnLysNuys7N16dIl9fX1uXZ8rHLjvAYGBlRTU6PExEQtXbrUqaVGnBOzOXv2rF588UVt2LDB9hsdY024c/nwww8lSaWlpero6NCePXv085//XElJSVq+fLneeOMN19bupnDnMmbMGL311lsaO3asFi9erLy8PD3wwAPavn27Dh06pNLSUjeXH/Pa29slfTbLG2VnZ8sYE9gnXpBLoZFN1sil0Mgma2STu5zMpkRHV+aSnp4eyx8m6bOWPrRPUlKSK8fHKjfOq6ysTO+88442b96s+++/35F1RoMTs/nOd76jgoICVVRUuLLGaAh3LlevXpUkpaen6+jRo4H9vvnNb6qgoEA/+MEPtHLlSiUkxMVzNQFO/LykpaXpoYce0pNPPqnZs2ero6ND27dv19KlS/XrX/9a8+bNc2Xt8aCnp0eSLGd8/XzjCbkUGtlkjVwKjWyyRja5y8lsioufLK/XK7/fb3lbb29vYB+3jo9VTp/X+vXr1dDQoGeffVZVVVWOrDFawp3N/v379Yc//EE7duzQqFGjXFljNIQ7l9TUVEnSU089FfQAPmbMGD355JP6z3/+E3imMJ6EO5e///3vmj17tubNm6cf//jHWrBggZ555hm9/fbbmjhxokpLSzUwMODK2uPB0OysZhyvj8HkUmhkkzVyKTSyyRrZ5C4nsykuClVWVpYuXbpkecJtbW3y+Xw3befhHh+rnDyvjRs36uWXX9aqVav0s5/9zOmlRlw4s/H7/aqoqNDjjz+uiRMnqqWlRS0tLWptbZUkdXZ2qqWlRVeuXHHzFFwR7s/MfffdJ0maOHHisNvuvfdeSdInn3zi0GojJ9y51NXVqbe3V4sWLQra7vV69cQTT6i1tVXnzp1zetlxIysrS9Jns7xRW1ubPB5PYJ94QS6FRjZZI5dCI5uskU3ucjKbHCtUbl5ca9q0aRocHNSJEyeC9u3t7dXJkyc1c+bMm95nUVFRWMfHKqfOa+PGjaqurtbKlSu1e/dueTweN5YbUeHM5tNPP9XFixd1+PBhTZkyJfA1Z84cSZ89SzhlyhTt3r3bzVNwRbg/M0NvjB16c/j1hraNHz/eodVGTrhzGXowtnqmr7+/P+h/70RFRUWSpHfeeWfYbe+++67uv/9+paWlOf7nkkvRQTZZI5dCI5uskU3ucjSbbunzBW9CLl5c6wtf+IKRFPJz+Pft2xfY1tLSYk6fPh203/vvv3/Tz/G//vh4civnZTUXY4yprq42kszy5cvj/kKS1wtnNn19febgwYPDvn76058aSeZrX/uaOXjwoPnwww8jdj5OCfdnpqOjw6Snp5vs7Gxz9erVwPb29nYzevRoM3XqVHdPwCXhzqWsrMxIMj/60Y+Ctn/yySfm3nvvNWPGjAm6xkU8+7yPpm1tbTWnT582fX19gW0ff/yxSU1NNcXFxZbX+qipqXFlreRSdJBN1sil0Mgma2TTyEU7mxwrVG5fXGvWrFmBK0U3NjaaiooKk5iYaEpKSoIebPPy8oxVT1y9evWIjo83Iz0vq7k0NDQYSSY3N9fs2bPH7Nu3L+jr97//faRPx1HhzMbK7XK9j3DnsnPnTiPJPPjgg2bLli2mtrbW5ObmmlGjRpnf/e53kTwVR4Uzl3PnzpmxY8caj8djnn76abNjxw6zadMmk5+fbySZ7du3R/p0HLV3715TU1NjampqzPjx483dd98d+P7G63eUlJQYSebs2bNB21999VUjycyZM8fs3LnTbNiwwYwePdoUFhYG/R8gJ5FL0UM2WSOXQiObrJFNocVSNrlyYV+3Lq716quvmqlTp5qkpCSTlZVlysvLh51sqF+0/v7+ER0fb0Z6XlZzWblypZEU8qukpCSCZ+K8cGZj5XYJLifmcujQIfPwww8br9dr0tLSzLx588zbb78dieW7Jty5tLS0mBUrVpjs7GyTmJho0tPTzaOPPmoOHToUqVNwzVAQjeRxIlRoGWPMG2+8YaZPn26Sk5PNuHHjzKpVq8x///vfiJwDuRRZZJM1cik0sska2RRaLGWTxxhjQr8g0J6HHnpI3d3dt/RGt+eee067du3Sv/71L02ePDnotmXLlunAgQPq6upy5XX2AIDbG7kEAHBLzFyHaqQX15o6deqw2/1+f9AnoAwODqqjo0P33HNP3L+JFQDiiTFGV69eVVZWVtxd8+VG5BIA3B7czqaYKVThXFyrtrZW1dXV7i0OAHBLLly4EPgo43hFLgHA7cWtbIqZQnX9xbWGLtA25PMurlVVVRV01fDOzk7l5ubqwoULysjIcGnFAIAbdXV1KScnR+np6dFeStjIJQC4PbidTTFTqK6/uNaNr1X/vItrJScnWz6DmJGRQXABQBTcDi9rI5cA4PbiVjbFzAvco3XhRwAArJBLAICRiEqhOn/+vJqbm/W///0vsO0b3/iGUlNT1dDQEHRF59/85jf697//rWXLlkVjqQCAOwC5BACwy7GX/O3bt0+tra2SpIsXL6qvr08vv/yyJCkvL0/Lly8P7LtixQodO3ZMZ8+eVX5+viRp3Lhxqqmp0fPPP6/HHntMTz31lNra2rRlyxYVFhaqrKzMqaUCAO4A5BIAIBIcK1Svv/66jh07FrRt/fr1kqSSkpKg4AqlsrJS99xzj+rq6rR27VplZGRo8eLF+uEPf8jLKgAAt4RcAgBEgisX9o22rq4uZWZmqrOzkzf/AkAE8fhrjbkAQPS4/RgcMx9KAQAAAADxhkIFAAAAADZRqAAAAADAJgoVAAAAANhEoQIAAAAAmyhUAAAAAGAThQoAAAAAbKJQAQAAAIBNFCoAAAAAsIlCBQAAAAA2UagAAAAAwCYKFQAAAADYRKECAAAAAJsoVAAAAABgE4UKAAAAAGyiUAEAAACATRQqAAAAALCJQgUAAAAANlGoAAAAAMAmChUAAAAA2EShAgAAAACbKFQAAAAAYBOFCgAAAABsolABAAAAgE0UKgAAAACwiUIFAAAAADZRqAAAAADAJgoVAAAAANhEoQIAAAAAmyhUAAAAAGAThQoAAAAAbKJQAQAAAIBNFCoAAAAAsIlCBQAAAAA2UagAAAAAwCYKFQAAAADYRKECAAAAAJsoVAAAAABgE4UKAAAAAGyiUAEAAACATRQqAAAAALCJQgUAAAAANlGoAAAAAMAmChUAAAAA2EShAgAAAACbKFQAAAAAYBOFCgAAAABsolABAAAAgE0UKgAAAACwiUIFAAAAADZRqAAAAADAJscK1eDgoOrq6lRYWKiUlBTl5OSosrJS165dG9HxHo/H8istLc2pJQIA7iDkEgAgEhKduqPy8nLV19drwYIFqqys1OnTp1VfX6+//e1v+uMf/6iEhM/vbo8++qieffbZoG2jRo1yaokAgDsIuQQAiARHCtU//vEPbdu2TQsXLtShQ4cC2ydNmqS1a9fql7/8pZYuXfq591NQUKCnn37aiSUBAO5g5BIAIFIcecnfgQMHZIxRWVlZ0PbS0lJ5vV7t379/xPfV19en7u5uJ5YFALhDkUsAgEhxpFA1NTUpISFBxcXFQdtTUlI0Y8YMNTU1jeh+fvWrX8nr9So9PV3jx4/XmjVr1NnZ6cQSAQB3EHIJABApjrzkr729XT6fT8nJycNuy87O1vHjx9XX16ekpKSQ91FcXKxFixZp8uTJ6urq0pEjR9TQ0KBjx47p+PHjN30TsN/vl9/vD3zf1dUV3gkBAOIauQQAiBRHClVPT49laEmfPRs4tM/Nguuvf/1r0PcrVqzQ9OnTtW7dOv3kJz/RunXrQh5bW1ur6upqGysHANyOyCUAQKQ48pI/r9cb9Ezc9Xp7ewP73Krvfe97SkpK0uHDh2+6X1VVlTo7OwNfFy5cuOU/CwBw+yCXAACR4si/UGVlZenUqVPy+/3DnhFsa2uTz+e76bOAoYwaNUpZWVm6dOnSTfdLTk4O+UwkAODOQy4BACLFkX+hKioq0uDgoE6cOBG0vbe3VydPntTMmTNt3W9vb68++ugjTZgwwYllAgDuEOQSACBSHClUS5Yskcfj0datW4O2NzY2qqenR8uWLQtsO3PmjJqbm4P2u3z5suX9rl+/Xv39/Zo/f74TywQA3CHIJQBApHiMMcaJO1qzZo0aGhq0YMECPf7444Er0n/1q1/Vn/70p8AV6fPz89Xa2qrr/9jy8nK9++67mjt3rnJzc9Xd3a0jR47o6NGjevjhh3X06FGlpqaOeC1dXV3KzMxUZ2enMjIynDg9AMAIxNLjL7kEAJDcfwx25D1UkrR161bl5+dr165dOnz4sHw+n9asWaOXXnopEFqhzJkzR6dOndKePXt0+fJl3XXXXZoyZYo2bdqkioqKwCcyAQAwUuQSACASHPsXqljCM4EAEB08/lpjLgAQPW4/BjvyHioAAAAAuBNRqAAAAADAJgoVAAAAANhEoQIAAAAAmyhUAAAAAGAThQoAAAAAbKJQAQAAAIBNFCoAAAAAsIlCBQAAAAA2UagAAAAAwCYKFQAAAADYRKECAAAAAJsoVAAAAABgE4UKAAAAAGyiUAEAAACATRQqAAAAALCJQgUAAAAANlGoAAAAAMAmChUAAAAA2EShAgAAAACbKFQAAAAAYBOFCgAAAABsolABAAAAgE0UKgAAAACwiUIFAAAAADZRqAAAAADAJgoVAAAAANhEoQIAAAAAmyhUAAAAAGAThQoAAAAAbKJQAQAAAIBNFCoAAAAAsIlCBQAAAAA2UagAAAAAwCYKFQAAAADYRKECAAAAAJsoVAAAAABgE4UKAAAAAGyiUAEAAACATRQqAAAAALCJQgUAAAAANlGoAAAAAMAmChUAAAAA2EShAgAAAACbKFQAAAAAYBOFCgAAAABsolABAAAAgE0UKgAAAACwiUIFAAAAADZRqAAAAADAJgoVAAAAANhEoQIAAAAAmxwrVIODg6qrq1NhYaFSUlKUk5OjyspKXbt2LSLHAwBwI7IJAOA2xwpVeXm5KioqNG3aNG3btk2LFi1SfX295s+fr8HBQdePBwDgRmQTAMB1xgEffPCB8Xg8ZuHChUHb6+vrjSTz5ptvunr8jTo7O40k09nZeUvHAQDCE0uPv7GUTbE0FwC407j9GOzIv1AdOHBAxhiVlZUFbS8tLZXX69X+/ftdPR4AgBuRTQCASEh04k6ampqUkJCg4uLioO0pKSmaMWOGmpqaXD3e7/fL7/cHvu/s7JQkdXV13cppAADCNPS4a4yJ8kqim03kEgDEDrezyZFC1d7eLp/Pp+Tk5GG3ZWdn6/jx4+rr61NSUpIrx9fW1qq6unrY9pycnFs8EwCAEy5fvqzMzMyoriGa2UQuAUDscSubHClUPT09loEjffZM3tA+oUIr3OOrqqpUUVER+P7KlSvKy8vT+fPnox7osaSrq0s5OTm6cOGCMjIyor2cmMJsrDGX0JiNtc7OTuXm5mrs2LHRXkpUs4lcGjl+l6wxl9CYjTXmEprb2eRIofJ6vfr4448tb+vt7Q3s49bxycnJlqGXmZnJD5SFjIwM5hICs7HGXEJjNtYSEqJ/mcNoZhO5dOv4XbLGXEJjNtaYS2huZZMj95qVlaVLly4FvV58SFtbm3w+X8hnAJ04HgCAG5FNAIBIcKRQFRUVaXBwUCdOnAja3tvbq5MnT2rmzJmuHg8AwI3IJgBAJDhSqJYsWSKPx6OtW7cGbW9sbFRPT4+WLVsW2HbmzBk1NzfbPn4kkpOT9eKLL4Z87fudirmExmysMZfQmI21WJpLLGVTLM0l1jAba8wlNGZjjbmE5vZsPMahzw9cs2aNGhoatGDBAj3++OM6ffq06uvr9dWvflV/+tOfAq9ZzM/PV2tr67CPLRzp8QAAjBTZBABwm2OFamBgQFu3btWuXbt07tw5+Xw+LVmyRC+99JLS0tIC+4UKrZEeDwDASJFNAAC3OVaoAAAAAOBOw2sVAAAAAMAmChUAAAAA2BQ3hWpwcFB1dXUqLCxUSkqKcnJyVFlZqWvXrkXk+FgVznn985//1IYNGzRr1iyNGzdO6enpmjFjhjZt2hT3c5Gc/Tvv6elRQUGBPB6PVq9e7cJqI8eJuXR0dOj555/X5MmTlZKSonHjxmnu3Ln6y1/+4uLK3RXuXLq7u7V582Z98YtfVHp6unw+n2bPnq1f/OIXw96XE29qa2u1aNGiwO9Afn6+rfvZu3evvvSlLyk1NVUTJkzQt7/9bV28eNHZxUYQuRQa2WSNXAqNbLJGNoUWU9lk4sTatWuNJLNgwQKza9cuU15ebhITE83cuXPNwMCA68fHqnDO64UXXjBpaWlm6dKlpr6+3uzYscMsXrzYSDLTp083PT09EToLdzj5d15ZWWnS0tKMJPPd737XpRVHRrhzOXfunMnPzzc+n8+88MIL5vXXXzevvfaa+da3vmUOHDgQgTNwRzhzGRgYMI888ohJSEgwq1atMjt37jR1dXWmuLjYSDLf//73I3QW7pBkxo4dax577DEzZswYk5eXd8v38dprrxlJpqSkxOzcudOsX7/ejB492kybNs10d3c7v+gIIJdCI5uskUuhkU3WyKbQYimb4qJQffDBB8bj8ZiFCxcGba+vrzeSzJtvvunq8bEq3PNqamoyV65cGbZ93bp1RpLZtm2bo+uNJCf/zt977z1z1113mS1btsR9cDkxl0ceecTcd999pr293a1lRly4czl+/LiRZMrKyoK2+/1+M2nSJJOZmen0kiPqzJkzgf9+8MEHbzm0Ll68aLxerykqKjL9/f2B7W+99ZaRZDZt2uTUUiOGXAqNbLJGLoVGNlkjm24ulrIpLgrV0IPon//856Dtn376qfF6vebrX/+6q8fHKrfO6/333zeSzHPPPefEMqPCqdn09/ebL3/5y+aJJ54wZ8+ejfvgCncux44dM5JMfX29McaYvr4+c+3aNdfWGynhzuW3v/2tkWReeeWVYbcVFRWZrKwsR9cbTXZCq7Gx0Ugye/fuHXZbQUGBeeCBBxxaXeSQS6GRTdbIpdDIJmtk08hFO5vi4j1UTU1NSkhIUHFxcdD2lJQUzZgxQ01NTa4eH6vcOq+PPvpIkjRhwoSw1xgtTs2mrq5Ozc3NamhocGOZERfuXI4cOSJJys3N1fz585WamqrRo0dr6tSp2r9/v2vrdlu4cykuLtbdd9+tV155RQcPHtT58+fV3Nysqqoqvffee9q4caOLq499Q/P7yle+Muy2WbNmqbm5Wd3d3ZFeVljIpdDIJmvkUmhkkzWyyV1OZlNcFKr29nb5fD4lJycPuy07O1uXLl1SX1+fa8fHKjfOa2BgQDU1NUpMTNTSpUudWmrEOTGbs2fP6sUXX9SGDRtsv9Ex1oQ7lw8//FCSVFpaqo6ODu3Zs0c///nPlZSUpOXLl+uNN95wbe1uCncuY8aM0VtvvaWxY8dq8eLFysvL0wMPPKDt27fr0KFDKi0tdXP5Ma+9vV3SZ7O8UXZ2towxgX3iBbkUGtlkjVwKjWyyRja5y8lsSnR0ZS7p6emx/GGSPmvpQ/skJSW5cnyscuO8ysrK9M4772jz5s26//77HVlnNDgxm+985zsqKChQRUWFK2uMhnDncvXqVUlSenq6jh49Gtjvm9/8pgoKCvSDH/xAK1euVEJCXDxXE+DEz0taWpoeeughPfnkk5o9e7Y6Ojq0fft2LV26VL/+9a81b948V9YeD3p6eiTJcsbXzzeekEuhkU3WyKXQyCZrZJO7nMymuPjJ8nq98vv9lrf19vYG9nHr+Fjl9HmtX79eDQ0NevbZZ1VVVeXIGqMl3Nns379ff/jDH7Rjxw6NGjXKlTVGQ7hzSU1NlSQ99dRTQQ/gY8aM0ZNPPqn//Oc/gWcK40m4c/n73/+u2bNna968efrxj3+sBQsW6JlnntHbb7+tiRMnqrS0VAMDA66sPR4Mzc5qxvH6GEwuhUY2WSOXQiObrJFN7nIym+KiUGVlZenSpUuWJ9zW1iafz3fTdh7u8bHKyfPauHGjXn75Za1atUo/+9nPnF5qxIUzG7/fr4qKCj3++OOaOHGiWlpa1NLSotbWVklSZ2enWlpadOXKFTdPwRXh/szcd999kqSJEycOu+3ee++VJH3yyScOrTZywp1LXV2dent7tWjRoqDtXq9XTzzxhFpbW3Xu3Dmnlx03srKyJH02yxu1tbXJ4/EE9okX5FJoZJM1cik0sska2eQuJ7MpLgpVUVGRBgcHdeLEiaDtvb29OnnypGbOnOnq8bHKqfPauHGjqqurtXLlSu3evVsej8eN5UZUOLP59NNPdfHiRR0+fFhTpkwJfM2ZM0fSZ88STpkyRbt373bzFFwR7s/M0Btjh94cfr2hbePHj3dotZET7lyGHoytnunr7+8P+t87UVFRkSTpnXfeGXbbu+++q/vvv19paWmRXlZYyKXQyCZr5FJoZJM1ssldjmbTLX2+4E1s3rzZ/N///Z+ZNGmSkWTr4lrGGLNnzx4zY8YMk5KSYsaPH2+eeeYZ8//+3/+76efw79u3L7CtpaXFnD59Omi/999/f8THx5NbOS+ruRhjTHV1tZFkli9fHvcXkrxeOLPp6+szBw8eHPb105/+1EgyX/va18zBgwfNhx9+GLHzcUq4PzMdHR0mPT3dZGdnm6tXrwa2t7e3m9GjR5upU6e6ewIuCXcuZWVlRpL50Y9+FLT9k08+Mffee68ZM2ZM0DUu4tnnfTRta2urOX36tOnr6wts+/jjj01qaqopLi62vNZHTU2NK2sll6KDbLJGLoVGNlkjm0Yu2tnkWKGSy1crfu655wJXim5sbDQVFRUmMTHRlJSUBD3Y5uXlGaueuHr16hEdH29Gel5Wc2loaDCSTG5urtmzZ4/Zt29f0Nfvf//7SJ+Oo8KZjZXb5Xof4c5l586dRpJ58MEHzZYtW0xtba3Jzc01o0aNMr/73e8ieSqOCmcu586dM2PHjjUej8c8/fTTZseOHWbTpk0mPz/fSDLbt2+P9Ok4au/evaampsbU1NSY8ePHm7vvvjvw/Y3X7ygpKTGSzNmzZ4O2v/rqq0aSmTNnjtm5c6fZsGGDGT16tCksLAz6P0BOIpeih2yyRi6FRjZZI5tCi6VscqxQuX214pqaGvPqq6+aqVOnmqSkJJOVlWXKy8uHnWyoX7T+/v4RHR9vRnpeVnNZuXKlkRTyq6SkJIJn4rxwZmPldgkuJ+Zy6NAh8/DDDxuv12vS0tLMvHnzzNtvvx2J5bsm3Lm0tLSYFStWmOzsbJOYmGjS09PNo48+ag4dOhSpU3DNUBCN5HEiVGgZY8wbb7xhpk+fbpKTk824cePMqlWrzH//+1/X1k0uRQ/ZZI1cCo1sskY2hRZL2eQxxpibvSTQjoceekjd3d239Ea33bt3q7S0VHv37tXy5cuDbvvCF76g5ORknTp1yuGVAgDuBOQSAMAtMfOhFE5erRgAgHCRSwCAkYiZC/uO9GrFU6dOHXa73+8P+kjJwcFBdXR06J577on7TwUCgHhijNHVq1eVlZUVdxfRvBG5BAC3B7ezKWYKVThXK66trVV1dbV7iwMA3JILFy4Erg0Tr8glALi9uJVNMVOorr9a8dAVr4d83tWKq6qqVFFREfi+s7NTubm5unDhgjIyMlxaMQDgRl1dXcrJyVF6enq0lxI2cgkAbg9uZ1PMFKrrr1Y8efLkoNs+72rFycnJls8gZmRkEFwAEAW3w8vayCUAuL24lU0x8wJ3R69WDABAmMglAMBIRKVQnT9/Xs3Nzfrf//4X2PaNb3xDqampamho0MDAQGD7b37zG/373//WsmXLorFUAMAdgFwCANjl2Ev+9u3bp9bWVknSxYsX1dfXp5dfflmSlJeXF3QNjxUrVujYsWM6e/as8vPzJUnjxo1TTU2Nnn/+eT322GN66qmn1NbWpi1btqiwsFBlZWVOLRUAcAcglwAAkeBYoXr99dd17NixoG3r16+XJJWUlAy7KKKVyspK3XPPPaqrq9PatWuVkZGhxYsX64c//CEvqwAA3BJyCQAQCR5jjIn2IpzW1dWlzMxMdXZ28uZfAIggHn+tMRcAiB63H4Nj5kMpAAAAACDeUKgAAAAAwCYKFQAAAADYRKECAAAAAJsoVAAAAABgE4UKAAAAAGyiUAEAAACATRQqAAAAALCJQgUAAAAANlGoAAAAAMAmChUAAAAA2EShAgAAAACbKFQAAAAAYBOFCgAAAABsolABAAAAgE0UKgAAAACwiUIFAAAAADZRqAAAAADAJgoVAAAAANhEoQIAAAAAmyhUAAAAAGAThQoAAAAAbKJQAQAAAIBNFCoAAAAAsIlCBQAAAAA2UagAAAAAwCYKFQAAAADYRKECAAAAAJsoVAAAAABgE4UKAAAAAGyiUAEAAACATRQqAAAAALCJQgUAAAAANlGoAAAAAMAmChUAAAAA2EShAgAAAACbKFQAAAAAYBOFCgAAAABsolABAAAAgE0UKgAAAACwiUIFAAAAADZRqAAAAADAJgoVAAAAANhEoQIAAAAAmyhUAAAAAGAThQoAAAAAbKJQAQAAAIBNFCoAAAAAsIlCBQAAAAA2UagAAAAAwCYKFQAAAADY5FihGhwcVF1dnQoLC5WSkqKcnBxVVlbq2rVrIzre4/FYfqWlpTm1RADAHYRcAgBEQqJTd1ReXq76+notWLBAlZWVOn36tOrr6/W3v/1Nf/zjH5WQ8Pnd7dFHH9Wzzz4btG3UqFFOLREAcAchlwAAkeBIofrHP/6hbdu2aeHChTp06FBg+6RJk7R27Vr98pe/1NKlSz/3fgoKCvT00087sSQAwB2MXAIARIojL/k7cOCAjDEqKysL2l5aWiqv16v9+/eP+L76+vrU3d3txLIAAHcocgkAECmOFKqmpiYlJCSouLg4aHtKSopmzJihpqamEd3Pr371K3m9XqWnp2v8+PFas2aNOjs7nVgiAOAOQi4BACLFkZf8tbe3y+fzKTk5edht2dnZOn78uPr6+pSUlBTyPoqLi7Vo0SJNnjxZXV1dOnLkiBoaGnTs2DEdP378pm8C9vv98vv9ge+7urrCOyEAQFwjlwAAkeJIoerp6bEMLemzZwOH9rlZcP31r38N+n7FihWaPn261q1bp5/85Cdat25dyGNra2tVXV1tY+UAgNsRuQQAiBRHXvLn9XqDnom7Xm9vb2CfW/W9731PSUlJOnz48E33q6qqUmdnZ+DrwoULt/xnAQBuH+QSACBSHPkXqqysLJ06dUp+v3/YM4JtbW3y+Xw3fRYwlFGjRikrK0uXLl266X7Jyckhn4kEANx5yCUAQKQ48i9URUVFGhwc1IkTJ4K29/b26uTJk5o5c6at++3t7dVHH32kCRMmOLFMAMAdglwCAESKI4VqyZIl8ng82rp1a9D2xsZG9fT0aNmyZYFtZ86cUXNzc9B+ly9ftrzf9evXq7+/X/Pnz3dimQCAOwS5BACIFI8xxjhxR2vWrFFDQ4MWLFigxx9/PHBF+q9+9av605/+FLgifX5+vlpbW3X9H1teXq53331Xc+fOVW5urrq7u3XkyBEdPXpUDz/8sI4eParU1NQRr6Wrq0uZmZnq7OxURkaGE6cHABiBWHr8JZcAAJL7j8GOvIdKkrZu3ar8/Hzt2rVLhw8fls/n05o1a/TSSy8FQiuUOXPm6NSpU9qzZ48uX76su+66S1OmTNGmTZtUUVER+EQmAABGilwCAESCY/9CFUt4JhAAooPHX2vMBQCix+3HYEfeQwUAAAAAdyIKFQAAAADYRKECAAAAAJsoVAAAAABgE4UKAAAAAGyiUAEAAACATRQqAAAAALCJQgUAAAAANlGoAAAAAMAmChUAAAAA2EShAgAAAACbKFQAAAAAYBOFCgAAAABsolABAAAAgE0UKgAAAACwiUIFAAAAADZRqAAAAADAJgoVAAAAANhEoQIAAAAAmyhUAAAAAGAThQoAAAAAbKJQAQAAAIBNFCoAAAAAsIlCBQAAAAA2UagAAAAAwCYKFQAAAADYRKECAAAAAJsoVAAAAABgE4UKAAAAAGyiUAEAAACATRQqAAAAALCJQgUAAAAANlGoAAAAAMAmChUAAAAA2EShAgAAAACbKFQAAAAAYBOFCgAAAABsolABAAAAgE0UKgAAAACwiUIFAAAAADZRqAAAAADAJgoVAAAAANhEoQIAAAAAmyhUAAAAAGAThQoAAAAAbKJQAQAAAIBNFCoAAAAAsIlCBQAAAAA2UagAAAAAwCYKFQAAAADYRKECAAAAAJscK1SDg4Oqq6tTYWGhUlJSlJOTo8rKSl27di0ixwMAcCOyCQDgNscKVXl5uSoqKjRt2jRt27ZNixYtUn19vebPn6/BwUHXjwcA4EZkEwDAdcYBH3zwgfF4PGbhwoVB2+vr640k8+abb7p6/I06OzuNJNPZ2XlLxwEAwhNLj7+xlE2xNBcAuNO4/RjsyL9QHThwQMYYlZWVBW0vLS2V1+vV/v37XT0eAIAbkU0AgEhwpFA1NTUpISFBxcXFQdtTUlI0Y8YMNTU1uXo8AAA3IpsAAJGQ6MSdtLe3y+fzKTk5edht2dnZOn78uPr6+pSUlOTK8X6/X36/P/B9Z2enJKmrq8vO6QAAbBp63DXGRHkl0c0mcgkAYofb2eRIoerp6bEMHOmzZ/KG9gkVWuEeX1tbq+rq6mHbc3JyPnftAADnXb58WZmZmVFdQzSziVwCgNjjVjY5Uqi8Xq8+/vhjy9t6e3sD+7h1fFVVlSoqKgLfX7lyRXl5eTp//nzUAz2WdHV1KScnRxcuXFBGRka0lxNTmI015hIas7HW2dmp3NxcjR07NtpLiWo2kUsjx++SNeYSGrOxxlxCczubHClUWVlZOnXqlPx+/7Bn89ra2uTz+UI+A+jE8cnJyZbPImZmZvIDZSEjI4O5hMBsrDGX0JiNtYSE6F83PprZRC7dOn6XrDGX0JiNNeYSmlvZ5Mi9FhUVaXBwUCdOnAja3tvbq5MnT2rmzJmuHg8AwI3IJgBAJDhSqJYsWSKPx6OtW7cGbW9sbFRPT4+WLVsW2HbmzBk1NzfbPh4AgJEgmwAAEeHUBa1Wr15tJJkFCxaYxsZGU1FRYRITE01JSYkZGBgI7JeXl2es/tiRHj8Svb295sUXXzS9vb1hn9fthLmExmysMZfQmI21WJtLrGRTrM0lljAba8wlNGZjjbmE5vZsPMY48/mBAwMD2rp1q3bt2qVz587J5/NpyZIleumll5SWlhbYLz8/X62trcM+tnCkxwMAMFJkEwDAbY4VKgAAAAC400T/Y5gAAAAAIE5RqAAAAADAJgoVAAAAANgUN4VqcHBQdXV1KiwsVEpKinJyclRZWalr165F5PhYFc55/fOf/9SGDRs0a9YsjRs3Tunp6ZoxY4Y2bdoU93ORnP077+npUUFBgTwej1avXu3CaiPHibl0dHTo+eef1+TJk5WSkqJx48Zp7ty5+stf/uLiyt0V7ly6u7u1efNmffGLX1R6erp8Pp9mz56tX/ziF8M+6CDe1NbWatGiRYHfgfz8fFv3s3fvXn3pS19SamqqJkyYoG9/+9u6ePGis4uNIHIpNLLJGrkUGtlkjWwKLaayyZXPDnTB2rVrAx9du2vXLlNeXm4SExPN3LlzR/TRteEeH6vCOa8XXnjBpKWlmaVLl5r6+nqzY8cOs3jxYiPJTJ8+3fT09EToLNzh5N95ZWWlSUtLM5LMd7/7XZdWHBnhzuXcuXMmPz/f+Hw+88ILL5jXX3/dvPbaa+Zb3/qWOXDgQATOwB3hzGVgYMA88sgjJiEhwaxatcrs3LnT1NXVmeLiYiPJfP/734/QWbhDkhk7dqx57LHHzJgxY0xeXt4t38drr71mJJmSkhKzc+dOs379ejN69Ggzbdo0093d7fyiI4BcCo1sskYuhUY2WSObQoulbIqLQvXBBx8Yj8djFi5cGLS9vr7eSDJvvvmmq8fHqnDPq6mpyVy5cmXY9nXr1hlJZtu2bY6uN5Kc/Dt/7733zF133WW2bNkS98HlxFweeeQRc99995n29na3lhlx4c7l+PHjRpIpKysL2u73+82kSZNMZmam00uOqDNnzgT++8EHH7zl0Lp48aLxer2mqKjI9Pf3B7a/9dZbRpLZtGmTU0uNGHIpNLLJGrkUGtlkjWy6uVjKprgoVEMPon/+85+Dtn/66afG6/War3/9664eH6vcOq/333/fSDLPPfecE8uMCqdm09/fb7785S+bJ554wpw9ezbugyvcuRw7dsxIMvX19cYYY/r6+sy1a9dcW2+khDuX3/72t0aSeeWVV4bdVlRUZLKyshxdbzTZCa3GxkYjyezdu3fYbQUFBeaBBx5waHWRQy6FRjZZI5dCI5uskU0jF+1siov3UDU1NSkhIUHFxcVB21NSUjRjxgw1NTW5enyscuu8PvroI0nShAkTwl5jtDg1m7q6OjU3N6uhocGNZUZcuHM5cuSIJCk3N1fz589XamqqRo8eralTp2r//v2urdtt4c6luLhYd999t1555RUdPHhQ58+fV3Nzs6qqqvTee+9p48aNLq4+9g3N7ytf+cqw22bNmqXm5mZ1d3dHellhIZdCI5uskUuhkU3WyCZ3OZlNcVGo2tvb5fP5lJycPOy27OxsXbp0SX19fa4dH6vcOK+BgQHV1NQoMTFRS5cudWqpEefEbM6ePasXX3xRGzZssP1Gx1gT7lw+/PBDSVJpaak6Ojq0Z88e/fznP1dSUpKWL1+uN954w7W1uyncuYwZM0ZvvfWWxo4dq8WLFysvL08PPPCAtm/frkOHDqm0tNTN5ce89vZ2SZ/N8kbZ2dkyxgT2iRfkUmhkkzVyKTSyyRrZ5C4nsynR0ZW5pKenx/KHSfqspQ/tk5SU5MrxscqN8yorK9M777yjzZs36/7773dkndHgxGy+853vqKCgQBUVFa6sMRrCncvVq1clSenp6Tp69Ghgv29+85sqKCjQD37wA61cuVIJCXHxXE2AEz8vaWlpeuihh/Tkk09q9uzZ6ujo0Pbt27V06VL9+te/1rx581xZezzo6emRJMsZXz/feEIuhUY2WSOXQiObrJFN7nIym+LiJ8vr9crv91ve1tvbG9jHreNjldPntX79ejU0NOjZZ59VVVWVI2uMlnBns3//fv3hD3/Qjh07NGrUKFfWGA3hziU1NVWS9NRTTwU9gI8ZM0ZPPvmk/vOf/wSeKYwn4c7l73//u2bPnq158+bpxz/+sRYsWKBnnnlGb7/9tiZOnKjS0lINDAy4svZ4MDQ7qxnH62MwuRQa2WSNXAqNbLJGNrnLyWyKi0KVlZWlS5cuWZ5wW1ubfD7fTdt5uMfHKifPa+PGjXr55Ze1atUq/exnP3N6qREXzmz8fr8qKir0+OOPa+LEiWppaVFLS4taW1slSZ2dnWppadGVK1fcPAVXhPszc99990mSJk6cOOy2e++9V5L0ySefOLTayAl3LnV1dert7dWiRYuCtnu9Xj3xxBNqbW3VuXPnnF523MjKypL02Sxv1NbWJo/HE9gnXpBLoZFN1sil0Mgma2STu5zMJscKlZsX15o2bZoGBwd14sSJoH17e3t18uRJzZw586b3WVRUFNbxscqp89q4caOqq6u1cuVK7d69Wx6Px43lRlQ4s/n000918eJFHT58WFOmTAl8zZkzR9JnzxJOmTJFu3fvdvMUXBHuz8zQG2OH3hx+vaFt48ePd2i1kRPuXIYejK2e6evv7w/63ztRUVGRJOmdd94Zdtu7776r+++/X2lpaY7/ueRSdJBN1sil0Mgma2STuxzNplv6fMGbkIsX1/rCF75gJIX8HP59+/YFtrW0tJjTp08H7ff+++/f9HP8rz8+ntzKeVnNxRhjqqurjSSzfPnyuL+Q5PXCmU1fX585ePDgsK+f/vSnRpL52te+Zg4ePGg+/PDDiJ2PU8L9meno6DDp6ekmOzvbXL16NbC9vb3djB492kydOtXdE3BJuHMpKyszksyPfvSjoO2ffPKJuffee82YMWOCrnERzz7vo2lbW1vN6dOnTV9fX2Dbxx9/bFJTU01xcbHltT5qampcWSu5FB1kkzVyKTSyyRrZNHLRzibHCpXbF9eaNWtW4ErRjY2NpqKiwiQmJpqSkpKgB9u8vDxj1RNXr149ouPjzUjPy2ouDQ0NRpLJzc01e/bsMfv27Qv6+v3vfx/p03FUOLOxcrtc7yPcuezcudNIMg8++KDZsmWLqa2tNbm5uWbUqFHmd7/7XSRPxVHhzOXcuXNm7NixxuPxmKefftrs2LHDbNq0yeTn5xtJZvv27ZE+HUft3bvX1NTUmJqaGjN+/Hhz9913B76/8fodJSUlRpI5e/Zs0PZXX33VSDJz5swxO3fuNBs2bDCjR482hYWFQf8HyEnkUvSQTdbIpdDIJmtkU2ixlE2uXNjXrYtrvfrqq2bq1KkmKSnJZGVlmfLy8mEnG+oXrb+/f0THx5uRnpfVXFauXGkkhfwqKSmJ4Jk4L5zZWLldgsuJuRw6dMg8/PDDxuv1mrS0NDNv3jzz9ttvR2L5rgl3Li0tLWbFihUmOzvbJCYmmvT0dPPoo4+aQ4cOReoUXDMURCN5nAgVWsYY88Ybb5jp06eb5ORkM27cOLNq1Srz3//+NyLnQC5FFtlkjVwKjWyyRjaFFkvZ5DHGmNAvCLTnoYceUnd39y290e25557Trl279K9//UuTJ08Oum3ZsmU6cOCAurq6XHmdPQDg9kYuAQDcEjPXoRrpxbWmTp067Ha/3x/0CSiDg4Pq6OjQPffcE/dvYgWAeGKM0dWrV5WVlRV313y5EbkEALcHt7MpZgpVOBfXqq2tVXV1tXuLAwDckgsXLgQ+yjhekUsAcHtxK5tiplBdf3GtoQu0Dfm8i2tVVVUFXTW8s7NTubm5unDhgjIyMlxaMQDgRl1dXcrJyVF6enq0lxI2cgkAbg9uZ1PMFKrrL65142vVP+/iWsnJyZbPIGZkZBBcABAFt8PL2sglALi9uJVNMfMC92hd+BEAACvkEgBgJKJSqM6fP6/m5mb973//C2z7xje+odTUVDU0NARd0fk3v/mN/v3vf2vZsmXRWCoA4A5ALgEA7HLsJX/79u1Ta2urJOnixYvq6+vTyy+/LEnKy8vT8uXLA/uuWLFCx44d09mzZ5Wfny9JGjdunGpqavT888/rscce01NPPaW2tjZt2bJFhYWFKisrc2qpAIA7ALkEAIgExwrV66+/rmPHjgVtW79+vSSppKQkKLhCqays1D333KO6ujqtXbtWGRkZWrx4sX74wx/ysgoAwC0hlwAAkeDKhX2jraurS5mZmers7OTNvwAQQTz+WmMuABA9bj8Gx8yHUgAAAABAvKFQAQAAAIBNFCoAAAAAsIlCBQAAAAA2UagAAAAAwCYKFQAAAADYRKECAAAAAJsoVAAAAABgE4UKAAAAAGyiUAEAAACATRQqAAAAALCJQgUAAAAANlGoAAAAAMAmChUAAAAA2EShAgAAAACbKFQAAAAAYBOFCgAAAABsolABAAAAgE0UKgAAAACwiUIFAAAAADZRqAAAAADAJgoVAAAAANhEoQIAAAAAmyhUAAAAAGAThQoAAAAAbKJQAQAAAIBNFCoAAAAAsIlCBQAAAAA2UagAAAAAwCYKFQAAAADYRKECAAAAAJsoVAAAAABgE4UKAAAAAGyiUAEAAACATRQqAAAAALCJQgUAAAAANlGoAAAAAMAmChUAAAAA2EShAgAAAACbKFQAAAAAYBOFCgAAAABsolABAAAAgE0UKgAAAACwiUIFAAAAADZRqAAAAADAJgoVAAAAANhEoQIAAAAAmyhUAAAAAGAThQoAAAAAbKJQAQAAAIBNFCoAAAAAsMmxQjU4OKi6ujoVFhYqJSVFOTk5qqys1LVr10Z0vMfjsfxKS0tzaokAgDsIuQQAiIREp+6ovLxc9fX1WrBggSorK3X69GnV19frb3/7m/74xz8qIeHzu9ujjz6qZ599NmjbqFGjnFoiAOAOQi4BACLBkUL1j3/8Q9u2bdPChQt16NChwPZJkyZp7dq1+uUvf6mlS5d+7v0UFBTo6aefdmJJAIA7GLkEAIgUR17yd+DAARljVFZWFrS9tLRUXq9X+/fvH/F99fX1qbu724llAQDuUOQSACBSHClUTU1NSkhIUHFxcdD2lJQUzZgxQ01NTSO6n1/96lfyer1KT0/X+PHjtWbNGnV2djqxRADAHYRcAgBEiiMv+Wtvb5fP51NycvKw27Kzs3X8+HH19fUpKSkp5H0UFxdr0aJFmjx5srq6unTkyBE1NDTo2LFjOn78+E3fBOz3++X3+wPfd3V1hXdCAIC4Ri4BACLFkULV09NjGVrSZ88GDu1zs+D661//GvT9ihUrNH36dK1bt04/+clPtG7dupDH1tbWqrq62sbKAQC3I3IJABApjrzkz+v1Bj0Td73e3t7APrfqe9/7npKSknT48OGb7ldVVaXOzs7A14ULF275zwIA3D7IJQBApDjyL1RZWVk6deqU/H7/sGcE29ra5PP5bvosYCijRo1SVlaWLl26dNP9kpOTQz4TCQC485BLAIBIceRfqIqKijQ4OKgTJ04Ebe/t7dXJkyc1c+ZMW/fb29urjz76SBMmTHBimQCAOwS5BACIFEcK1ZIlS+TxeLR169ag7Y2Njerp6dGyZcsC286cOaPm5uag/S5fvmx5v+vXr1d/f7/mz5/vxDIBAHcIcgkAECkeY4xx4o7WrFmjhoYGLViwQI8//njgivRf/epX9ac//SlwRfr8/Hy1trbq+j+2vLxc7777rubOnavc3Fx1d3fryJEjOnr0qB5++GEdPXpUqampI15LV1eXMjMz1dnZqYyMDCdODwAwArH0+EsuAQAk9x+DHXkPlSRt3bpV+fn52rVrlw4fPiyfz6c1a9bopZdeCoRWKHPmzNGpU6e0Z88eXb58WXfddZemTJmiTZs2qaKiIvCJTAAAjBS5BACIBMf+hSqW8EwgAEQHj7/WmAsARI/bj8GOvIcKAAAAAO5EFCoAAAAAsIlCBQAAAAA2UagAAAAAwCYKFQAAAADYRKECAAAAAJsoVAAAAABgE4UKAAAAAGyiUAEAAACATRQqAAAAALCJQgUAAAAANlGoAAAAAMAmChUAAAAA2EShAgAAAACbKFQAAAAAYBOFCgAAAABsolABAAAAgE0UKgAAAACwiUIFAAAAADZRqAAAAADAJgoVAAAAANhEoQIAAAAAmyhUAAAAAGAThQoAAAAAbKJQAQAAAIBNFCoAAAAAsIlCBQAAAAA2UagAAAAAwCYKFQAAAADYRKECAAAAAJsoVAAAAABgE4UKAAAAAGyiUAEAAACATRQqAAAAALCJQgUAAAAANlGoAAAAAMAmChUAAAAA2EShAgAAAACbKFQAAAAAYBOFCgAAAABsolABAAAAgE0UKgAAAACwiUIFAAAAADZRqAAAAADAJgoVAAAAANhEoQIAAAAAmyhUAAAAAGAThQoAAAAAbKJQAQAAAIBNFCoAAAAAsIlCBQAAAAA2UagAAAAAwCbHCtXg4KDq6upUWFiolJQU5eTkqLKyUteuXYvI8QAA3IhsAgC4zbFCVV5eroqKCk2bNk3btm3TokWLVF9fr/nz52twcND14wEAuBHZBABwnXHABx98YDwej1m4cGHQ9vr6eiPJvPnmm64ef6POzk4jyXR2dt7ScQCA8MTS428sZVMszQUA7jRuPwY78i9UBw4ckDFGZWVlQdtLS0vl9Xq1f/9+V48HAOBGZBMAIBIcKVRNTU1KSEhQcXFx0PaUlBTNmDFDTU1Nrh4PAMCNyCYAQCQkOnEn7e3t8vl8Sk5OHnZbdna2jh8/rr6+PiUlJblyvN/vl9/vD3zf2dkpSerq6rJzOgAAm4Yed40xUV5JdLOJXAKA2OF2NjlSqHp6eiwDR/rsmbyhfUKFVrjH19bWqrq6etj2nJycz107AMB5ly9fVmZmZlTXEM1sIpcAIPa4lU2OFCqv16uPP/7Y8rbe3t7APm4dX1VVpYqKisD3V65cUV5ens6fPx/1QI8lXV1dysnJ0YULF5SRkRHt5cQUZmONuYTGbKx1dnYqNzdXY8eOjfZSoppN5NLI8btkjbmExmysMZfQ3M4mRwpVVlaWTp06Jb/fP+zZvLa2Nvl8vpDPADpxfHJysuWziJmZmfxAWcjIyGAuITAba8wlNGZjLSEh+teNj2Y2kUu3jt8la8wlNGZjjbmE5lY2OXKvRUVFGhwc1IkTJ4K29/b26uTJk5o5c6arxwMAcCOyCQAQCY4UqiVLlsjj8Wjr1q1B2xsbG9XT06Nly5YFtp05c0bNzc22jwcAYCTIJgBARDh1QavVq1cbSWbBggWmsbHRVFRUmMTERFNSUmIGBgYC++Xl5RmrP3akx49Eb2+vefHFF01vb2/Y53U7YS6hMRtrzCU0ZmMt1uYSK9kUa3OJJczGGnMJjdlYYy6huT0bjzHOfH7gwMCAtm7dql27duncuXPy+XxasmSJXnrpJaWlpQX2y8/PV2tr67CPLRzp8QAAjBTZBABwm2OFCgAAAADuNNH/GCYAAAAAiFMUKgAAAACwKW4K1eDgoOrq6lRYWKiUlBTl5OSosrJS165di8jxsSqc8/rnP/+pDRs2aNasWRo3bpzS09M1Y8YMbdq0Ke7nIjn7d97T06OCggJ5PB6tXr3ahdVGjhNz6ejo0PPPP6/JkycrJSVF48aN09y5c/WXv/zFxZW7K9y5dHd3a/PmzfriF7+o9PR0+Xw+zZ49W7/4xS+GvS8n3tTW1mrRokWB34H8/Hxb97N371596UtfUmpqqiZMmKBvf/vbunjxorOLjSByKTSyyRq5FBrZZI1sCi2mssmVj7pwwdq1awOftLRr1y5TXl5uEhMTzdy5c0f0SUvhHh+rwjmvF154waSlpZmlS5ea+vp6s2PHDrN48WIjyUyfPt309PRE6Czc4eTfeWVlpUlLSzOSzHe/+12XVhwZ4c7l3LlzJj8/3/h8PvPCCy+Y119/3bz22mvmW9/6ljlw4EAEzsAd4cxlYGDAPPLIIyYhIcGsWrXK7Ny509TV1Zni4mIjyXz/+9+P0Fm4Q5IZO3aseeyxx8yYMWNMXl7eLd/Ha6+9ZiSZkpISs3PnTrN+/XozevRoM23aNNPd3e38oiOAXAqNbLJGLoVGNlkjm0KLpWyKi0L1wQcfGI/HYxYuXBi0vb6+3kgyb775pqvHx6pwz6upqclcuXJl2PZ169YZSWbbtm2OrjeSnPw7f++998xdd91ltmzZEvfB5cRcHnnkEXPfffeZ9vZ2t5YZceHO5fjx40aSKSsrC9ru9/vNpEmTTGZmptNLjqgzZ84E/vvBBx+85dC6ePGi8Xq9pqioyPT39we2v/XWW0aS2bRpk1NLjRhyKTSyyRq5FBrZZI1surlYyqa4KFRDD6J//vOfg7Z/+umnxuv1mq9//euuHh+r3Dqv999/30gyzz33nBPLjAqnZtPf32++/OUvmyeeeMKcPXs27oMr3LkcO3bMSDL19fXGGGP6+vrMtWvXXFtvpIQ7l9/+9rdGknnllVeG3VZUVGSysrIcXW802QmtxsZGI8ns3bt32G0FBQXmgQcecGh1kUMuhUY2WSOXQiObrJFNIxftbIqL91A1NTUpISFBxcXFQdtTUlI0Y8YMNTU1uXp8rHLrvD766CNJ0oQJE8JeY7Q4NZu6ujo1NzeroaHBjWVGXLhzOXLkiCQpNzdX8+fPV2pqqkaPHq2pU6dq//79rq3bbeHOpbi4WHfffbdeeeUVHTx4UOfPn1dzc7Oqqqr03nvvaePGjS6uPvYNze8rX/nKsNtmzZql5uZmdXd3R3pZYSGXQiObrJFLoZFN1sgmdzmZTXFRqNrb2+Xz+ZScnDzstuzsbF26dEl9fX2uHR+r3DivgYEB1dTUKDExUUuXLnVqqRHnxGzOnj2rF198URs2bLD9RsdYE+5cPvzwQ0lSaWmpOjo6tGfPHv385z9XUlKSli9frjfeeMO1tbsp3LmMGTNGb731lsaOHavFixcrLy9PDzzwgLZv365Dhw6ptLTUzeXHvPb2dkmfzfJG2dnZMsYE9okX5FJoZJM1cik0sska2eQuJ7Mp0dGVuaSnp8fyh0n6rKUP7ZOUlOTK8bHKjfMqKyvTO++8o82bN+v+++93ZJ3R4MRsvvOd76igoEAVFRWurDEawp3L1atXJUnp6ek6evRoYL9vfvObKigo0A9+8AOtXLlSCQlx8VxNgBM/L2lpaXrooYf05JNPavbs2ero6ND27du1dOlS/frXv9a8efNcWXs86OnpkSTLGV8/33hCLoVGNlkjl0Ijm6yRTe5yMpvi4ifL6/XK7/db3tbb2xvYx63jY5XT57V+/Xo1NDTo2WefVVVVlSNrjJZwZ7N//3794Q9/0I4dOzRq1ChX1hgN4c4lNTVVkvTUU08FPYCPGTNGTz75pP7zn/8EnimMJ+HO5e9//7tmz56tefPm6cc//rEWLFigZ555Rm+//bYmTpyo0tJSDQwMuLL2eDA0O6sZx+tjMLkUGtlkjVwKjWyyRja5y8lsiotClZWVpUuXLlmecFtbm3w+303bebjHxyonz2vjxo16+eWXtWrVKv3sZz9zeqkRF85s/H6/Kioq9Pjjj2vixIlqaWlRS0uLWltbJUmdnZ1qaWnRlStX3DwFV4T7M3PfffdJkiZOnDjstnvvvVeS9Mknnzi02sgJdy51dXXq7e3VokWLgrZ7vV498cQTam1t1blz55xedtzIysqS9Nksb9TW1iaPxxPYJ16QS6GRTdbIpdDIJmtkk7uczKa4KFRFRUUaHBzUiRMngrb39vbq5MmTmjlzpqvHxyqnzmvjxo2qrq7WypUrtXv3bnk8HjeWG1HhzObTTz/VxYsXdfjwYU2ZMiXwNWfOHEmfPUs4ZcoU7d69281TcEW4PzNDb4wdenP49Ya2jR8/3qHVRk64cxl6MLZ6pq+/vz/of+9ERUVFkqR33nln2G3vvvuu7r//fqWlpUV6WWEhl0Ijm6yRS6GRTdbIJnc5mk239PmCN7F582bzf//3f2bSpElGkq2LaxljzJ49e8yMGTNMSkqKGT9+vHnmmWfM//t//++mn8O/b9++wLaWlhZz+vTpoP3ef//9ER8fT27lvKzmYowx1dXVRpJZvnx53F9I8nrhzKavr88cPHhw2NdPf/pTI8l87WtfMwcPHjQffvhhxM7HKeH+zHR0dJj09HSTnZ1trl69Gtje3t5uRo8ebaZOneruCbgk3LmUlZUZSeZHP/pR0PZPPvnE3HvvvWbMmDFB17iIZ5/30bStra3m9OnTpq+vL7Dt448/Nqmpqaa4uNjyWh81NTWurJVcig6yyRq5FBrZZI1sGrloZ5NjhUouX634ueeeC1wpurGx0VRUVJjExERTUlIS9GCbl5dnrHri6tWrR3R8vBnpeVnNpaGhwUgyubm5Zs+ePWbfvn1BX7///e8jfTqOCmc2Vm6X632EO5edO3caSebBBx80W7ZsMbW1tSY3N9eMGjXK/O53v4vkqTgqnLmcO3fOjB071ng8HvP000+bHTt2mE2bNpn8/HwjyWzfvj3Sp+OovXv3mpqaGlNTU2PGjx9v7r777sD3N16/o6SkxEgyZ8+eDdr+6quvGklmzpw5ZufOnWbDhg1m9OjRprCwMOj/ADmJXIoesskauRQa2WSNbAotlrLJsULl9tWKa2pqzKuvvmqmTp1qkpKSTFZWlikvLx92sqF+0fr7+0d0fLwZ6XlZzWXlypVGUsivkpKSCJ6J88KZjZXbJbicmMuhQ4fMww8/bLxer0lLSzPz5s0zb7/9diSW75pw59LS0mJWrFhhsrOzTWJioklPTzePPvqoOXToUKROwTVDQTSSx4lQoWWMMW+88YaZPn26SU5ONuPGjTOrVq0y//3vf11bN7kUPWSTNXIpNLLJGtkUWixlk8cYY272kkA7HnroIXV3d9/SG912796t0tJS7d27V8uXLw+67Qtf+IKSk5N16tQph1cKALgTkEsAALfEzIdSOHm1YgAAwkUuAQBGImYu7DvSqxVPnTp12O1+vz/oIyUHBwfV0dGhe+65J+4/FQgA4okxRlevXlVWVlbcXUTzRuQSANwe3M6mmClU4VytuLa2VtXV1e4tDgBwSy5cuBC4Nky8IpcA4PbiVjbFTKG6/mrFQ1e8HvJ5VyuuqqpSRUVF4PvOzk7l5ubqwoULysjIcGnFAIAbdXV1KScnR+np6dFeStjIJQC4PbidTTFTqK6/WvHkyZODbvu8qxUnJydbPoOYkZFBcAFAFNwOL2sjlwDg9uJWNsXMC9wdvVoxAABhIpcAACMRlUJ1/vx5NTc363//+19g2ze+8Q2lpqaqoaFBAwMDge2/+c1v9O9//1vLli2LxlIBAHcAcgkAYJdjL/nbt2+fWltbJUkXL15UX1+fXn75ZUlSXl5e0DU8VqxYoWPHjuns2bPKz8+XJI0bN041NTV6/vnn9dhjj+mpp55SW1ubtmzZosLCQpWVlTm1VADAHYBcAgBEgmOF6vXXX9exY8eCtq1fv16SVFJSMuyiiFYqKyt1zz33qK6uTmvXrlVGRoYWL16sH/7wh7ysAgBwS8glAEAkeIwxJtqLcFpXV5cyMzPV2dnJm38BIIJ4/LXGXAAgetx+DI6ZD6UAAAAAgHhDoQIAAAAAmyhUAAAAAGAThQoAAAAAbKJQAQAAAIBNFCoAAAAAsIlCBQAAAAA2UagAAAAAwCYKFQAAAADYRKECAAAAAJsoVAAAAABgE4UKAAAAAGyiUAEAAACATRQqAAAAALCJQgUAAAAANlGoAAAAAMAmChUAAAAA2EShAgAAAACbKFQAAAAAYBOFCgAAAABsolABAAAAgE0UKgAAAACwiUIFAAAAADZRqAAAAADAJgoVAAAAANhEoQIAAAAAmyhUAAAAAGAThQoAAAAAbKJQAQAAAIBNFCoAAAAAsIlCBQAAAAA2UagAAAAAwCYKFQAAAADYRKECAAAAAJsoVAAAAABgE4UKAAAAAGyiUAEAAACATRQqAAAAALCJQgUAAAAANlGoAAAAAMAmChUAAAAA2EShAgAAAACbKFQAAAAAYBOFCgAAAABsolABAAAAgE0UKgAAAACwiUIFAAAAADZRqAAAAADAJgoVAAAAANhEoQIAAAAAmyhUAAAAAGCTY4VqcHBQdXV1KiwsVEpKinJyclRZWalr166N6HiPx2P5lZaW5tQSAQB3EHIJABAJiU7dUXl5uerr67VgwQJVVlbq9OnTqq+v19/+9jf98Y9/VELC53e3Rx99VM8++2zQtlGjRjm1RADAHYRcAgBEgiOF6h//+Ie2bdumhQsX6tChQ4HtkyZN0tq1a/XLX/5SS5cu/dz7KSgo0NNPP+3EkgAAdzByCQAQKY685O/AgQMyxqisrCxoe2lpqbxer/bv3z/i++rr61N3d7cTywIA3KHIJQBApDhSqJqampSQkKDi4uKg7SkpKZoxY4aamppGdD+/+tWv5PV6lZ6ervHjx2vNmjXq7Ox0YokAgDsIuQQAiBRHXvLX3t4un8+n5OTkYbdlZ2fr+PHj6uvrU1JSUsj7KC4u1qJFizR58mR1dXXpyJEjamho0LFjx3T8+PGbvgnY7/fL7/cHvu/q6grvhAAAcY1cAgBEiiOFqqenxzK0pM+eDRza52bB9de//jXo+xUrVmj69Olat26dfvKTn2jdunUhj62trVV1dbWNlQMAbkfkEgAgUhx5yZ/X6w16Ju56vb29gX1u1fe+9z0lJSXp8OHDN92vqqpKnZ2dga8LFy7c8p8FALh9kEsAgEhx5F+osrKydOrUKfn9/mHPCLa1tcnn8930WcBQRo0apaysLF26dOmm+yUnJ4d8JhIAcOchlwAAkeLIv1AVFRVpcHBQJ06cCNre29urkydPaubMmbbut7e3Vx999JEmTJjgxDIBAHcIcgkAECmOFKolS5bI4/Fo69atQdsbGxvV09OjZcuWBbadOXNGzc3NQftdvnzZ8n7Xr1+v/v5+zZ8/34llAgDuEOQSACBSPMYY48QdrVmzRg0NDVqwYIEef/zxwBXpv/rVr+pPf/pT4Ir0+fn5am1t1fV/bHl5ud59913NnTtXubm56u7u1pEjR3T06FE9/PDDOnr0qFJTU0e8lq6uLmVmZqqzs1MZGRlOnB4AYARi6fGXXAIASO4/BjvyHipJ2rp1q/Lz87Vr1y4dPnxYPp9Pa9as0UsvvRQIrVDmzJmjU6dOac+ePbp8+bLuuusuTZkyRZs2bVJFRUXgE5kAABgpcgkAEAmO/QtVLOGZQACIDh5/rTEXAIgetx+DHXkPFQAAAADciShUAAAAAGAThQoAAAAAbKJQAQAAAIBNFCoAAAAAsIlCBQAAAAA2UagAAAAAwCYKFQAAAADYRKECAAAAAJsoVAAAAABgE4UKAAAAAGyiUAEAAACATRQqAAAAALCJQgUAAAAANlGoAAAAAMAmChUAAAAA2EShAgAAAACbKFQAAAAAYBOFCgAAAABsolABAAAAgE0UKgAAAACwiUIFAAAAADZRqAAAAADAJgoVAAAAANhEoQIAAAAAmyhUAAAAAGAThQoAAAAAbKJQAQAAAIBNFCoAAAAAsIlCBQAAAAA2UagAAAAAwCYKFQAAAADYRKECAAAAAJsoVAAAAABgE4UKAAAAAGyiUAEAAACATRQqAAAAALCJQgUAAAAANlGoAAAAAMAmChUAAAAA2EShAgAAAACbKFQAAAAAYBOFCgAAAABsolABAAAAgE0UKgAAAACwiUIFAAAAADZRqAAAAADAJgoVAAAAANhEoQIAAAAAmyhUAAAAAGAThQoAAAAAbHKsUA0ODqqurk6FhYVKSUlRTk6OKisrde3atYgcDwDAjcgmAIDbHCtU5eXlqqio0LRp07Rt2zYtWrRI9fX1mj9/vgYHB10/HgCAG5FNAADXGQd88MEHxuPxmIULFwZtr6+vN5LMm2++6erxN+rs7DSSTGdn5y0dBwAITyw9/sZSNsXSXADgTuP2Y7Aj/0J14MABGWNUVlYWtL20tFRer1f79+939XgAAG5ENgEAIsGRQtXU1KSEhAQVFxcHbU9JSdGMGTPU1NTk6vEAANyIbAIAREKiE3fS3t4un8+n5OTkYbdlZ2fr+PHj6uvrU1JSkivH+/1++f3+wPednZ2SpK6uLjunAwCwaehx1xgT5ZVEN5vIJQCIHW5nkyOFqqenxzJwpM+eyRvaJ1RohXt8bW2tqqurh23Pycn53LUDAJx3+fJlZWZmRnUN0cwmcgkAYo9b2eRIofJ6vfr4448tb+vt7Q3s49bxVVVVqqioCHx/5coV5eXl6fz581EP9FjS1dWlnJwcXbhwQRkZGdFeTkxhNtaYS2jMxlpnZ6dyc3M1duzYaC8lqtlELo0cv0vWmEtozMYacwnN7WxypFBlZWXp1KlT8vv9w57Na2trk8/nC/kMoBPHJycnWz6LmJmZyQ+UhYyMDOYSArOxxlxCYzbWEhKif934aGYTuXTr+F2yxlxCYzbWmEtobmWTI/daVFSkwcFBnThxImh7b2+vTp48qZkzZ7p6PAAANyKbAACR4EihWrJkiTwej7Zu3Rq0vbGxUT09PVq2bFlg25kzZ9Tc3Gz7eAAARoJsAgBEhFMXtFq9erWRZBYsWGAaGxtNRUWFSUxMNCUlJWZgYCCwX15enrH6Y0d6/Ej09vaaF1980fT29oZ9XrcT5hIas7HGXEJjNtZibS6xkk2xNpdYwmysMZfQmI015hKa27PxGOPM5wcODAxo69at2rVrl86dOyefz6clS5bopZdeUlpaWmC//Px8tba2DvvYwpEeDwDASJFNAAC3OVaoAAAAAOBOE/2PYQIAAACAOEWhAgAAAACbKFQAAAAAYFPcFKrBwUHV1dWpsLBQKSkpysnJUWVlpa5duxaR42NVOOf1z3/+Uxs2bNCsWbM0btw4paena8aMGdq0aVPcz0Vy9u+8p6dHBQUF8ng8Wr16tQurjRwn5tLR0aHnn39ekydPVkpKisaNG6e5c+fqL3/5i4srd1e4c+nu7tbmzZv1xS9+Uenp6fL5fJo9e7Z+8YtfDPugg3hTW1urRYsWBX4H8vPzbd3P3r179aUvfUmpqamaMGGCvv3tb+vixYvOLjaCyKXQyCZr5FJoZJM1sim0mMomVz470AVr164NfHTtrl27THl5uUlMTDRz584d0UfXhnt8rArnvF544QWTlpZmli5daurr682OHTvM4sWLjSQzffp009PTE6GzcIeTf+eVlZUmLS3NSDLf/e53XVpxZIQ7l3Pnzpn8/Hzj8/nMCy+8YF5//XXz2muvmW9961vmwIEDETgDd4Qzl4GBAfPII4+YhIQEs2rVKrNz505TV1dniouLjSTz/e9/P0Jn4Q5JZuzYseaxxx4zY8aMMXl5ebd8H6+99pqRZEpKSszOnTvN+vXrzejRo820adNMd3e384uOAHIpNLLJGrkUGtlkjWwKLZayKS4K1QcffGA8Ho9ZuHBh0Pb6+nojybz55puuHh+rwj2vpqYmc+XKlWHb161bZySZbdu2ObreSHLy7/y9994zd911l9myZUvcB5cTc3nkkUfMfffdZ9rb291aZsSFO5fjx48bSaasrCxou9/vN5MmTTKZmZlOLzmizpw5E/jvBx988JZD6+LFi8br9ZqioiLT398f2P7WW28ZSWbTpk1OLTViyKXQyCZr5FJoZJM1sunmYimb4qJQDT2I/vnPfw7a/umnnxqv12u+/vWvu3p8rHLrvN5//30jyTz33HNOLDMqnJpNf3+/+fKXv2yeeOIJc/bs2bgPrnDncuzYMSPJ1NfXG2OM6evrM9euXXNtvZES7lx++9vfGknmlVdeGXZbUVGRycrKcnS90WQntBobG40ks3fv3mG3FRQUmAceeMCh1UUOuRQa2WSNXAqNbLJGNo1ctLMpLt5D1dTUpISEBBUXFwdtT0lJ0YwZM9TU1OTq8bHKrfP66KOPJEkTJkwIe43R4tRs6urq1NzcrIaGBjeWGXHhzuXIkSOSpNzcXM2fP1+pqakaPXq0pk6dqv3797u2breFO5fi4mLdfffdeuWVV3Tw4EGdP39ezc3Nqqqq0nvvvaeNGze6uPrYNzS/r3zlK8NumzVrlpqbm9Xd3R3pZYWFXAqNbLJGLoVGNlkjm9zlZDbFRaFqb2+Xz+dTcnLysNuys7N16dIl9fX1uXZ8rHLjvAYGBlRTU6PExEQtXbrUqaVGnBOzOXv2rF588UVt2LDB9hsdY024c/nwww8lSaWlpero6NCePXv085//XElJSVq+fLneeOMN19bupnDnMmbMGL311lsaO3asFi9erLy8PD3wwAPavn27Dh06pNLSUjeXH/Pa29slfTbLG2VnZ8sYE9gnXpBLoZFN1sil0Mgma2STu5zMpkRHV+aSnp4eyx8m6bOWPrRPUlKSK8fHKjfOq6ysTO+88442b96s+++/35F1RoMTs/nOd76jgoICVVRUuLLGaAh3LlevXpUkpaen6+jRo4H9vvnNb6qgoEA/+MEPtHLlSiUkxMVzNQFO/LykpaXpoYce0pNPPqnZs2ero6ND27dv19KlS/XrX/9a8+bNc2Xt8aCnp0eSLGd8/XzjCbkUGtlkjVwKjWyyRja5y8lsioufLK/XK7/fb3lbb29vYB+3jo9VTp/X+vXr1dDQoGeffVZVVVWOrDFawp3N/v379Yc//EE7duzQqFGjXFljNIQ7l9TUVEnSU089FfQAPmbMGD355JP6z3/+E3imMJ6EO5e///3vmj17tubNm6cf//jHWrBggZ555hm9/fbbmjhxokpLSzUwMODK2uPB0OysZhyvj8HkUmhkkzVyKTSyyRrZ5C4nsykuClVWVpYuXbpkecJtbW3y+Xw3befhHh+rnDyvjRs36uWXX9aqVav0s5/9zOmlRlw4s/H7/aqoqNDjjz+uiRMnqqWlRS0tLWptbZUkdXZ2qqWlRVeuXHHzFFwR7s/MfffdJ0maOHHisNvuvfdeSdInn3zi0GojJ9y51NXVqbe3V4sWLQra7vV69cQTT6i1tVXnzp1zetlxIysrS9Jns7xRW1ubPB5PYJ94QS6FRjZZI5dCI5uskU3ucjKb4qJQFRUVaXBwUCdOnAja3tvbq5MnT2rmzJmuHh+rnDqvjRs3qrq6WitXrtTu3bvl8XjcWG5EhTObTz/9VBcvXtThw4c1ZcqUwNecOXMkffYs4ZQpU7R79243T8EV4f7MDL0xdujN4dcb2jZ+/HiHVhs54c5l6MHY6pm+/v7+oP+9ExUVFUmS3nnnnWG3vfvuu7r//vuVlpYW6WWFhVwKjWyyRi6FRjZZI5vc5Wg23dLnC0bJ+++/f9PP4d+3b19gW0tLizl9+rTt4+NJuHMxxpjq6mojySxfvjzuLyR5vXBm09fXZw4ePDjs66c//amRZL72ta+ZgwcPmg8//DBi5+OUcH9mOjo6THp6usnOzjZXr14NbG9vbzejR482U6dOdfcEXBLuXMrKyowk86Mf/Sho+yeffGLuvfdeM2bMmKBrXMSzz/to2tbWVnP69GnT19cX2Pbxxx+b1NRUU1xcbHmtj5qaGjeX7ApyKTSyyRq5FBrZZI1sGrloZ1NcFCpjjFm9enXgStGNjY2moqLCJCYmmpKSkqAH27y8PGPVE0d6fLwJZy4NDQ1GksnNzTV79uwx+/btC/r6/e9/H+nTcVS4PzM3ul2u9xHuXHbu3GkkmQcffNBs2bLF1NbWmtzcXDNq1Cjzu9/9LpKn4qhw5nLu3DkzduxY4/F4zNNPP2127NhhNm3aZPLz840ks3379kifjqP27t1rampqTE1NjRk/fry5++67A9/feP2OkpISI8mcPXs2aPurr75qJJk5c+aYnTt3mg0bNpjRo0ebwsLCoP8DFE/IpdDIJmvkUmhkkzWyKbRYyqa4KVT9/f3m1VdfNVOnTjVJSUkmKyvLlJeXDzvZUL9oIz0+3oQzl5UrVxpJIb9KSkoieCbOC/dn5ka3S3A5MZdDhw6Zhx9+2Hi9XpOWlmbmzZtn3n777Ugs3zXhzqWlpcWsWLHCZGdnm8TERJOenm4effRRc+jQoUidgmuGgmgkjxOhQssYY9544w0zffp0k5ycbMaNG2dWrVpl/vvf/0bmJFxALoVGNlkjl0Ijm6yRTaHFUjZ5jDFmJC8NBAAAAAAEi4sPpQAAAACAWEShAgAAAACbKFQAAAAAYBOFCgAAAABsolABAAAAgE0UKgAAAACwiUIFAAAAADZRqAAAAADAJgoVAAAAANhEoQIAAAAAmyhUAAAAAGAThQoAAAAAbKJQAQAAAIBN/x8cwTJF2OITewAAAABJRU5ErkJggg==" }, "metadata": {}, "output_type": "display_data" } ], "execution_count": 12 }, { "metadata": { "ExecuteTime": { "end_time": "2025-04-30T09:56:02.626682Z", "start_time": "2025-04-30T09:56:02.572415Z" } }, "cell_type": "code", "source": "min(results[\"Delphes\"][\"pfcands_pt\"])", "id": "379df7edfcf5942d", "outputs": [ { "data": { "text/plain": [ "-0.3010289602264827" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "execution_count": 17 }, { "metadata": { "ExecuteTime": { "end_time": "2025-04-30T09:56:04.424861Z", "start_time": "2025-04-30T09:56:04.395017Z" } }, "cell_type": "code", "source": "min(results[\"CMS FullSim\"][\"pfcands_pt\"])\n", "id": "ddc61b4dc9883c28", "outputs": [ { "data": { "text/plain": [ "-0.22177806941733907" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "execution_count": 18 }, { "metadata": { "ExecuteTime": { "end_time": "2025-04-30T09:56:12.573254Z", "start_time": "2025-04-30T09:56:12.545197Z" } }, "cell_type": "code", "source": "min(results[\"CMS FullSim\"][\"pfcands_eta\"])\n", "id": "1205b61b7f7623d3", "outputs": [ { "data": { "text/plain": [ "-2.3984375" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "execution_count": 19 }, { "metadata": { "ExecuteTime": { "end_time": "2025-05-13T09:08:14.486690Z", "start_time": "2025-05-13T09:08:14.481653Z" } }, "cell_type": "code", "source": "np.array(results[\"Delphes\"][\"n_nh\"])\n", "id": "9f80bcfce6445fae", "outputs": [ { "data": { "text/plain": [ "array([0, 0, 0, ..., 0, 0, 0])" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "execution_count": 27 }, { "metadata": { "ExecuteTime": { "end_time": "2025-04-30T09:56:18.234763Z", "start_time": "2025-04-30T09:56:18.131626Z" } }, "cell_type": "code", "source": "t = torch.tensor(results[\"CMS FullSim\"][\"pfcands_pt\"])", "id": "f412edaf53f77bad", "outputs": [], "execution_count": 21 }, { "metadata": { "ExecuteTime": { "end_time": "2025-04-30T09:56:18.506369Z", "start_time": "2025-04-30T09:56:18.494594Z" } }, "cell_type": "code", "source": "t[t<0.222]", "id": "88b97beb3a57c575", "outputs": [ { "data": { "text/plain": [ "tensor([ 0.2212, 0.2194, 0.2191, ..., -0.2158, -0.2172, -0.2200])" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "execution_count": 22 }, { "metadata": { "ExecuteTime": { "end_time": "2025-04-30T09:56:18.878548Z", "start_time": "2025-04-30T09:56:18.777117Z" } }, "cell_type": "code", "source": [ "import pandas as pd\n", "for key in results_PID:\n", " print(key, \"number of PFCands in sample:\", len(results_PID[key]))\n", " print(pd.value_counts(pd.Series(results_PID[key]), normalize=False))\n" ], "id": "461362524bad047f", "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Delphes number of PFCands in sample: 426711\n", "211.0 306595\n", "22.0 95529\n", "2112.0 24587\n", "Name: count, dtype: int64\n", "CMS FullSim number of PFCands in sample: 149427\n", " 22.0 75853\n", " 130.0 28642\n", " 211.0 22569\n", "-211.0 22363\n", "Name: count, dtype: int64\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/tmp/ipykernel_61141/3118960101.py:4: FutureWarning: pandas.value_counts is deprecated and will be removed in a future version. Use pd.Series(obj).value_counts() instead.\n", " print(pd.value_counts(pd.Series(results_PID[key]), normalize=False))\n" ] } ], "execution_count": 23 }, { "metadata": { "ExecuteTime": { "end_time": "2025-05-14T20:12:22.593341Z", "start_time": "2025-05-14T20:12:10.328335Z" } }, "cell_type": "code", "source": [ "fig, ax = plt.subplots(1, 2, figsize=(10, 5))\n", "ax[0].hist(results[\"Delphes\"][\"n_pfcands\"], bins=bins[\"n_pfcands\"], histtype=\"step\", density=True, label=\"PFCands\")\n", "ax[1].hist(results[\"Delphes\"][\"pfcands_pt\"], bins=bins[\"pfcands_pt\"], histtype=\"step\", density=True, label=\"PFCands\")\n", "ax[1].hist(results[\"Delphes\"][\"genp_pt\"], bins=bins[\"genp_pt\"], histtype=\"step\", density=True, label=\"Final-state particles\")\n", "ax[0].hist(results[\"Delphes\"][\"n_genp\"], bins=bins[\"n_genp\"], histtype=\"step\", density=True, label=\"Final-state particles\")\n", "ax[0].hist(results[\"Delphes\"][\"n_parton_level\"], bins=bins[\"n_parton_level\"], histtype=\"step\", density=True, label=\"Parton-level particles\")\n", "ax[1].hist(results[\"Delphes\"][\"parton_level_pt\"], bins=bins[\"parton_level_pt\"], histtype=\"step\", density=True, label=\"Parton-level particles\")\n", "\n", "ax[0].set_ylabel(\"Density\")\n", "ax[0].set_xlabel(\"Number of particles\")\n", "ax[1].set_ylabel(\"Density\")\n", "ax[1].set_xlabel(r\"$log_{10}(p_T)$\")\n", "ax[0].grid()\n", "ax[0].legend()\n", "ax[1].grid()\n", "ax[1].legend()\n", "fig.tight_layout()\n", "fig.show()\n", "fig.savefig(\"/work/gkrzmanc/jetclustering/plot_dataset_stats_900_03.pdf\")" ], "id": "71a35d13854c9396", "outputs": [ { "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9QAAAHhCAYAAACP/PazAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA7QJJREFUeJzs3XlcVNX/P/DXwAzDALIImIAk4r7kErnkhntpruSSlpqlpvnRVKykstSvRVrmkvuWW6mVC2X+Ssx9yyWxVNRccAFKQWCEGWBg7u+PaSaGGWCGWYHX8/HgAdx7z51zzixn3vece45IEAQBRERERERERGQWF0dngIiIiIiIiKgiYkBNREREREREVA4MqImIiIiIiIjKgQE1ERERERERUTkwoCYiIiIiIiIqBwbUREREREREROXAgJqIiIiIiIioHBhQExEREREREZWD2NEZqIrUajVSUlJQrVo1iEQiR2eHiIicmCAIePz4MYKDg+HiwuvglmD7S0REpjK1/WVA7QApKSkIDQ11dDaIiKgCuXfvHmrVquXobFRobH+JiMhcZbW/DKgdoFq1agA0T463t3e5z6NSqbB//3706tULEonEWtlzalWtzCxv5cbyVm7WKq9cLkdoaKiu7aDyY/tbsbCe7YP1bD+sa/uwd/vLgNoBtMPMvL29LW7QPTw84O3tXWXelFWtzCxv5cbyVm7WLi+HKFuO7W/Fwnq2D9az/bCu7cPe7S9vxiIiIiIiIiIqBwbUREREREREROXAgJqIiIiIiIioHBhQExEREREREZUDA2oiIiIiIiKicuAs30RORqVSobCwUPe3WCxGbm6ubltlxvJWbiyvPolEAldXVwfkjIiKKywshEqlcnQ2HKKqfTY7EuvaPkqrZ1dXV6vPsM6AmshJyOVypKWlIS8vT7dNEATUrFkT9+7dqxJL5rC8lRvLq08kEsHHxwc1a9asEvVB5IwEQcDff/+NrKwsCILg6Ow4RFX7bHYk1rV9lFXPUqkUAQEBFi2fWBQDaiInIJfLkZycDC8vLwQEBEAikUAkEkGtViM7OxteXl5wcan8d2iwvJUby/sfQRCQk5ODhw8fQiaTwdfX1zGZJKrisrKykJmZicDAQHh6elbJIKeqfTY7EuvaPkqqZ0EQoFKpkJWVheTkZACwSlDNgJrICaSlpcHLywu1atXSa8zVajXy8/Ph7u5eJT54Wd7KjeXVJ5PJkJeXhwcPHsDHx6dKfpEnciRBEPDgwQN4e3sjICDA0dlxmKr22exIrGv7KK2eZTIZqlWrhvv37yMtLc0qATWfSSIHU6lUyMvL4xdqoirI29sbhYWFvJeOyAG07z1rDfskoopBe8tVXl6eVeZOYEBN5GDaL9LWniCBiJyfWKwZKFZQUODgnNhObGwshgwZgvDwcIhEIoSFhZXrPAqFAnPnzkXTpk0hk8lQvXp1PPvss9i9e7d1M0xVhvZ9p30fElHVof3ebY0L2vwEIXIS7J0mqnqqwvv+vffeQ/Xq1fH0008jMzOzXOfIyMhA9+7d8ddff2HMmDGYPn06cnJykJiYiDt37lg3w1TlVIX3IRHps+b7ngE1ERER2czNmzcRHh4OAGjWrBmys7PNPseUKVNw48YN/Pbbb2jSpIm1s0hERFRuHPJNRGQnXbp0KfdwV6KKShtMl1dSUhK++eYbjBs3Dk2aNEFhYWG5gnIiqprY9pKtsYeayMmlZuXh7uMsp5oN0s/TDSG+snKnP3z4MLp27aq3zdPTEw0bNsSQIUMQHR0NFxcXbNy4EWPGjCnxPKmpqahZs6bu/4KCAmzevBnbtm1DQkICsrKyUK1aNTRv3hxRUVF4/fXX4eHhUe58E5H9/fzzz1Cr1WjSpAlGjhyJb7/9Fvn5+QgJCUF0dDSmTZvm6CxSJZWcqURGTr6js6HDtpfIOTldQK1Wq7FkyRKsXr0aSUlJCAwMxNChQzF37lx4enpaPf2+ffswb948XLx4EVKpFN27d8eCBQtQp04dvePKGmc/b948vP/+++YVliqGzHuAIt34Pg9/wDfUZg+dnKnEoHW/I1elttljlIdM4ooD0ZEWNewAMHz4cPTp0weCICAlJQUbN25ETEwMbt68ibVr1+qOmzJlClq3bm2QvujavQ8fPkT//v1x+vRptG3bFlOnTkVQUBAyMzNx9OhRTJs2DceOHcO3335rUZ6JyL6uXbsGAIiJiUFAQABWrVoFNzc3rFq1CtOnT0dmZibmzJljNG1eXh7y8vJ0/8vlcgCa1RUsmdlVm9Yas8OSoZRMJTIUKni5ab572aqeVSoVBEGAWq2GWq3fziZnKtFr0TEoVc4zA79M4or90zqVu+3VlvGll15C7969IQgCUlNTsWnTJl3bu3r1at1xkydPxjPPPGNwHm9vb90xDx8+xMCBA3Vt71tvvYWaNWsiKytL1/YePXoUO3bsKGepraf4c+wIgiDofjtDfiorU+pZrVbr1qV2dXU1eoypnz1OF1BPmzYNS5cuxaBBgxAdHY3ExEQsXboUFy5cwIEDB8rspTMn/a5duzB48GC0aNECn332GbKysrB48WJ06NAB586dQ3BwsO7YLVu2GH282bNn4+bNm+jXr591KoCcS+Y9YHkbQKUwvl/iAUw6Y7OgOiMnH7kqNb4Y2hwNnnCOZT1uPMjG1B0JyMjJtzigfvrpp/HKK6/o/n/jjTfQpEkTrF+/HvPmzdNt79SpEwYPHlzieQRBwODBg3H69GksXboUkydP1ts/ffp0/PXXX/juu+8syi8R2d/jx48BAPn5+Th27Bj8/f0BAEOHDkWTJk2wYMECTJ06FX5+fgZpY2NjjQbb+/fvt0qPWXx8vMXnIH2P8oDYBFfkq0VwcxEwpant6lksFqNmzZrIzs5Gfr5+T/T9B9lQqgrxcb/6CPd3fO/qrXQF3v/xL9x/kIFqLuW7wKBQaL7LNGnSBP3799dtHzFiBNq1a4f169fj7bffRm5uLgAgIiJC7zit/Px85OfnQxAEREVF4fTp05g/fz7Gjx+vd9zrr7+OmzdvYs+ePbqLWY5QUFAAtVrt0DwUp/1cI9sqrZ7z8/OhVCpx9OjRElfa0L5nyuJUAfXly5fx5ZdfIioqCjt37tRtr1OnDqZMmYLt27djxIgRVkmvUqkwefJkhIaG4tixY/Dy8gIA9O7dGxEREZg9ezbWrFmjO0fRL/1a9+/fx+3bt/HMM8+gefPmFpefnJAiXRNMR60FAhro70u7DuwapznGhr3UAFAv0AvNQnxs+hjOwNvbG61bt8YPP/yAW7dumZxu7969OHr0KIYNG2YQTGvVr18f7733nu7/M2fOYMWKFTh58iTu378PV1dXNG/eHDNmzMCgQYP00r766qvYtGkTMjMzMXPmTOzcuRNyuRwRERH44osv0LZtW73jMzIy8M4772D37t1QKpVo3bo1Fi5caDRfv/32GxYtWoSEhARkZmbC398fLVq0wIcffoh27dqZXAdElZVMprlw17dvX10wDWiWPBkxYgTmzp2L06dPo3fv3gZpY2JiMH36dN3/crkcoaGh6NWrl0VrD6tUKsTHx6Nnz55c8tDKLqfIkf/7abzfpyG+iP8LSy8D+ya3R+2AalZ/rNzcXNy7dw9eXl5wd3fX2+f5WNPD9dSTgU7R/nomZwH4C56enuV+7WovIrm7u+udo1q1arq29+HDh7q6kMlkpT7Wjz/+iJMnT2Lo0KGYMWOG0WNatWqFVq1a6f4/c+YMVq5ciVOnTum1vdOnTzdoe8eMGYPNmzfj0aNHiImJwa5du3Rt7+eff2607X333XexZ88eXdv72WefQSwWw8XFRa8sJ0+exLx58/Ta3ubNm2PWrFk2bXsFQcDjx49RrVo1zi5vQ6bUc25uLmQyGTp37mzw/tcy9SKMUwXU27ZtgyAImDp1qt72cePGYebMmdi6dWupAbU56Y8cOYKUlBTMnTtXF0wDQMuWLdGlSxfs2LEDy5cvL7Wh/Oqrr6BWqzF27FjzC0sVS0ADILilo3NR6QmCoAukAwICdEM9Hz9+jLS0NL1jPTw8dF8Ovv/+ewAwuDpemt27d+Pq1asYOnQoateujfT0dGzatAlRUVH4+uuvjX7WPPfccwgMDMSHH36I9PR0fPHFF3jhhRdw+/ZtVKum+bKnUqnw3HPP4ezZsxg5ciTatWuHhIQE9OjRQy8YADRDWaOiolCzZk289dZbeOKJJ/DPP//g+PHjuHjxIgNqIgC1atUCAL17NrWCgoIAaL5IGyOVSiGVSg22SyQSqwTC1joP/Ue7JvSzdQOxPMATr23+Hdn5gk3qubCwECKRCC4uLgYjILX/G9vnCNbIjzadtsxahYWFura3Ro0a+OuvvwAAOTk5ePTokd45ira9u3btAqAZXWZqnuLi4nDt2jWDtnfw4MEGba82EOrdu7dB29uvXz+Dtrd3794GbW+vXr10ba82j9euXcNzzz1ntO39888/0b59ezNq1Tza4cfFnwOyLlPq2cXFBSKRqNTPcVM/d5wqoD579ixcXFzQpk0bve3u7u5o2bIlzp49a7X02r+fffZZg/O0a9cOBw8exPXr19G0aVOjjyUIAr766it4enpi+PDhJpWPiPQpFAqkpaXp7uNaunQpLl26hHbt2qF+/fo4ceIEAOC1114zSPvuu+/i008/BQBcunQJgOaCmKk++OADxMbG6m2bMmUKWrVqhXnz5hkNqJ9++mmsWLFC93+TJk0wdOhQfPPNN3jjjTcAaC60nT17Fh9++KHeUNMmTZpg2rRpqF27tm7b/v37oVAo8PXXXzN4JiqBtk2/f/++wT7ttho1atg1T2Qf1T3dAACPnGhisMqgqre9v/zyCxQKBbZt22YQMxCVh1MF1CkpKQgICDB6NTkkJAQnT55Efn4+3NzcLE6fkpKi227sWABITk4uMaA+ePAgbt++jVdffbXMoTecFMV67F7mggJIAKgKCoDij1naPjOUNimKM05eoc2Hsfyae46PPvoIH330kW67i4sLevfujXXr1umdf9asWejYsaPeOcLCwnT7te8pLy8vk/Mkk8l0xyoUCiiVSgiCgK5du2L16tXIzMzUvbe1z8Nbb72ld/4uXboAAK5fv67bvnv3bri6umLatGl6x77xxhu6smq3a88fFxeH5s2blzjkqLJwxtezLdl7UpTK4O7du1AoFKhbt66uZ6Bz586oXbs2fvzxRyQnJ+va6JycHGzevBm+vr5GL45TxefnIYGbi4BJ2xJwINrX4nk7SKOktnf9+vV6x3344Yfo1KmT3raiy09p215zhqAXnSC4aNvbrVs3rFq1CnK53OB8xWfy79atGwDoetIBYM+ePXB1dUV0dLTesRMnTtQrKwD4+GiG8FeVtpdsz6kCaoVCYTQYBqB7sSsUihIDanPSa28yN3Z80WNLsm7dOgCaCRfKwklRrM9eZfZRJKELgBMnTiDLI9nkfeYobVIU7WtQoVBALneOoUE5OTm633J5+e7/0ZZr9OjRGDhwIEQiETw8PFCvXj3dxEJyuVw3MUrdunWNXkXWNubaBjolJUVv5u/SPHz4EB9//DH27duHhw8fGuy/d+8eQkM198ZrA5qAgAC9+2m0X/j//vtv3fabN2/iiSee0MufVu3atZGZmanb3qdPH3Tp0gWffvoplixZgmeeeQbdunVDVFQUnnzySZPKURFVtclY7DUpirPasmUL7ty5A0DzvsvPz9dNOli7dm2MHDlSd+yoUaNw5MgR3L59W/fF3dXVFStWrED//v3x7LPP4s0334Sbmxu++uor3Lt3D+vXrzdpFRCqeIJ9ZXitoRqrEkU4e/sRUKc6g2orGD9+PIYMGQKRSARPT0/Uq1cPYrHYIJB96qmn0KNHjxLPoz3+8ePHRicFNObBgwf44IMPEBcXhwcPHhjsL3oxW6v4WvbaIdzp6f+twHLr1i0EBQUZpJVKpQgPD9e7LeSll17C1q1b8cknn2DRokVo164dnnvuObz00kt6PdlEpnKqgNrDw8PomwuA7ot1aQGoOem1v4v2HJv6WI8ePcLu3bvRqFEjg14zYzgpivXYvcypF4FrQIcOHYCgFqbvM0Npk6J4yDW9Wh4eHha9VqxJO1GLNSZGadq0qd4MosUnkTB1YpTmzZvj4sWLuHHjhu7KdWkEQUCXLl2QmJiIKVOmICIiAj4+PnB1dcXGjRuxbds2vfJpX2slfWEo+kVEe3+bsfy6urrq7RMEAbt370ZiYiLi4+Nx9OhRxMbGYv78+di6davBBC0VXVWbjMXek6I4q/Xr1+PIkSN622bNmgUAiIyM1AuoS9KnTx/8+uuvmDNnDj7++GMUFhaiVatW+OGHH7jKRiX3hEyATOKCqTsSrLZkY1VXv359vUC5vDNgN2vWDL///jsuXLhgctvbq1cvJCYm4q233sIzzzyja3u/+uorfPPNN0ZH85Q0ekc7CshcUqkU8fHxOHPmDH755RccPXoUH374IWbPno1vvvmm0rW9ZHtOFVAHBwfjypUryMvLM+g5Tk5ORkBAQIm90+am1y6JlZycjMaNGxscCxgfDg4AX3/9NfLy8kzqnQY4KYot2K3M/06OIhGLgeKPV9o+M5Q2KYr2S7gzTV5hy4lRik8iYepjDR48GFu2bMGGDRtKvZqudfHiRVy8eNHgXisA2LBhg8Fjap+HkvJQtBzh4eHYv38/srOz9YLqvLw83Lp1C35+frpjteVt27atbsjqvXv30KpVK3z44Yd48cUXyyxLRVLVJmOx96Qozurw4cNWOTYyMhIHDx60PENUoVSXAj9P6YAL9x9j6o4E3HiQzYDaSbz44ovYvHkz1q1bZ1JA/ccff5TY9mpHfpaXtu0tPmS8aNtbXJs2bXSj37Rt7wcffMCAmszmVN9oWrduDbVajTNnzuhtz83NRUJCgtHF5cubvnXr1gCAU6dOGZzn9OnT8Pb2RoMGDQz2AZqr7RKJBKNGjTKpXERkW/369UPnzp2xbds2vYlLirpx44ZuIhTt1e7iV7cvXbqE3bt3W5SXAQMGoLCw0GCZrJUrVxr0ABSfuRzQzGgcGBhoMLMqEVFVFewrQ+s61SGTuGLClvNIzlQ6OksEtr1EWk7VQz1s2DB88sknWLx4sd4kCGvXroVCocDLL7+s23bz5k2oVCo0atSoXOkjIyMRFBSEdevWYdq0abqlsy5evIjDhw9jzJgxRnsFzp07h4sXLyIqKoqzihI5CZFIhO+//x79+vXDpEmTsGXLFvTv3x81a9ZEZmYmjh8/jh9++EHX49u4cWM0bdoUCxYsgEKhQMOGDXH9+nWsXr0aTz31FM6fP1/uvIwZMwZr1qzB3Llzcfv2bTz77LO4cOECvvvuO9StW1fvPtmPP/4Yv/zyC/r164fw8HAIgoAff/wRV69exTvvvGNxvRARVRYhvjKsGhmB0RvOICMnn73UTqCitr3z5s3D/v370bdvX9SpU4dtL1nMqQLqp556CpMmTcKyZcsQFRWFPn36IDExEUuXLkVkZKTeVPrdu3fHnTt39K5ymZNeIpFgyZIlGDZsGDp16oRx48ZBLpdj0aJFCAwMNDqJGADdDIhce5rs6cbDbKcZInvjQbajs2BUYGAgjh07hs2bN2Pbtm1YuHAhsrKy4O3tjRYtWmDJkiUYM2YMAM1V8p9++gkzZszApk2bkJOTg2bNmmHTpk24ePGiRY26m5sb4uPj8fbbb2PPnj3YuXMnWrdujfj4eMyYMQNJSUm6YwcMGIB79+7hu+++wz///AOZTIb69etj7dq1Jt9SQkRUVfh7lnzbn604S5vnLPkoriK2vQMHDkRqaiq+/fZbtr1kFSKhvHf020hhYSEWL16MNWvWICkpCQEBARg2bBjmzp2r60UGNNP2Fw+ozUmvtXfvXsybNw9//PEHpFIpunfvjvnz56Nu3boGxyqVSt0MgklJSeUOcORyOXx8fHQfOOWlUqmwb98+9OnTp8LfY2cqu5c5JQFYEwmMPwIEtzR9nxlyc3Nx+/Zt1KlTx2BSonuPctBz0VHkqpxriSFbTQyjnRjF29vbaS4g2BLLW7mZUt7S3v9a1moziO1vRXApOQt9vzyOvZM7omEND716LrqvWYiPxY9V2vsvOVOJHguPQKkqtPhxrIVtb8XHurYPe7e/TtVDDUC3hlzxdeSKK3qlqTzptfr27Yu+ffuadKxMJkNmZqZJxxJZQ4ivDLvHPg2Vi5tTffD6ebpxuB0RETlEek5+2QdZKMRXhgPRkciww2OZim0vkXNyuoCaiPQF+Uh5JZOIiKo8P0833cRk9lg+K8RXxgCWiMrEb+hERERE5BRK633WTkymVBU6Vc8xEVVt7KEmslTa9ZL3efgDvqH2ywsREVEFlZypxIQt5yGTuMKvhAnIHDExGRFRaRhQE5WXhz8g8QB2jSv5GIkHMOkMg2oiIqIyZOTkQ6kqxKbX2iDEVwaVSuXoLBERlYkBNVF5+YZqgmVFuvH9adc1wbYi3XhAnXlPs69AAApdgHwl4PLvbN4uYkDMq/BERFT1sBeaiCoSBtRElvANLV/vc+Y9YHkbQKUAvEKBDguBzEJALNLsF7kAgY01gTURERHpscdM30REpuCkZESOoEjXBNNRa4GhW4BqNQHfOkBAQ8C3NiCoAXWBo3NJRETkVIrO9J2cqXR0doiIGFATOVRAA6BGY8DVDXCTAW4egNj44vJERERVHWf6JiJnw4CaiIiIiCoM3mNNRM6EATURERERERFROTCgJiIiIiIiIioHBtREtpZ2HUhJ0P9Ju+7YPDm5w4cPQyQSYePGjXZ5vFdffRUikcguj0Vlmz17NkQiEZKSkuyaloioKmPbW7Wx7S0/rslDZCse/oDEQ7MWtTESD80xJSnIBQQB4szbQFYuULTREbkCrhLr5tccHv7lWy4Mmga7a9euJe7fv38/XF1dy5szp7Fx40ZkZmZi6tSpFp1nz549SEhIwOzZs62SL2dRWctFRJVI5j3NqhzOgm1vmdj2lq6ylsvRGFAT2YpvKDDpTMmNsbZhzM3V3+4i1qxDnXkHLtn/wOvb0Zrg2plIPDRlK2fDDgDDhw9Hnz599Lap1WqEh4ejdu3aUCqVkEgceNHAQhs3bkRSUpJVGvVNmzZVusavtHJ98MEHmDlzJqRSqf0zRkQVhk3Xos68Byxvo1ni0lmw7S0T297Sse21DQbURLbkG2p+wyd2AwIbA+oCqFW5cCnIhbrfMrgE1tfsL8gHslM161U7YomttOuaXndFukWN+tNPP41XXnlFb5tarYZcLoeLiwvc3bl8WGX0+PFjeHt7l3qMWCyGWMzmiYiMK7oW9YHoSIT4yqz/IIp0TTAdtVazxKWjse0lCzx+/BjVqlUr9Ri2veXHe6iJnJHYTX9N6prNgCfbaX5qPaNp3Gs2B4Jb2v/HDl8sjN3HVXTbV199haZNm0IqlaJ27dpYsGCBwTn279+PYcOGITw8HDKZDL6+vujVqxeOHDlicf42b96MNm3awNfXF56enggPD8fLL7+Mhw8fAgDCwsJw5MgR3LlzByKRSPdz+PBhAMCZM2fw6quvolGjRggODoaPjw86dOiA3bt36z1Oly5dsGnTJgDQO0/ReklNTcXEiRPx5JNPws3NDcHBwRg/fjwePHhgUlm6dOmCsLAw3Lp1CwMGDICPjw+8vb0xaNAg3Lp1S+9YtVqNjz/+GJ07d0bNmjXh5uaGJ598EhMnTkR6uv5IjKSkJIhEIsyePRs7duxAREQEPD098e6776Jbt26llquke7Hkcjnef/99NG7cGO7u7vD390fHjh2xffv2MsuZlZWFd999F/Xq1YNUKkVgYCCGDx9uUMbc3FzMnj0bDRs2hIeHB3x9ffHUU0/h7bffNqk+icj27LoWdUADx7S1bHsNWKvtbdCgATw8PFCtWjWHtb3dunWzW9srk8kwefLkMsvFtrf8eBmCiBxCoVAgLS1Nb5spw8xWrVqFf/75B6+//jp8fX2xdetWvPvuu6hVqxZGjBihO27jxo149OgRRo0ahVq1aiE5ORnr1q1D9+7dcejQIXTq1Klc+d6yZQtGjx6NTp06Ye7cuZDJZLh37x727duHBw8eIDAwEIsXL0ZMTAzS0tKwaNEiXdrGjRsDAHbv3o2rV69iyJAhqFGjBhQKBTZv3oyoqCh8/fXXunK8//77UKvVOHbsGLZs2aI7T/v27QEAd+/exbPPPov8/Hy8/vrrqFu3Lm7cuIGVK1fi0KFDOHfuHHx8fMosU05ODrp06YK2bdsiNjYWf/31F1asWIHTp0/jwoULqFmzJgAgPz8fn332GV588UUMGDAAnp6eOHv2LNavX4/jx4/j/PnzcHPTXx92z549WLp0KSZOnIjx48dDIpEgJCSk1HIZk5mZiY4dO+Ly5csYPHgwJk6ciMLCQly4cAF79+7FSy+9VGLarKwstG/fHnfv3sVrr72Gpk2bIjU1FStWrEDbtm1x7tw51K5dGwAwadIkbNiwAaNGjcL06dNRUFCAv/76CwcPHiyzHonIfrgWdfmw7b2KoUOHonbt2khPT8emTZsqfds7YcIEeHt7o3r16mx7bUUgu8vKyhIACFlZWRadJz8/X9izZ4+Qn59vpZw5P7uXOfmCIHzkrfltI0qlUrhy5YqgVCoN9hXe/10QPvLW/NbKyxGE5N81vx3Bwjo5dOiQAMDoz9ChQ4WMjAzh119/FQAIX331lUG6oKAgITMzU7c9JydHCAgIENq1a6f3ONnZ2QaP/ffffwv+/v5C79699baPHj1aMPXjcNCgQUK1atUElUpV6nGRkZFC7dq1je7T5q2wsFDIyMgQCgsLhZycHKFBgwZC48aNTc5b//79hcDAQOHevXt628+ePSu4uroKH330UZnliYyMFAAIb731lt72Xbt2CQCEN954Q7dNrVYLCoXC4Bzr1q0TAAg7duzQbbt9+7YAQBCLxcKVK1cMyltauT766CMBgHD79m3dtokTJwoAhNWrVxscX1hYWGraKVOmCO7u7kJCQoJeuqSkJKFatWrC6NGjddv8/PwMXh/lVbS8JSnt/a9lrTaD2P46uz/vZwq1390r/Hlf8xlfWj1rjz187UG5H6/U958d2n+zsO21WttblL3bXm27YM+219RyVZa2V5s3e7a/HPJNRA4xfvx4xMfH6/28//77ZaYbM2aM3pVfDw8PtGvXDn/99ZfecZ6enrq/s7OzkZ6eDldXV7Rt2xa//fZbufPt4+MDhUKBn376CYIglOscRfOmUCiQnp4OhUKBbt26ITExEXK5vMxzZGVlYe/evejfvz/c3d2Rlpam+wkLC0O9evWwf/9+k/M0c+ZMvf8HDRqEhg0bYs+ePbptIpEIMpnmXsXCwkJkZmYiLS0N3bp1AwCj9frCCy/oegfKS61WY/v27WjcuDHGjx9vsN/FpeSmTBAEfP311+jcuTNCQkL06snT0xPt2rXTqycfHx9cvnwZly5dsijPRGRbRe+jTs5UOjo7FQbbXg22vWVj22s6DvkmIoeoX78+evToobdNOzFKacLDww22+fv7G9xHdPPmTbz//vv45ZdfkJmZqbevrHUvlUolsrKy9Lb5+PhAJpPhvffew9GjRzFw4ED4+/sjMjISvXv3xrBhw8qc8EPrwYMH+OCDDxAXF2f0fqvMzMwyJ+66du0a1Go11q9fj/Xr1xs9xlhdGePr66sbWlZU48aNsWfPHuTk5Oi+iHz77bdYuHAhLly4AJVKpXd8RkaGwTkaNLD8vr+0tDRkZGTg+eefNzvtw4cPkZ6ejv379yMwMNDoMUW/FCxevBgjR47EU089hfDwcHTt2hX9+vVDv379Sv3yQET2pb2PevSGM8jIybfNxGSVENtetr2mYttrOgbURFShmLJOZnZ2Njp37oycnBxMnToVTz31FKpVqwYXFxfExsaWeU/Ojh07MGbMGL1tX331FV599VXUr18fV65cwa+//opff/0VR44cwbhx4/DRRx/h6NGjqFu3bqnnFgQBvXr1QmJiIqZMmYImTZqgZs2akEgk+Oqrr/DNN99ArVaXWUbtFfpXXnkFo0ePNnqM9oq2tezatQvDhg1DmzZtsGTJEoSGhsLd3R2FhYV4/vnnjebbw8PDqnkwl7aeevTogXfffbfM4wcMGICkpCTs27cPR44cwYEDB7B+/Xp06tQJBw4cMLhPjYgch/dR209lanvfeustPPPMM/Dx8YGrqyvbXhuoam0vA2oiqnR+/fVXpKSkYMOGDQaN8wcffFBm+ueeew7x8fF625o2bar7WyqVok+fPrq1PPft24cXXngBX3zxBZYvXw6g5Cvxf/zxBy5evIgPP/wQH330EeRyOby9veHi4oJ169YZHF/SeerVqweRSIT8/HyD3gZzZWZm4u+//za4Up6YmIgaNWrorpBv2bIF7u7uOHTokF5jffXqVbMfs6yeiqICAgLg5+eHixcvmv04gYGB8PX1hVwuN7meqlevjldeeQWvvPIKBEHAzJkzsWDBAsTFxWHIkCFm54GIqCqoKG3vnDlz9Pax7TWOba/pnL8PnYjITNor6cXvs9q/f79J93AFBQWhR48eej9BQUEAYDA7KqBZ1xMAHj16pNvm5eWFjIwMgzyUlLdLly4ZLN2hPU/xcwOaoXZ9+vTBrl27cPr0aYN0giDolhIxxaeffqr3/+7du3Ht2jUMHDhQL+8ikUjvarggCJg3b57Jj6NVUrmMcXFxwfDhw3HlyhWjQ+xKu5/OxcUFL7/8Ms6cOYPvv//e6DHaoX/ae9OKEolEaNWqlcl5JSKqqtj2su0tmrYqtb3soSaiSqdjx46oWbMmoqOjkZSUhFq1aiEhIQFbtmzBU089hT///LPc5+7Vqxd8fX3RqVMnhIaGIjMzExs3boRIJMLIkSN1x7Vr1w579+7F//73P7Rv3x6urq7o1q0bGjdujKZNm2LBggXIycnBk08+iXv37mHNmjV46qmncP78eb3Ha9euHZYtW4Y333wTL7zwAiQSCdq2bYs6depg5cqV6NixIzp37oxRo0ahVatWUKvVuHXrFuLi4jBq1CjMnj27zDIFBARg165dSElJQZcuXXRLdzzxxBN66QcPHoydO3eiW7duGDVqFFQqFfbs2QOFQmF2PZZWLmPmzZuHgwcPYuzYsdi/fz86duwIQRBw4cIFFBQU6C0BUtzHH3+MEydOYOjQoRg6dCjatWsHNzc33LlzB/v27UNERAQ2btyIx48fIygoCP3790erVq1Qo0YN3L59GytXroSfnx/69etndjmJyPZuPMiGn6cb76N2sIrS9ioUCjRs2BDXr1/H6tWr2fay7bUYA2qiiiDtGqAdplOQC2TeAQryALG7A/Jy3f6PaSZfX1/88ssveOedd/Dll1+ioKAAERER2LdvH9avX29Roz5x4kR8++23WL16NR49egR/f3+0atUKX375Jbp27ao7btq0abh16xa+//57rFq1Cmq1GocOHUKXLl3w008/YcaMGdi8eTNycnLQrFkzbNq0CRcvXjRo1IcPH44LFy5g+/bt+O6776BWq/HVV1+hTp06CA0Nxfnz5zF//nzExcVh69atcHd3R2hoKPr164ehQ4eaVCZPT08cPHgQ06ZNw8yZMyEIAp5//nksXLhQ1zsAAC+99BIeP36MRYsWYcaMGbqG7tNPP4W/v79Z9VhauYzx8/PDqVOn8Mknn2DXrl3YvXs3qlWrhiZNmmDy5MmlPpaPjw9OnDiBhQsX4ttvv0VcXBzEYjFq1aqFjh07YuzYsQA095xNnToVv/76Kw4cOIDs7GxdIx8TE4Pg4GCzykhEtqWd6XvqjgTIJK44EB1p/aDaWdo8Z8lHKSpK27tp0ya2vWx7rUoklHfueSo3uVwOHx8fZGVllTmbYGlUKhX27duHPn36QCKRWDGHzsvuZU5JANZEAuOPAMEtbfIQubm5uH37NurUqQN3d/0AWZ1xB6LlbSEqcLIlQSQewKQzgG+oVU+rnWlUe09xZecM5e3SpQuSkpKQlJRk88dyhvLakynlLe39r2WtNoPY/jq7S8lZ6Pvlceyd3BHNQnxMqufkTCXO3n6EqTsSdOlMVer7L/MesLwNoDK/F9Bm2PZWeNq6HjhwoN3a3qrI3u0ve6iJnJlPKOSjfkU113y4FO+h9q3tmB5qAPDwt3qDTkREZK4QXxkyanhZ/8S+oZrgVZFe9rH2wraXyCkxoCZycoJ3CODtDWivsOUrALEUCGgIuDl2WQQiIqJKyzeUASwRlYnjOoiIiIiIiIjKgT3URERV2OHDhx2dBSIioirl4MGDvF+9EuEzSURERDYRGxuLIUOGIDw8HCKRCGFhYRadT61W49lnn4VIJELfvn2tk0mqNNJz8h2dBSKqghhQExERkU289957OHjwIOrWrQs/Pz+Lz7dixQpcunTJCjmjykS7fNaELeeRnOlkq2IQUaXHgJqIiIhs4ubNm0hPT0d8fLzFa4nev38f7733HubMmWOl3FFlEeIrw6qREVCqCpHBXmoisjMG1ERERGQT4eHhVjvXpEmTEB4ejrfeestq56TKw9/TzdFZIKIqipOSERERkVP7/vvv8eOPP+LkyZNwdXV1dHaIiIh0GFATERGR08rKysKUKVPwxhtvoF27dmalzcvLQ15enu5/uVwOAFCpVFCpVOXOkzatJecgQwUFBbrfRZ8jU+q5eFpTqFQqCIIAtVoNtVpdzlxXfIIg6H5X5XqwB9a1fZhSz2q1GoIgQKVSlXih1tTPEgbURGVIdXVFhjwJkBoOJ/OT+iHIK8j+mSIiqiLeeecdqNVqxMbGmp02NjbW6D3X+/fvh4eHh8V5i4+Pt/gc9J972QAgxvHjx3HH67/tptRzSWlLIxaLUbNmTWRnZyM/n/deP3782NFZqDJY1/ZRWj3n5+dDqVTi6NGjugtyxSkUCpMehwE1USlSlWkYUCsIyt9mGd0vE8sQNyCOQTURkQ0cO3YMa9euxZYtW+Dr62t2+piYGEyfPl33v1wuR2hoKHr16gVvb+9y50ulUiE+Ph49e/aERCIp93lI3+UUOT7/8zQ6duyIpsHeZtVz8bSmyM3Nxb179+Dl5QV3d3drFKFCEgQBjx8/RrVq1SASiRydnUqNdW0fptRzbm4uZDIZOnfuXOL7XzuqqSwMqIlKkaHKhtLFBbHNJiA8rKvevltZtxBzLAYZeRkMqMksr776KjZt2oTCwkJHZ0WPNl/aoVIVjSX5r+hlr6z+97//oUWLFmjbti1u3Liht0+hUODGjRvw9fVFQECA0fRSqRRSqdRgu0QisUogbK3zkIZYLNb9LlqvptRzSWlLU1hYCJFIBBcXF7i4VN15erVDYrV1UVk5w+e8sbp2hnxZwhnbXlNe0y4uLhCJRKV+vpj6WcKAmsgE4Z4haOLfxCGP/Y/iHySrkiFy+fcKmyoXkN8BXARA4pgr6pYMdT98+DC6dtW/OOHp6YmGDRti5MiRGDlypDWyqGfPnj1ISEjA7NmzrX5usq+NGzciMzMTU6dOdXRWyA7u3LmDrKws1K9f32DfoUOHUL9+fUyaNAnLli1zQO7IGaVbcdms1OxUZORlWO18lmLbS47Ctrd0DKiJnFhqTipeOfgKcgtzHZ0VPdYY6j58+HD06dMHqoJCJKekYOvmzZg2bRrO/56A1WvXQSTSXF10dXGBm9iyK+Z79uzBpk2b2KhXAhs3bkRSUpLRRn3t2rVYtWqV/TNFVnH37l0oFArUrVtX1yuwefNmo/e2DhkyBBEREZg5cybq1atn76ySE/LzdINM4ooJW87jQHQkQnxlFp0vNTsVA+IGQFmgtFIOLWfNtlcQBKSkpGDjxo2YNm0aEhISsGHDBivmlm1vZcK2t3ROF1Cr1WosWbIEq1evRlJSEgIDAzF06FDMnTsXnp6eVk+/b98+zJs3DxcvXoRUKkX37t2xYMEC1KlTx+j5f/rpJyxatAjnz59HXl4eatWqhV69evHqONlEZm4mcgtz8UmHT1DXr65moyoXyLwD+NZ2SA+1tYa6P/300xj60ghc/+cxIgQB3Qa9jIFd2+HrrZvx2rT34B9YAwDgIhKhwRPVyhVUa++foYpNEATk5OTAy6v0mYY4/Nb5bNmyBXfu3AEAPHz4EPn5+Zg3bx4AoHbt2nq9YqNGjcKRI0dw+/ZthIWFAQD69+9f4rlr1qyJwYMH2y7zVKGE+MqwamQERm84g4ycfIsD6oy8DCgLlIjtFItwH+utp15e1mx7X3nlFd3/EydOROPGjbF582bExsYiKMjyW9jY9lYObHtN53Q3SkybNg3Tp09HkyZN8OWXX2LIkCFYunQp+vXrZ9L08uak37VrF/r27QulUonPPvsMb7/9No4ePYoOHTogJSXF4Nxz5sxB3759IRaLMWfOHCxduhQvvfQS7t+/b7XyExkT7hOOJv5NND/VG6GJd5jmt3abHX+s+cWiUK2GWhAQWt0DreoGo0P7ZzX30cj/Qd0AD3y7bilGR/VGaK1guLm54cknn8TEiRORnp6ud56kpCSIRCLMnj0bO3bsQEREBGQyGSZPnowuXbpg06ZNADT30mh/Nm7cqEv/xx9/YNCgQfD394e7uzuaNGmCBQsWGNzj/Oqrr0IkEiErKwsTJ05EjRo14O7ujg4dOuC3336zuD5SU1MxceJEPPnkk3Bzc0NwcDDGjx+PBw8e6I5ZuXIlRCIRfvjhB4P0arUatWrVQsuWLfW2nzt3DoMGDUJAQACkUikaNmyIjz/+uMRZLU0RFhaGLl264Pfff0e3bt3g5eWF6tWrY/To0Xr5BTRfrj744AM8++yzqFu3LmQyGerVq4eZM2cazKB5+PBh3fOzfPlyNGnSBO7u7vj8888RFhaGI0eO4M6dO3rP5eHDhwH89/wU9/fff2PKlCkIDw+HVCpFjRo10LNnT5NmDjblOQGAR48eYdq0aahbty7c3d3h7++P1q1bY+nSpWbWbOWyfv16zJo1C7NmzcKDBw+QmZmp+3/9+vWOzh5VMv6ehqtxWEqv/XXgj62Cem9vb7Rr1w6CIODWrVtQq9X4+OOP0blzZ9SsWZNt77+s1fZ+8skndm9727Ztq8tDVWh7IyIi8Pnnn5tZs5Zxqh7qy5cv48svv0RUVBR27typ216nTh1MmTIF27dvx4gRI6ySXqVSYfLkyQgNDcWxY8d0V1969+6NiIgIzJ49G2vWrNGd48CBA5g9ezbmzp2LWbOMz/hMROXjLnaBu8QVt2/dBAAE16wBV6ixbPEX6Pp8PwyJGgRfn2o4e/Ys1q9fj+PHj+P8+fNwc9P/8rRnzx4sXboUEydOxIQJE+Dt7Y3q1atDrVbj2LFj2LJli+7Y9u3bA9A0eJGRkZBIJJg0aRJq1qyJH3/8Ee+++y4uXryIr7/+2iC/zz33HAIDA/Hhhx8iPT0dX3zxBV544QXcvn273Ffl7969i2effRb5+fl4/fXXUbduXdy4cQMrV67EoUOHcO7cOfj4+OCll17CtGnTsHnzZoPeu19//RXJycmIjo7Wbfvpp58QFRWFevXqITo6GtWrV8epU6fw4YcfIiEhAd9991258gsA9+/fR/fu3fHiiy9i8ODB+P3337FhwwacO3cOZ8+e1S1LlJycjHXr1iEqKgqDBg2Cl5cXjh49igULFuDChQv45ZdfDM69ePFipKenY9y4cahZsyZCQ0PRsmVLxMTEIC0tDYsWLdId27hx4xLzmJSUhA4dOuCff/7BqFGj8MwzzyAnJwenT5/GgQMH0LNnzxLTmvqcAJohyEePHsWECRPQvHlzKJVKXLlyBcePHy9v9VYK2i9c1j62ok7eQ+RsBEHAzZuatjcgIAD5+fn47LPP8OKLL2LAgAHw9PRk22vFtvejjz7CuXPnsGvXrnLlFzC/7X3xxRcxYsQIiMViHDlypNK3vYmJiTh8+DDGjx9f3io2n+BE3n//fQGAcPToUb3tSqVS8PDwEHr37m219PHx8QIAYe7cuQbn6datm+Dt7S3k5+frtnXt2lWoUaOGoFKpBEEQhMePHwuFhYVml1EQBCErK0sAIGRlZZUrvVZ+fr6wZ88evXxWdjYpc8ZdQUi+YPTn8qnFQrONzYTLibsNkl1Ou6zZl3bZoodXKpXClStXBKVSabDv0oNLQrONzYRLDy79tzEvRxCSf9f8dgBLy33o0CEBgDBnzhzhbnKqcCjhL+G3c+eFsWPHCgCE1q1bC4WFhYJarRbSM+XCxXsZgiJPpUu/bt06AYCwY8cO3bbbt28LAASxWCxcuXLF4DFHjx4tlPRx1759e8HV1VW4ePGibptarRaGDBkiABAOHDhgcJ6JEyfqnePbb78VAAirVq0yqQ605yksLBQyMjKEwsJCoX///kJgYKBw7949vWPPnj0ruLq6Ch999JFu2+DBgwWpVCo8evRI79hXXnlFEIvFwj///CMIgua19cQTTwidOnXSfXZpffHFFwIA4dChQwb5MkXt2rUFAMKiRYuMnjc2Nla3LS8vT8jPz9crryAIwgcffCAAEH777TfdsdrXh5+fn64cRUVGRgq1a9c2midj+e/du7cAQPj5558Nji/6GW4sranPSWZmptHXRfHyGlPa+1/LWm0Gsf11dn/ezxRqv7tX+PN+piAI5tdz8fRlKe39Z6023lqs2fY+fPhQePDggXDx4kWjba9CoTBIX5na3qLs3fYuXLhQACD8+uuvpearJOVpe4ur7G2v9jHs2f461ZDvs2fPwsXFBW3atNHb7u7ujpYtW+Ls2bNWS6/9+9lnnzU4T7t27SCXy3H9+nUAQE5ODo4ePYq2bdti/fr1CAkJQbVq1eDl5YWXXnoJ//zzT7nKS04g8x6wvA2wJtL4z8H/0xzn7uPYfFZCH330EZ4MCULXlvXR9pkIbNiwAf369cPWrVsBaIaIyWSae+AKCwuRmZmJtLQ0dOvWDQCMDvN64YUXSr1iWtyDBw9w8uRJ9O/fH82bN9dtF4lEeP/99wEAu3fvNkg3bdo0vf+1efrrr79MfuyisrKysHfvXvTv3x/u7u5IS0vT/YSFhaFevXrYv3+/7vjRo0cjLy8PO3bs0G3Lzs7G7t278fzzz6NGDc395/Hx8fjnn38wZswYXf1pf/r06QMAeuc1l7e3N9588029bW+++Sa8vb316s3NzU13f1VBQQEyMjKQlpaGHj16ADD+XI4aNUpXjvJ69OgRfv75Zzz//PN47rnnDPaXtjyMOc+JTCaDVCrFb7/9hqSkJIvyTERkSx999BECAwNRo0YNtGjRgm2vndve3r17644pL7a9ztf2OtWQ75SUFN0Y/+JCQkJw8uRJ5OfnGww1KU967T3SISEhRo8FNEMlmjZtihs3bqCwsBCnT5/G/v37MXPmTLRo0QLHjh3DkiVL8Mcff+DcuXO6IRbF5eXlIS8vT/e/dpFwlUoFlUpVRq2UTJvWknNUNFYvs/wfSFQKFAxYCcG/gcHugsdJwLk5KJD5Gzym9h6YgoICi59HQRCgVqsN7vMX/h3WqN3/7z9wAaAWBMCEeQWsTVALut+mzGtQnDbNuHHj0H/gi0iV56J+sD+aNWkEPz8/PH78WFfe77/7Dgs+X4hrl/8wqONHjx7pzqX9Xb9+faN50tZj8X3aYW5NmjQx2NewYUO4uLjg5s2bun3a84SFhekd7+fnBwBIS0vTbf/777/1zufm5obq1avrnUf7++rVq1Cr1Vi/fn2J95WGh4frzt2rVy/UqFEDmzdv1g1p+u6775CTk4NXXnlFd9yVK1cAAK+99prRc2rzWbx8pj6v4eHhEIvFesdLJBKEh4fr7sXTWrlyJVavXo3Lly8bnN+c51LLlOf5+vXrEAQBLVu2LLNMxdMmJiaa/JyIxWJ88cUXmDZtGurUqYMmTZqga9eu6N+/P9q0aaP//jVSDkEQoFKp4OrqavSYqvQZT0S2NX78eAwZMgQikQienp5o0KABfH19dd9NAeDbb7/FwoULceHCBYPPn4wMw2XEGjQw/P5Umtu3bwMAmjZtarCvcePGcHFxwa1btwz2hYfr30fu7+8PAHr3dpfW9hZ37do1kz7ntbRB8+bNmzFhwgQAwM6dO5GTk4NRo0bpjktMTARQettrSWdceHi4QSwklUp1bW9RK1aswKpVq4y2vdZ4Lo25ceMGBEFAq1atzE5rznPi5uaGxYsX46233tK1vd26dcPAgQMNloizNacKqBUKhdFgGND0MmuPKSmgNie99mZ8Y8cXPRbQ3NQPaGYoXbt2LcaOHQsAGDRoELy9vTFnzhxs2rQJEydONPrYsbGxmDNnjsH2/fv3lxiEm8OSq1wVlbXK7KNIQhcAx68+RJaH4SzwKQUPAQAnjp/AbfHtYvtSStxnDrFYjJo1ayI7O9tgeZgcRY7ut7axcy3MQzUAOdnZKHS1/xft7Jxs3W+5RF7G0Ya076vQ0FC0adsWfyuBmjJA7Prfe+3x48f48ccfMWrUKDRrGYF5H8fiydAQuLu7o7CwEIMHD0ZeXp6uTrKzNXlydXXV+1Kgpf1CUHxfTo6mfoueS0v7XBQUFOhdBCuarrj8/HzdscUv1nXo0AF79+7VO4+2vNrzDR06FMOHDzd6bnd3d708vvjii1i5ciUSEhIQHh6OjRs3wtfXF126dNEdp1RqlnuZO3cunnrqKaPnrVmzpkH5jNVhcWq1GoWFhUaPLSwshCAIun3Lly/HBx98gG7dumHRokW6iW5SU1Px5ptvQqlU6o7Vvj5EIpHRcxcUFECtVpv0PJf2/JaVVvuaMvU5GTFiBLp164b9+/fjxIkT+P7777F8+XIMGjSo1KVo8vPzoVQqcfTo0RInqik+eQwRlc6aa1FXNvXr19f1UGoVDbR27dqFYcOGoU2bNliyZAlCQ0N1be/zzz9v9OKgNb7LmqKki47aC6IADGYpj4yMLHF+Bm26V155BaNHjzZ6jLa3HtB8XxsxYgQWL16MGzduoF69eti8eTP8/Pz07qvWnvezzz4zmKhMrVZDoVDYZbm/L774AtHR0ejVqxemTJmC4GDNBK/Jycl49dVXHfpclsTc52TChAkYMGAAfvrpJxw5cgTff/89li1bhqFDh2L16tV2yTPgZAG1h4eHwextWrm5ubpjrJFe+7toz3FJx2qfOBcXF4OF70ePHo05c+bg8OHDJQbUMTExmD59uu5/uVyO0NBQ9OrVC97e3iWWpywqlQrx8fHo2bNnlZmu3uplTr0IXNMEOwhqYbA78VEiVvy8Ah06dkDj6o1N3meO3Nxc3Lt3D15eXrqLOVqe+Zog39PD87/XikoJ5AGeXl6AxLJlQcrDS6WZwM/L06tcr1/t+8rd3V0zGaAyW1N2iQsEQdAtt7Fz5064u7tj3bc/4Kkna8BdohkidPXqVQCanlDt42snFZRKpUbzpL0IV3xfs2bNAGiuphbf98cff0CtVqNBgwa6fdrXXEnlLpqn4pN9+Pn5GZynWrVqePz4MZo3bw6RSARBEEpdJqiosWPHYuXKldi9ezfGjh2L48ePY9y4cQgMDDQoX/Xq1U06b1nlK8rFxQV37tyBu7u73kXOvLw83LlzB40aNdKd5/vvv0dYWBh+/vln5OTkoFq1ahCJRPj5558B6D9vRV8fxvIhkUjg4uJS4r6i+W/RogVEIhESExPLLFNJac15Try9vdGgQQP873//Q2FhIUaNGoXt27fjnXfeMbgVSSs3NxcymQydO3c2eP9rmXKBg4isvxZ1VbRlyxa4u7vj0KFDet+5tW2vOYzN/AxAtzTt5cuXDfZpR2wV7402VfEOF+0IMmPq1asHkUiE/Px8g4sMJRk9ejQWL16MzZs3Y9y4cbrJr4p20NWvXx8A4OnpafTihVwut+j7/61btwxG7Obl5eHWrVto1KiRbtuWLVsQFhaG//f//p/eMGtt22uOkp5LY7T1mpCQYPbjlOc5CQoKwtixYzF27FgUFhZi5MiR2LZtG9544w106dLF7DyUh1MF1MHBwbhy5Qry8vIMeo6Tk5MREBBQYu+0uemDg4N124vf95GcnAzgvx6mWrVqAdC8KYufV3slzNiwCS2pVGq0J9xa67ZVxfXfrFZmseYtIBGLASPnE/+7XywWGzxeafvMUVhYCJFIBBcXF4P7SrQfYNr9//4DQLM+M0q5D8VWRC4i3e/S7oMpiTaNZtmFf88p0mzXXi0ViUQQi8WagEat1u0XBAGffPKJ7hjtuYqe01ietLN/ZmZm6g39qlmzJtq3b4+9e/fiypUrugBUEATMnz8fABAVFaV3/qKPZ1A3RR6/V69eJdZB0ecV0Mys2qdPH+zevRtnzpxBu3bt9I4XBAFpaWl6wfLTTz+N5s2b4+uvv4ZMJoNarcarr76ql7fevXujRo0aWLBgAYYPH24w7E2pVKKgoEBXP2WVrzi5XI5Vq1Zh6tSpum2rVq2CXC7HwIEDdedxdXXVa4xFIhHUajUWLFig+7/4c2ns/QBoLp5kZGTolu0oqnj+AwIC0Lt3b+zbtw8HDx40aJwFQTB4LrRpAwMDTX5OtD3IRb98uri4oHnz5ti+fTsyMjJKrFMXFxeIRKJSP9Oq2uc7UXlZey3qqkj7eV2091IQBN368ebQXux+9OiRXvtTo0YNtG/fHj/++CMuXbqk1/bGxsYC0IwCLQ9TgzBAM2S8T58+2LVrF06fPm1S29uyZUs0b94cW7duhbu7O9RqtUFP6nPPPYcaNWrg008/xbBhw4y2vSKRSDdTtbnkcjlWrFih1/auWLFC1/ZqaZ/Loj34BQUF+PTTT81+TG3bW7TdLEn16tV1be+BAwdKbXuLM+c5Mdb2urq6onnz5ti2bVupsZm1OVVA3bp1a+zfvx9nzpxBp06ddNtzc3ORkJCAzp07Wy1969atAQCnTp0yeKJPnz6t62kAgCeeeAJPPvkk7t27B4VCoffEadegtvQGfiLSN3jwYOzcuRNjhw3Aa6+OgkhQY8+ePeUa/tquXTssW7YMb775Jl544QVIJBK0bdsWderUwZIlSxAZGYlOnTrplu7Yu3cvfvnlF4wYMQLdu3e3QekMrVy5Eh07dkTnzp0xatQotGrVCmq1Grdu3UJcXBxGjRqF2bNn66UZPXo0oqOjMX/+fDRo0MCg4fH09MTmzZsxcOBANGzYEK+99hrq1auHzMxMXL16Fbt27cLu3bvLfQW3bt26mDNnDi5duoSIiAicP38eGzZsQKNGjTBlyhTdcYMHD0ZMTAz69OmD3r17Q6VSYdu2beUKFNu1a4e9e/fif//7H9q3bw9XV1d069atxM/gZcuWoX379ujduzdGjx6NiIgIKJVK/PbbbwgLC9NdODHG1Ofk+vXriIyMxKBBg9CsWTP4+fkhMTERK1euRO3atfXaIyKyLVusRV2VaNvebt26YdSoUVCpVGx7rdj2JiYmYteuXdi1a5duUjVzmdv29u7dG1FRUZDL5fjmm2+qRNtbp04doxNP24pTBdTDhg3DJ598gsWLF+t9AVm7di0UCgVefvll3babN29CpVLpDW0wJ31kZCSCgoKwbt06TJs2TXcV7eLFizh8+DDGjBmj94IbOXIkPv74Y6xevVpvlsGVK1cCgG7GXCJbuJV1S9czDFUuIL8DuAiAxPgQUVvnxR5eeuklpGdk4otFi/HezHfh5+eHfv364dNPP9VNRGKq4cOH48KFC9i+fTu+++47qNVqfPXVV6hTpw6eeeYZnDx5Eh999BFWrFiBnJwchIeHY/78+XprStpaaGgozp8/j/nz5yMuLk539Ts0NBT9+vXD0KFDDdK8/PLLePfddyGXy/HOO+8YPe9zzz2Hs2fP4tNPP8XWrVvx8OFD+Pn5oW7dupg+fbreDKvmqlWrFr799lvMmDED27Ztg5ubG15++WV8/vnn8PT8b06Ct99+G4IgYP369YiJiUHNmjUxbNgwjBkzBk2aNDHrMadNm4Zbt27h+++/x6pVq6BWq3Ho0KESG/U6derg3Llz+L//+z/s27dPd79bixYtylyj0tTnJDQ0FK+99hoOHTqEPXv2IC8vDyEhIRg7diwmTpzo8HvSiKj87NXmlcWebe/jx4+xaNEizJgxg22vDdreSZMm2b3tfeutt6pM2ztu3Di8/fbbdm17RULRcQBOYPLkyVi2bBkGDRqEPn36IDExEUuXLkWHDh1w8OBB3bC5sLAw3LlzB8Wzb2p6QDMr7rBhw9CiRQuMGzcOcrkcixYtgkgkwvnz5/UmFZLL5Wjbti2uX7+O8ePHo0WLFjh+/Di+/vpr3UQ0JU2WUJxcLoePjw+ysrIsvod637596NOnT5UZEmj1MqckaJbHGn8ECG5psPtK+hUM2zsMO/ruQBP/JibvM0dubi5u376NOnXqGNxDmfw4GQPjBiK3MLfc57cFmViGuAFxCPIKKvvgUijzC/DXg2zUr+EFmZtY794iFxcXg/2VTfHyViRhYWEICwsrcbIXYypyecvDlPKW9v7XslabQWx/nd2l5Cz0/fI49k7uiGYhPuWq5+LnKE1p77/U7FQMiBsAZYGy3OWxNmu1vcVVtc9mR7K0rsvT9lZF9m5/ne4b6uLFixEWFoY1a9bgp59+QkBAACZPnoy5c+ea9MIzJ/2QIUMgk8kwb948zJgxA1KpFN27d8f8+fMNZuj19vbGsWPHMGvWLMTFxWH9+vWoVasW3nvvPcyaNcvkYJrIHEGeQdjabSsKJAX6PdSZdwDf2g7poQYAP6mf1Rt0IiIia7F0pu8gryDEDYhDRp797sMsC9teIufkdAG1q6sroqOjyxzuUdIC3qam1+rbty/69u1r0rEBAQFYuXKlbpg3VRyp2anGG0V5EvxcXeHMzdMTHk/oX2HLVwBqEVC9IeDGoaRERGRnmfcARTrg4Q/4hjo6N3qsOdN3kFcQA1giKpPTBdRE1lbWsC1ZrSDEKdOcOqgmIiJyCpn3gOVtAJUCkHgAk844VVDNmb6JyN4YUFOll5GXAWWBErGdYhHuo7+u4a2kQ4i5tAoZqmwG1BVQfoEahUWW9ijK1cUFbmLeC2YrJY0SIqJKTpGuCaY7vw0c/UzzvxMF1ABn+qbKi22vc2JATVVGuE+44eRhD68DAG7lJAPpVwzSOMvsnmQov0CN6/88hrqEeRVdRCI0eKIag2oiIlvwKRJEO/EQcCIiW2NATRVGanYqHuY8REpBChIfJUIs1n/5lmeyDj+JF2RqNWIurQIurTJ6jEwsg5/Ur9z5JtsoVKuhFgSEVveAe7GgObdAjXuPFP/2XjOgJiKymbungF/nOu0QcCIiW2NATRVC8fugV/y8wuCY8iwnESQLQNz9VGQM2QAENjB6DGfVdG7uYhcjS2oVOCQvRERVhoe/JoD+eabm9/Ofav52wiHgRES2xICaKgTtfdDznp2HlD9T0KFjB70e6ltZtxBzLAYZeRlmB79BhYUI8g4DLFhL2hqcbEl4IrIDvu+pwvKppemN1g71VqQ7OkflxvchUdVjzfc9A2qqUOr41AHEQOPqjSGRSBydHavQrmGuUqkgk3E2UqKqpKBAM5qi+C0sRBWCb+h/vdEVMKDWvu+070MiqjpUKhWA/76HW4I3FxI5mEQigVQqRVZWFq+SE1Uxcrkcrq6uVmnQiUjfjQfZSM40vmQmAN17Ty6X2zFXRORogiAgKysLUqnUKh10vCRO5AQCAgKQnJyM+/fvw8fHBxKJBCKRCGq1Gvn5+cjNzYWLy7/Xv/LzgAIByM0D1BX7mlhefgGEgnzk5eZCpBYblLf4/tLSmrrPmRh9fisxlvc/giAgJycHcrkcQUFBEIlEDsolUeXj5+kGmcQVU3ckQCZxxYHoSKPrUYtEItSoUQOpqamQSqXw9PSsku/FqvbZ7Eisa/soqZ4FQYBKpUJWVhays7MREhJilcdz3m+aRFWIt7c3ACAtLQ3Jycm67YIgQKlUQiaT/dfIF+YDjx8CclfAtWKvtZlfoMaDx3nAYyncxC4G5S2+v7S0pu5zJkaf30qM5dUnEong6+sLHx8fB+SOyIYy72l+O2hyshBfGQ5ER+Ls7UeYuiMBGTn5RgNqAPDx8YFSqURaWhoePnxo55w6h6r22exIrGv7KKuepVIpQkJCdN+/LcWAmshJeHt7w9vbGyqVCoWFhQA093ccPXoUnTt3/m9IyoNE4OdoYOgWoEYdB+bYctf/eYzZP5zHylciUOeJagblLb6/tLSm7nMmRp/fSozl1SeRSDjUmyof7TJagEOX0ArxlSGjhleZx4lEIgQFBaFGjRq6eyqrmqr22exIrGv7KK2eXV1drV73DKiJLHQr61aJ+8qz5JZEItG90V1dXVFQUAB3d/f/3vxiEZB9T/Pb3b3c+XYGLuI8JD8uhIvYDe7u7gblLb6/tLSm7nMmRp/fSozlJarEii6jpWXGElrJmUrceJBto8yVrSrPZcDPKvthXduHveuZATVROflJ/SATyxBzLKbEY8qzNnZllJypREZOvsF2R355IiIiK/IN/W8Zraz7wI6XTU6anKlEj4VHoFQVQiZxhZ9nxb6diYiqFgbUROUU5BWEuAFxyMjLMLrfkrWxK5OiX5SM4ZcnIqJKougyWgCQdl3Tc11GL3VGTj6UqkIsHtYSretUL/F+5/JKN3JBl4jIWhhQE1kgyCuoSgfLpij6RamekfvZ/DzdrP7liYiIHEg7/HvXOM1vE++lrlfDy6rtgXa27wlbzpc40zcRkaWcd/pbIqpU6tXwQrMQH4MffsEhIqpktMO/o9YCKoVmGLgDhPjKsGpkBJSqQqO3HRERWQN7qImIiIjIunxDHRZIF+XPW4qIyMYYUBOR0zM2eRknNCMiqiBMvJeaiKgiYkBNRE5Le//b1B0JRvdzQjMiIidWznupiYgqEgbUROS0QnxlOBAdWeK9b5zQjIjIiWnvpb57ShNU3z3133YiokqCATURObUQXxmDZiKiikobPLOnmogqKc7yTURERES24ySzfhMR2QJ7qImIiIjIthw863c6l80iIhthDzURWSw5U4lLyVlGfzgbN1HVFRsbiyFDhiA8PBwikQhhYWFmpU9OTkZsbCwiIyMRFBQET09PNG3aFG+//TbS09nLSWXTTm45Yct5JGcqHZ0dIqqE2ENNRBZJzlSix8IjUKoKSzyGs3ETVU3vvfceqlevjqeffhqZmZlmp//xxx8xe/ZsvPDCC3j77bdRrVo1nDlzBosXL8b27dtx9uxZ1KxZ0/oZp0ojxFeGVSMjMHrDGWTk5HNODiKyOgbURGSRjJx8KFWFWDysJerV8DJ6DGfjJqqabt68ifDwcABAs2bNkJ1t3oiVTp064c6dO3pB87hx49C2bVuMGzcOn3/+OT7//HOr5pkqH39e0CUiG2JATZXKraxbJm0j66tXwwvNQnwcnQ0iciLaYLq8mjZtanT7sGHDMG7cOFy6dMmi8xMREVmKATVVCn5SP8jEMsQcizG6XyaWwU/qZ+dcERGRLdy/fx8A8MQTTzg4J1QuadcBD38unUVElQIDaqoUgryCEDcgDhl5GUb3+0n9EOQVZOdcERGRLXz00UcAgNGjR5d6XF5eHvLy8nT/y+VyAIBKpYJKpSr342vTWnKOCqugABIAqoICwNzyu/lALPGAaNc4CBIPFLxxEvCphYKCgn9PXaBXp9aq55LOTxpV+vVsZ6xr+7BWPZuangE1VRpBXkEMmomIKrmFCxfiu+++w/jx49GtW7dSj42NjcWcOXMMtu/fvx8eHh4W5yU+Pt7ic1Q0PookdAFw4sQJZHkkm51e1mAe/LOvI+LOKpyI/wFZHmG4lw0AYhw/fhx3jEzFYWk9l3V+0qiKr2dHYV3bh6X1rFAoTDqOATURERFVCOvWrcPbb7+NF154AcuWLSvz+JiYGEyfPl33v1wuR2hoKHr16gVvb+9y50OlUiE+Ph49e/aERCIp93kqpNSLwDWgQ4cOQFCL8p9jwyp0bBQIIbQ5Lud44/M/T6Njx45oGvzf82Kter6cIjd6ftKo0q9nO2Nd24e16lk7qqksDKiJiIjI6W3YsAHjx49Hr169sHPnTpO+JEmlUkilUoPtEonEKl9mrXWeCkWs+eooEYuB8pbd+wlA4gFx3ERA4gHZ4F//PbXYaH1aWs/if/Nc0vlJo0q+nh2EdW0fltazqWldyv0IRERERHawYcMGjB07Fj169MCePXuMBslUgfiGApPOAFFrAZUCrrmP7PKw6Tn5dnkcIqpa2ENNRJXWjQclr3nLtbGJnMvdu3ehUChQt25dvV6BjRs3Yty4cejWrRvi4uLg7u7uwFyS1fiGAop0uzyUn6cbZBJXTNhyHgeiI/nZT0RWxYCaiCod7ZenqTsSSjxGJnHlFysiG9uyZQvu3LkDAHj48CHy8/Mxb948AEDt2rUxcuRI3bGjRo3CkSNHcPv2bYSFhQEAfvjhB7z++uvw9vbGsGHDsHPnTr3ze3l5YeDAgXYpC9mOWPkIgKvNzh/iK8OqkREYveEMMnLy+blPRFbFgJqIKp0QXxkOREcio4ThfTceZGPqjgR+sSKysfXr1+PIkSN622bNmgUAiIyM1Auojfn999+hVquRmZmJ8ePHG+yvXbs2A+qKzMMfkHjgyQPjEYz5Nn0of083m56fiKouBtREVCmF+MoYLBM52OHDhy06dvbs2Zg9e7bV8kNOxjcUGLYFLltfhJ/osaNzQ0RULgyoiWzsVtYto9v9pH5cN5uIiKo2jwBH54CIyCIMqIlsxE/qB5lYhphjMUb3y8QyxA2IK39QnXbd+HYPf81VfyIiIiIisikG1EQ2EuQVhLgBccjIyzDYdyvrFmKOxSAjL8P8gPrfe86wa5zx/RIPzXIkDKqJiIj0cOksIrI2p1uHWq1WY9GiRWjUqBHc3d0RGhqK6Oho5OTk2CT9vn370L59e3h6eqJ69eoYMmQIbt++bXDc7NmzIRKJjP58/vnnFpWZKq8gryA08W9i8BPuE17+k2rX7xx/xPDn3zU97bUUCRERkTXUEyVDkp1ss/MXXTorOVNps8choqrH6Xqop02bhqVLl2LQoEGIjo5GYmIili5digsXLuDAgQNwcSn9GoA56Xft2oXBgwejRYsW+Oyzz5CVlYXFixejQ4cOOHfuHIKDgw3Ov2jRIgQE6N/vExERYZ3CE5nKN5Q90EREVPF5+EMtlmEJVkD93VfA/87apH3j0llEZCtOFVBfvnwZX375JaKiovTWmqxTpw6mTJmC7du3Y8SIEVZJr1KpMHnyZISGhuLYsWPw8vICAPTu3RsRERGYPXs21qxZY/AYAwcO1K2PSUQV240H2Ua3+3m68csWEZE9+IbiryEHsWLTFizBCuDuKd12a+PSWURkC0415Hvbtm0QBAFTp07V2z5u3Dh4eHhg69atVkt/5MgRpKSkYOzYsbpgGgBatmyJLl26YMeOHVCpVEYfRy6Xo6CgwLzCEZHT0A79m7ojAX2/PG7w02PhEQ4JJCKyE5VXCM6qG0EtlmnmB1neBsi85+hsERGZxKl6qM+ePQsXFxe0adNGb7u7uztatmyJs2fPWi299u9nn33W4Dzt2rXDwYMHcf36dTRt2lRvX/PmzfH48WO4urqiTZs2mDVrFnr37m1WOYnIsUJ8ZTgQHYkMI5PT3HiQjak7EjgkkIjIjlIQgL+GHETDvEuaoFqRDnjWdHS2iIjK5FQBdUpKCgICAiCVSg32hYSE4OTJk8jPz4ebm/EhO+akT0lJ0W03diwAJCcn6wJqX19fjB8/Hu3bt4efnx+uXbuGxYsX44UXXsCGDRvw6quvlliuvLw85OXl6f6Xy+UANMPOS+oFN4U2rSXnqCi0IwK0v80uc9Z9oxN1idKvQwxAVVAA2LEei5antLKY/RwXFEAC+5bH1LKYwp6v6RqeYtTwNPwItGZ5ylKV3sMAy2vpeYgqO5VXCFCNs3ATUcXiVAG1QqEwGgwDml5m7TElBdTmpFcoFABg9Piix2oVH0YOAK+99hqaNWuGadOmYfDgwXpDx4uKjY3FnDlzDLbv378fHh4eRtOYIz4+3uJzOLuUAs0FkN9O/4ZgcbBZZZblp6Fb4kyI1cYb6QIXNxz67SKUbrabXbQ4bXlOHD+B22LDWeWLM7W8PookdAFw4sQJZHnYpzz3sgFAjOPHj+OO8beA2Rz5mrZFecpSFd7DRbG85inaFhEREZFzcaqA2sPDAw8ePDC6Lzc3V3eMNdJrfxftOTbnsQDA398fEyZMwOzZs3Hy5En06tXL6HExMTGYPn267n+5XI7Q0FD06tUL3t7epT5GaVQqFeLj49GzZ09IJJJyn6ciSHyUiBU/r0Dbdm1x79w988qcehHiy/koGLASgn8Dw/0e/ujqU8u6GS6DtjwdOnZA4+qNSzzO7Oc49SJwDejQoQMQ1MKKOS7Z5RQ5Pv/zNDp27IimweV/PQPO8Zq2ZnnK4gzltSeWt3y0o5qIyDq4FjURWZNTBdTBwcG4cuUK8vLyDHqOk5OTERAQUGLvtLnptUtiJScno3HjxgbHAsaHgxennfE7LS2txGOkUqnRnnCJRGKVL5XWOo8zE4vFer/NKrM27RNNgOCWtsie2YqWx5RymFxebf2IxYCdXhPmlsUUjnxN26I8ZakK7+GiWF7z0xOR5YquRX0gOpLzZBCRVTjVLN+tW7eGWq3GmTNn9Lbn5uYiISEBzzzzjNXSt27dGgBw6tQpg/OcPn0a3t7eaNDASG9mMX/99RcA4IknnijzWCIiIiJyDO1a1EpVodFJKYmIysOpAuphw4ZBJBJh8eLFetvXrl0LhUKBl19+Wbft5s2buHr1arnTR0ZGIigoCOvWrUN29n9r0V68eBGHDx/GkCFDdL0CBQUFyMrKMsjvvXv3sHLlSvj7+6N9+/blLTYRERFRlWXPIdhci5qIrM2phnw/9dRTmDRpEpYtW4aoqCj06dMHiYmJWLp0KSIjIzFixAjdsd27d8edO3cgCEK50kskEixZsgTDhg1Dp06dMG7cOMjlcixatAiBgYF6k4hlZ2ejTp06GDhwIBo3bqyb5VsbjG/btg0yGYcNEREREZkjOVOJCVvOQyZxhZ+nG6Cdgy/tOuDm49C8ERGZwqkCagBYvHgxwsLCsGbNGvz0008ICAjA5MmTMXfuXLi4lN2hbk76IUOGQCaTYd68eZgxYwakUim6d++O+fPn690/LZPJ8OKLL+K3337Dnj17kJ2djYCAAPTo0QPvvPOOwbrXRERERFS2jJx8KFWF2PRam3/vafYHJB7ArnEQSzwgazDP0VkkIiqV0wXUrq6uiI6ORnR0dKnHJSUlWZReq2/fvujbt2+px0ilUqxbt86k8xERERGReXRDsX1DgUlngLunINo1Dm4F2aUnJCJyMKcLqImIiIioCvMNBRTpjs4FEZFJGFATOaHU7FRk5GWgoKAAKQUpSHyUqFvOCQD8pH4I8gqya56SM5VGZ0W98YC9B0REVLHceJANP083Lp1FRBZjQE3kZFKzUzEgbgCUBUrdthU/r9A7RiaWIW5AnN2C6uRMJXosPAKlqtDoft1kMkRERFZULTcFyLoPBNSxyvm0a1FP3ZEAmcSV61ETkcUYUBM5mYy8DCgLlIjtFIsnPZ/EieMn0KFjB10P9a2sW4g5FoOMvAy7BdTaSWMWD2uJejW8DPbzKj8REVmVhz8EiQci7qyCsHqz5r5q31CLTxviK8OB6Eicvf0IU3ckICMnn+0XEVmEATWRkwr3CUd97/q4Lb6NxtUb69ZFd6R6NbzQLITLmBARkY35hqLgjZP448dViLizSnNPtRUCakATVGcYuThMRFQeZa9DRURERERkbz618Ng92NG5ICIqFQNqIiIiIiIionJgQE1EREREzk2RZpPTphtZvYKIyBwMqImIiIjIKeWLvSBIPIAdI4HMe1Y7r3a27wlbziM5U1l2AiKiEjCgJiIiIiKnpHQLQOGLGwGVQjMxmZWE+MqwamQElKpCZLCXmogswICaiIiIiJyW4OGv+SPtulV7qf093ax2LiKquhhQExEREZHz8vAHJB7ArnHA8jZWDaqJiCzFgJqIiIiInJdPLWDSGSBqrdWHfhMRWUrs6AwQEREREZXKN5SBNBE5JQbURA50K+uWSdvI/m48yDa63c/TDSG+MjvnhoiIdNKua4aB+4Za5XRcOouILMGAmsgB/KR+kIlliDkWY3S/TCyDn9TPzrki4L+lVKbuSDC6XyZxxYHoSAbVRET2VvReaomHZhi4BUF10aWz+LlOROXFgJrIAYK8ghA3IA4ZeRlG9/tJ/RDkFQSVSmXnnFGIrwwHoiONLqNy40E2pu5IQEZOPr94ERHZm2+oJoi+e0oTVCvSLQqotUtnjd5whp/rRFRuDKjJqaRmpxoNMivjMOggryAEeQU5OhtkRIivjF+siKwkNjYWv//+O86fP4/bt2+jdu3aSEpKMvs8mzdvxqJFi3D16lV4e3ujX79+iI2NRWBgoPUzTc7LyvdSc+ksIrIUA2pyGqnZqRgQNwDKAqXR/TKxDL5SX/tmioiILPLee++hevXqePrpp5GZmVmucyxatAjTp09HZGQklixZgvv37+OLL77AqVOncObMGXh6elo300RERCZiQE1OIyMvA8oCJWI7xSLcJ9xgv5/UDwHSAFzABQfkjoiIyuPmzZsID9d8pjdr1gzZ2cYn/CtJWloaPvjgA7Ru3Rq//vorXF1dAQCtW7dG//79sWTJErz33ntWzzcREZEpGFCT0wn3CUcT/yZG9/GeYiKiikUbTJfXnj17oFAoMHnyZF0wDQD9+vVDeHg4tm7dyoCaiIgcxsXRGSAiIiIqydmzZwEAzz77rMG+du3a4erVq2b3elMlkXYdyLzn6FwQURXHHmoiIiJyWikpKQCAkJAQg30hISEQBAEpKSlo0KCBwf68vDzk5eXp/pfL5QA0o50sGfGkTVslR00VFEACQFVQAFih/AUFBbrfxeuzxHp284FY4gHRrnEQJB4oeOMk4FPLosd/kKWAqoZHuc5R0VXp17Odsa7tw1r1bGp6BtRElVHadePbPfwtWmKEiMjeFAoFAEAqlRrsc3d31zumuNjYWMyZM8dg+/79++HhYXnwFB8fb/E5KhofRRK6ADhx4gSyPJItPt+9bAAQ4/jx47jjZfwYY/UsazAP/tnXEXFnFU7E/4Asj7ByPf6jPMDNxRUTtp5HTMtCVDd8mVUZVfH17Cisa/uwtJ5LaluKY0BNVJl4+AMSD836nMZIPDRreDKoJqIKQhv45uXlQSbTX84uNzdX75jiYmJiMH36dN3/crkcoaGh6NWrF7y9vcudJ5VKhfj4ePTs2RMSiaTc56mQUi8C14AOHToAQS0sPt3lFDk+//M0OnbsiKbB+s9JmfWcehHYsMrivNRulobXNv+OVm0N81AVVOnXs52xru3DWvWsHdVUFgbURJWJb6gmYDa2RmfadU2grUhnQE1EFUZwcDAAIDk5GfXq1dPbl5ycDJFIpDumOKlUarRnWyKRWOXLrLXOU6GINV8dJWIxYIWyi/89n1gsLrEuS6xnbV4ybwHeT5S7bavh41FmHqqCKvl6dhDWtX1YWs+mpuWkZESVjW8oENzS8CfA8P5CIiJn17p1awDAqVOnDPadPn0aDRs2hJdXCWOFqXIrOipreRtOUEZEDsGAmoiIiJzC3bt3cfXqVb2JYAYMGACZTIZly5ahsLBQt/3HH3/ErVu38PLLLzsiq+QMtKOyotYCKoXx0VlERDbGId9ERERkM1u2bMGdO3cAAA8fPkR+fj7mzZsHAKhduzZGjhypO3bUqFE4cuQIbt++jbCwMABAYGAg/u///g8zZsxAjx49MHz4cCQnJ2PhwoVo1KgRpk6dau8ikTPxDWUgTUQOxYCaiIiIbGb9+vU4cuSI3rZZs2YBACIjI/UC6pJER0fD398fixYtwpQpU+Dt7Y2hQ4fi008/5XBvspr0nHxHZ4GIKiAG1ERERGQzhw8ftsqxr776Kl599VWL80NUnJ+nG2QSV0zYch4HoiMR4isrOxER0b8suoe6R48e2LFjB/LzeUWPiIioomO7TlVRiK8Mq0ZGQKkqRAZ7qYnITBYF1BcuXMCIESMQHByMqVOn4s8//7RWvoiIiMjO2K5ThaZIK3dSf083K2aEiKoSiwLq1NRUfP3112jVqhW+/PJLtGzZEm3btsXatWuRnZ1trTwSERGRHbBdpwpJu3zWjpFcOouI7M6igNrNzQ0vvfQS4uPjcevWLXzwwQf4559/8MYbbyAoKAivv/46Tpw4Ya28EhERkQ2xXacKyTcUGLaFS2cRkUNYbR3q2rVrY86cObh9+zZ+/vlndO3aFRs3bkTnzp3RpEkTLF68mFe3iZxccqYSl5KzDH5uPOB7l6iqYbtOFYpHgKNzQERVlNVn+U5ISMAPP/yAY8eOQRAE1KtXDy4uLpg+fTrmz5+PnTt3on379tZ+WCKyUHKmEj0WHoFSVWh0v0ziCj/eY0ZU5bBdp6rkxoNs+Hm6caZvIjKZVQLqzMxMfP3111i/fj0uXrwIiUSCgQMHYvz48ejWrRsA4ODBgxg3bhwmTZqECxcuWONhiciKMnLyoVQVYvGwlqhXw3BdV37BIKo62K5ThZV2XXNPtW+oWcm0S2dN3ZEAmcSVy2cRkcksCqh//fVXbNiwAbt370Zubi4aNGiABQsW4NVXX4W/v7/esd26dcPMmTMxadIkizJMRLZVr4YXmoX4ODobROQAbNepwtJOTLZrnOb3pDNmBdUhvjIciI7E2duPMHVHAjJy8hlQE5FJLAqoe/bsCalUiqioKIwfPx6RkZGlHl+vXj106NDBkockIiIiG2G7ThWWb6gmiL57ShNUK9LN7qUO8ZUhw8gILSKi0lgUUH/xxRcYNWoUqlevbtLxXbt2RdeuXS15SCIiIrIRtutUofmGcpZvIrI7i2b5lsvlSElJKXH/5cuXMXfuXLPOqVarsWjRIjRq1Aju7u4IDQ1FdHQ0cnJybJJ+3759aN++PTw9PVG9enUMGTIEt2/fLvNxVq5cCZFIBJFIhLS0NLPKSERE5Ixs0a4TERFVZhYF1HPmzMEff/xR4v5Lly5hzpw5Zp1z2rRpmD59Opo0aYIvv/wSQ4YMwdKlS9GvXz+o1Wqrpt+1axf69u0LpVKJzz77DG+//TaOHj2KDh06lPqFIiUlBTNnzoSXF4cFOZXMe0BKguFP2nWHZouIqKKwRbtO5BBp1zXfC4iIbMyiId+CIJS6Pzc3F2Kx6Q9x+fJlfPnll4iKisLOnTt12+vUqYMpU6Zg+/btGDFihFXSq1QqTJ48GaGhoTh27JguOO7duzciIiIwe/ZsrFmzxujjTJo0CXXr1kXTpk2xdetWk8tHNpR5D1jeBlApjO+XeGgmLCEiohJZu10nsjsLJyfTSs/Jt0HmiKgyMruHWi6X4+7du7h79y4AID09Xfd/0Z+EhAR8/fXXCA01/UNs27ZtEAQBU6dO1ds+btw4eHh4lBm8mpP+yJEjSElJwdixY/V6mlu2bIkuXbpgx44dUKlUBo+xe/du/PDDD1i1ahVcXV1NLhvZmCJdE0xHrQXGHzH8KWeDSkRU2dmyXSeyO+3kZFFrNd8LzLynWrt81oQt55GcqbRRJomoMjH7MvOiRYt090+JRCJMnTrVIIDVEgQBCxYsMPncZ8+ehYuLC9q0aaO33d3dHS1btsTZs2etll7797PPPmtwnnbt2uHgwYO4fv06mjZtqtsul8vxv//9D2+88QbatGmDFStWmFw2spOABkBwS0fngoiowrBlu07kEBZMThbiK8OqkREYveEMl84iIpOYHVB36dIFgKZRnTt3LgYNGoTmzZvrHSMSieDl5YV27dqhffv2Jp87JSUFAQEBkEqlBvtCQkJw8uRJ5Ofnw83NzeL02nukQ0JCjB4LAMnJyXoB9bvvvgu1Wo3Y2FiTywQAeXl5yMvL0/0vl8sBaIadG+sFN5U2rSXncCYFBQW63yWVqcQyFxRAAkBVUABUkvoAjJfXlHoyqow6Kvd5rcjZX9PWriNnL6+1sbyWncdWbNmuE5XF5kOr065rhoGbMUrN39P490wiImPMDqgjIyN161LeuXMHEyZMQNu2ba2SGYVCYTQYBjS9zNpjSgqozUmvUGjutTV2fNFjtU6cOIHVq1fj66+/ho+Pj4kl0oiNjTU6icv+/fvh4eFh1rmMiY+Pt/gcziClQHOR48TxE7gtLn2m9eJl9lEkoQs0z1OWR7KNcug4RctrTj0VVVYd3csGADGOHz+OOw6eb89ZX9O2qiNnLa+tsLzmKdoW2YIt23Wi0iRnKjFhy3nIJK7ws3YQa4V7qXkfNRGZwqKZRb766itr5QMA4OHhgQcPHhjdl5ubqzvGGum1v4v2HJd0bH5+PsaPH48ePXpg+PDhphRFT0xMDKZPn677Xy6XIzQ0FL169YK3t7fZ59NSqVSIj49Hz549IZFIyn0eZ5H4KBErfl6BDh07oHH1xkaPKbHMqReBa0CHDh2AoBZ2yrHtGSuvKfVkVBl1dDlFjs//PI2OHTuiaXD5X5eWcPbXtLXryNnLa20sb/loRzXZg7XbdaLSZOTkQ6kqxKbX2lh/aLX2Xuq7pzRBtSLd5IC66H3UB6IjOeybiEplVkCtnbDkySef1Pu/LNrjyxIcHIwrV64gLy/PoOc4OTkZAQEBJfZOm5s+ODhYt71x48YGxwL/Df1evnw5rl69ioULF+LGjRu64x4/fgwAuH37NuRyOcLDw43mSyqVGu0Jl0gkVvlSaa3zOJp25lixWFxmeQzK/G9aiVgMVIK6KK5oec2pJz1l1FG5z2sDzvqatlUdOWt5bYXlNT+9rdi6XScyhc2GWJfzXmreR01E5jAroA4LC4OLi4tu2HRYWBhEIlGZ6QoLC006f+vWrbF//36cOXMGnTp10m3Pzc1FQkICOnfubLX0rVu3BgCcOnUKPXr00DvP6dOn4e3tjQYNGgDQDIFTq9Xo3bu30cdt06YNPD09kZ2dbVI5iYiInIGt23Wiior3URORqcwKqD/88EOIRCJdL432f2sZNmwYPvnkEyxevFgvIF67di0UCgVefvll3babN29CpVKhUaNG5UofGRmJoKAgrFu3DtOmTdMtnXXx4kUcPnwYY8aM0fUKjBkzBh07djTI7/Lly3H48GFs2LABfn5+VqsHIiIie7B1u07kNMoxORnA+6iJqGxmBdSzZ88u9X9LPfXUU5g0aRKWLVuGqKgo9OnTB4mJiVi6dCkiIyMxYsQI3bHdu3fHnTt3IAhCudJLJBIsWbIEw4YNQ6dOnTBu3DjI5XIsWrQIgYGBepOItWjRAi1aGN5zunfvXgBAv379EBAQYNW6ICIisjVbt+tEDlfOycl4HzURmcqiSclsYfHixQgLC8OaNWvw008/ISAgAJMnT8bcuXPh4uJi1fRDhgyBTCbDvHnzMGPGDEilUnTv3h3z5883upwWEREREVUg5ZycjPdRE5Gpyo5QS3Hjxg38/PPPett+++039OvXDx06dMCaNWvMPqerqyuio6Nx7do15OXlITk5GV988YVuSLZWUlKSXu+0uem1+vbti9OnT0OhUCAjIwPff/896tata1JeN27cCEEQ2DtNRESVgi3adSKH8w0FAhqYnYz3URORKSzqoX733Xfx6NEjPP/88wCAtLQ09O7dG9nZ2ZDJZJg4cSJq1KiBgQMHWiOvREREZENs14mIiMxjUQ/1uXPn9GbI3rZtG+RyOX7//Xc8fPgQbdu2xZIlSyzOJBEREdke23UiIiLzWNRD/fDhQ916zgDw888/o0OHDmjWrBkA4KWXXsLHH39sWQ6JyLrSrhvd7J6WjWCk2TkzFdONByUvkefn6cZ77ajCYrtORERkHosCak9PT2RmZgLQrEl5/PhxTJkyRbdfJpNBLpdblEEispKiM50aUQ/AAakU97JbA/Cxa9YqCu2sr1N3JJR4jEziyhlhqcJiu05kiEtnEVFpLAqomzZtis2bN2PUqFH47rvvkJ2djZ49e+r237lzB4GBgRZnkoisQDvTqSLd6O57fyUg9NBbcM19ZOeMVRwhvjIciI5ERglfrm48yMbUHQmcEZYqLLbrRP/h0llEZAqLAuq3334bAwYMQI0aNQAArVq1QqdOnXT79+/fj6efftqyHBKR9fiGlrhcSN7Dkocx039CfGX8UkWVFtt1qvTSrmtGbHHpLCKyEosC6hdeeAEHDx5EXFwcfHx88L///Q8ikQgAkJ6ejlq1amHUqFFWySgRERHZFtt1qrSK3vYk8dCM2DIhqObSWURUFosCagDo3LkzOnfubLDd398fu3btsvT0REREZEds16lS0t72dPeUJqhWpJsUUBMRlcXigJqIiIiIyFx2n+zLN7TEeUSIiMrL4oD61KlTWLZsGf766y+kp6dDEAS9/SKRCDdv3rT0YYiIiMgO2K6TPSRnKjFhy3nIJK7wqwDDqjnTNxGVxKKAevPmzRgzZgwkEgkaNGiAJ5980lr5IiIiIjtju072kpGTD6WqEJtea+OYyb4UaSYdxpm+iagsFgXUH3/8MRo2bIgDBw4gODjYWnkiIiIiB7BFu65Wq7FkyRKsXr0aSUlJCAwMxNChQzF37lx4enqWmT47OxtLly7Ftm3bkJSUBKlUigYNGmD8+PEYPXq0btI0qpjsPumXdnKyHSNNmpiMM30TUVlcLEl8584dTJw4kcE0ERFRJWCLdn3atGmYPn06mjRpgi+//BJDhgzB0qVL0a9fP6jV6lLTqtVq9O7dG7NmzULr1q2xcOFCfPDBBygsLMSYMWMwc+ZMq+WT7MthQ6h9Q4FhWwCVwuT7qTnTNxGVxqIe6lq1aiEvL89aeSEiIiIHsna7fvnyZXz55ZeIiorCzp07ddvr1KmDKVOmYPv27RgxYkSJ6X/77TccP34cU6dOxaJFi3Tb33zzTTRq1AirV6/G/PnzrZZfsg+H3z/tEWD/xySiSsuiHuoJEybg66+/RmFhobXyQ0RERA5i7XZ927ZtEAQBU6dO1ds+btw4eHh4YOvWraWml8vlAGDQY+7m5oaAgACThoyT89HeP71qZIRjh1CnXQcy7znu8YmoUrCohzoiIgI7d+5EmzZtMGnSJNSpUweurq4Gxxlbz5KIiIici7Xb9bNnz8LFxQVt2rTR2+7u7o6WLVvi7NmzpaZv06YNfH19sWDBAoSFhaFt27ZQKBTYtGkTzp8/j1WrVpleOHI6DhtKrb2Petc4zW8T7qUmIiqJRQF19+7ddX+PHTvWYGIQQRAgEonYg01ERFQBWLtdT0lJQUBAAKRSqcG+kJAQnDx5Evn5+XBzMx5Y+fn54YcffsDYsWMxdOhQ3fZq1aph586dGDhwYKmPn5eXpzeEXdvjrVKpoFKpTCqDMdq0lpyjwioogASAqqAAKGf5CwoKdL9Lq0Nz6zk1JxWZeZnwlfoiyDOo5AM9awJvnITo3imI4yZCJf9Hs83C/FZUVfr1bGesa/uwVj2bmt6igPqrr76yJDkRERE5EWu36wqFwmgwDWh6qbXHlBRQA4CXlxeaNWuG/v37o3379nj06BGWL1+OESNGIC4uDj179iwxbWxsLObMmWOwff/+/fDw8DCzNIbi4+MtPkdF46NIQhcAJ06cQJZHcrnOcS8bAMQ4fvw47niVfbwp9ZypzsQS+RKooIIEErzl/RZ8XXxLTeOjeGhSWbT53Rl/Ahe8BVQ3/pKu8Kri69lRWNf2YWk9KxQKk46zKKAePXq0JcmJiIjIiVi7Xffw8MCDBw+M7svNzdUdU5I///wT7du3x6JFizBhwgTd9uHDh6NZs2YYN24cbt68aXRYOgDExMRg+vTpuv/lcjlCQ0PRq1cveHt7l6dIADS9FvHx8ejZsyckEkm5z1MhpV4ErgEdOnQAglqYnTwlUwnVnUzgzz/RsWNHNA0u+XkorZ6L90YnPkqE6mcVxjYdi3WX16FV+1bwlfqW3mNtYllSMpVYfvUEttwAZBIX/DylA4Ir0fJZVfr1bGesa/uwVj1rRzWVxaKAmoiIiKgkwcHBuHLlCvLy8gx6qpOTkxEQEFBq7/SiRYuQm5uLIUOG6G338PDACy+8gGXLliEpKQl169Y1ml4qlRrtIZdIJFb5Mmut81QoYs1XR4lYDJhZ9uRMJZ5fehJKVSFkElcE+niYVH8SiQRpeWnIyMsAAGTkZmDa4WlQFighE8uwqMsi3b5a3rUAAH+k/4GlF5bqHePn7gcA8JP6IcgryOSy1A6U4EB0F5y9/QhTdyTgcb5QKZ/3Kvl6dhDWtX1YWs+mprVolm8AuHfvHl577TXUqlULbm5uOHjwIADg4cOHeO2118qccISIyudW1i1cSb9i8JOanerorBFRBWbNdr1169ZQq9U4c+aM3vbc3FwkJCTgmWeeKTV9crJmGK6xe7aL3tdKFYN2du/Fw1riQHSkyTN8p+akYkDcAAzbOwzD9g7DhAOa0QqxnWIBABMOTEDMsRjIxDLU8akDmViG+WfnGxyjTT8gboDZbWWIrwz1apgwPp2IqhyLeqhv376Ndu3aITc3F+3atUNq6n8fToGBgTh37hzWrVuH1q1bW5xRItLwk/pBJpYh5liM0f0ysQxxA+I0V9+JiMxg7XZ92LBh+OSTT7B48WJ06tRJt33t2rVQKBR4+eWXddtu3rwJlUqFRo0a6bY1adIE+/fvx8aNG/HOO+/otmdmZiIuLg5+fn6oV6+eJUUmB6hXw8us5bIy8zKhLFAitlMswn3CAfzXyxxRI0LXO63dFjcgDhl5GUaPuZV1CzHHYpCRl4EgAKmursi4ewR+KERQcITVy0pElZ9FAfX7778PFxcXXLp0CTKZDDVq1NDb36dPH/z4448WZZCI9BX9slCc3hcFBtREZCZrt+tPPfUUJk2ahGXLliEqKgp9+vRBYmIili5disjISIwYMUJ3bPfu3XHnzh0IgqDbNnXqVGzevBkzZ87En3/+iQ4dOuDRo0dYu3YtUlNTsXz58hLvn6bKJ9wnHE38m+htC/IKMmjvim8zdsytrFvIKCjAtFrBUF5bB1niWsQ9t8mkoDo9J9+CUhBRZWNRQH3gwAFMnjwZoaGhSE9PN9hfu3Zt3L9/35KHICIjjH05KOpW1i2j23X3jRERGWGLdn3x4sUICwvDmjVr8NNPPyEgIACTJ0/G3Llz4eJS+p1ntWvXxpkzZzB37lz8+uuv2L59O2QyGVq2bImFCxciKirKrLwQFR/lJZO4492akZifvB8Z8nulBtR+nm6QSVwxYct5s4asE1HlZlFALZfLERRU8pfz/Px83ttEZEccDk5ElrBFu+7q6oro6GhER0eXelxSUpLR7XXr1sWmTZvMekxyTuXt2c3INRyRVV7FR3n5Sf2Qcf83IHk/buUkwy87tcQ2MsRXhlUjIzB6wxlk5OQzoCYiABYG1KGhobh8+XKJ+0+fPs17m4jsiMPBicgSbNfJVpIzlZiw5TxkElf4eZY8s3tRqTmp+Ev1F3Yc2wGZWAY/qZ9V8mIwykviBZlajZhLqyC7uqnUC8/+JuadiKoOi2b5joqKwoYNG3Dp0iXdNpFIBADYuXMnvvvuOwwdOtSyHBKRWYK8gtDEv4nBj3YiFyKikrBdJ1vRzvC9amSEST27qdmpeHHvi9iUoxmdsPH5jTa7GBwkC0Dc/VTE1h4IZYHS6EVpIqKSWDwp2d69e9G2bVt07twZIpEIn376Kd577z2cOXMGLVu2LHOIF1U9qdmpJfagEhGR47BdJ1szpYc3NTsV5x+cR25hLgZ7DMaYnmPwpO+TtsuUhz+CXKQIP7kSCAnCrZRznHOEiExmUUDt7e2NU6dOYdasWfjmm28gCALi4+Ph6+uLN998Ex9//DHc3d2tlVeqBFKzNWtJKguURvdbc0gXGXfzQTbUuVkG2x8+UoIDOYmqNrbr5GhFvye4u7ojTByGIE8bB7a+ocCkM/C78TNkfy5GzO+fQfbHMs45QkQmsSigBjSN75IlS7BkyRI8fPgQgiAgMDBQN0SMqKiMvAyDtSSL4hVh23nwOA8A8NaOBKhzHxrsbyq6ja5SwFsmsXfWiMiJsF0nRyr6PaF59ea4cOSCfR7YNxRBwa0R9/9Scb7P/yHm0ircyrrF7yREVCaLAuqTJ0/ip59+wvXr1yGXy+Ht7Y1GjRrhhRdeQLt27ayVR6qEjK0lSbb1WKkCAMzo2QCdw1oZ7HdP8wF2AzW8pPbOWqVz40G20e1+nm6cFZacGtt1chbhPuEI8gzCBdgpoP5XUGEhInwbQiaWYdrhaSX2UnMtaiLSKldALZfLMXz4cPz8888QBMFg/yeffIIXXngBX3/9NapVq2ZxJonIekKre6BZiI/hDpGX/TNTyWjXKJ26I8HofpnElWuXklNiu070nyBZABZ1WYQJBybg/IPziECELqjmWtREVFy5AurBgwfjwIED6NixI15//XU0b94c3t7ekMvl+OOPP7Bu3Trs3bsXw4YNw759+6ydZyIipxTiK8OB6EhkGOm5uPEgG1N3JHDtUnJKbNfJGaRmpzrHBKVp1xEeUBcysQwxx2IgE8t0PdVci5qIijM7oP7ll19w4MABREdH47PPPjPY36pVK4wePRozZszAokWLEB8fj549e1ols0RkB2nXjW/38NdM3EKlCvGV8QsWVShs18keShsirQ2kpx2eBmWB0nETlHr4AxIPYNc4BEk8EDdmL87npiLmWAwy8jJ0vdRci5qIijI7oN62bRtq166NBQsWlHrcggULsHPnTnzzzTdseIkqgiJfJIySeACTzjCoJqpk2K6TrSVnKjFhy3nIJK7wKxaMFp3VWyaWYVWPVZr7p72CoFKp7JvRf2f7xt1TmqAarkYnUCUiKsrsgPr8+fMYOHBgmbN9uri4YODAgThw4EC5M0dEdqT9IqFIN9yXdl0TaCvSGVATVTJs18nWMnLyoVQVYtNrbQxG8BSd1TuiRoTjZ9X2DTXeDhIRlcDsgDo5ORkNGzY06diGDRti48aN5j4EETmKbygDZqIqhu062UtpQ6W1vdLOqui93Wm5rg7MCRE5G7MDarlcbvIMn9WqVUN2tvHlY4iIiMjx2K6TI2XkZjg6C6Xyk/rpJifTkrq4QySeyqWziAhAOQJqtVpd5rCw4scTERGRc2K7TrZWUuCZmp2KaYenOW4SsrIo0hAU3BJxA+KQkacJ/G9l3ULMsRi4uyu5dBYRASjnsln79u3D33//XeZx58+fL8/piYiIyI7YrpOtlDQhWWp2Ks4/OA9lgRKreqxyruHe2kk6d4wEJp1BkG+oQf5e7+qJ5f8vnUtnEVH5AupvvvkG33zzjUnHmnPVG9Bc+V6yZAlWr16NpKQkBAYGYujQoZg7dy48PT2tnn7fvn2YN28eLl68CKlUiu7du2PBggWoU6eO3nELFy7Ejz/+iGvXruHRo0eoXr06GjVqhClTpmDQoEFmlZHKKfMeIP8HPookIPUiIC7y8i1pqSciIiqTLdt1qtqMTUhWfGZvp5tJ2zcUGLYF2PqiwWSc2iHgm258As+6EqTlPgPAx3F5JSKHMzugPnTokC3yoTNt2jQsXboUgwYNQnR0NBITE7F06VJcuHABBw4cgIuLi9XS79q1C4MHD0aLFi3w2WefISsrC4sXL0aHDh1w7tw5BAcH6449c+YMwsLC0KdPHwQEBODRo0f47rvvEBUVhblz52LWrFk2qxOCJphe3gYSlQJdAOCakWMkHpqrykREZDJbt+tEgP6EZE43s7cxHgFGNwd5BSFuQBzirh7H8stzcT8rDYBpk/oRUeVkdkAdGRlpi3wAAC5fvowvv/wSUVFR2Llzp257nTp1MGXKFGzfvh0jRoywSnqVSoXJkycjNDQUx44dg5eXFwCgd+/eiIiIwOzZs7FmzRrdOXbs2GHweFOnTkVERAQWLFiA9957D66unPXRZhTpgEqBggErcfzqQ3To0AEScbGXr4c/Z6gmIjKTLdt1otI4+8zeJQnyCkKjgHoAgE/ij6BpzWC0Cq5TRioiqqxK7+61s23btkEQBEydOlVv+7hx4+Dh4YGtW7daLf2RI0eQkpKCsWPH6oJpAGjZsiW6dOmCHTt2QKVSlfp4YrEYISEhyMnJKfNYsg7BvwGyPMKAoBZAcEv9HwbTRERETqXCz4Sddl0zSq6YhgE14ebiDtea2zDu16FIzU51QOaIyBk4VUB99uxZuLi4oE2bNnrb3d3d0bJlS5w9e9Zq6bV/P/vsswbnadeuHeRyOa5fN7wv99GjR3j48CESExMxd+5c/Pzzz+jatSvc3d1NLicRERFRZVfShGQVgnZisl3jgOVtDILqIK8gLGy/FcrkYchT5+qtU01EVUu5JiWzlZSUFAQEBEAqlRrsCwkJwcmTJ5Gfnw83N+MfyuakT0lJ0W03diwAJCcno2nTpnr7GjRogPT0dACaHuoXX3wRK1asKLVceXl5yMvL0/0vl8sBaIadW9KzrU1bkXrHCwoKdL/NyndBASRF0lekMlvCms9xYWGh7rfZ5/u3/lUFBYAN674ivqZNZey1X5nLawzLa9l5iCoaYxOSVRi+ocCkM8DdU5qgutjkZAAQ4F4ThYo6kLq4Y9rhaYgbEFchh7ATkWWcKqBWKBRGg2EAuh5ghUJRYkBtTnqFQgEARo8vemxxu3btQm5uLpKTk/Hdd99BqVTi8ePHCAwMLLFcsbGxmDNnjsH2/fv3w8PDo8R0poqPj7f4HPaSUqC5kHHi+AncFt82OZ2PIgldAPz222+AR1iFKrM1WKO8Fx5r6v5CQgJENx+YlVZb/ydOnECWR7LFeSlLZXx+72UDgBjHjx/HHS/9fZWxvKVhec1jrC0iqkj8iy2XVWF6c31DNYF0KYQCXwyr/QE23/4AGXkZDKiJqiCnCqg9PDzw4IHxL/q5ubm6Y6yRXvu7aM+xKY/VuXNn3d9jxozB8OHD0aFDB1y5cgV+fn5GHzsmJgbTp0/X/S+XyxEaGopevXrB29u7xPKURaVSIT4+Hj179oREIin3eewp8VEiVvy8Ah06dkDj6o1NT5h6EbgGtG3bFvv//KdCldkS1nyOhWvnsOs80KplS/Rp+Ix5if+t/w4dOmjuX7eRiviaNtXlFDk+//M0OnbsiKbBmvd9ZS6vMSxv+WhHNRFVdMWXy/KTGv/eVFH4ebpBJnHFyoPJ8KwDPHichyZcbISoynGqgDo4OBhXrlxBXl6eQc9xcnIyAgICSuydNje9dkms5ORkNG7c2OBYwPhw8OJGjx6N7du3Y9euXXj99deNHiOVSo32hEskEqt8qbTWeawlNTsVGXkZRvfdzbkLQDNc3qw8/zujt/jf385WZluzRnm1s9C7urqafy5tvYvFgB3qvTI+v+Iir+HiZauM5S0Ny2t+eqLKoEIsl2WGEF8ZDkRHIu7yb1h5A7iadgMNA2pW+HIRkXmcKqBu3bo19u/fjzNnzqBTp0667bm5uUhISNDrHbY0fevWrQEAp06dQo8ePfTOc/r0aXh7e6NBgwZl5lmpVALQTFZG+lefS1IZrkoTERFR6YrO8F10qHdFXS7LmBBfGZrUDIJwXYLll+diwzUZ76UmqmKcKqAeNmwYPvnkEyxevFgvIF67di0UCgVefvll3babN29CpVKhUaNG5UofGRmJoKAgrFu3DtOmTdMtnXXx4kUcPnwYY8aM0fUK5OTkQBAEveW1AM3kTsuXLwegmRmc9K8+h/uEGz3GT+rHhoaIiKgSKzrDt0r0CAPihlXsod5p1zUzfxtZojPAvSZybkbj3YFuWH55Lu+lJqpinCqgfuqppzBp0iQsW7YMUVFR6NOnDxITE7F06VJERkZixIgRumO7d++OO3fuQBCEcqWXSCRYsmQJhg0bhk6dOmHcuHGQy+VYtGgRAgMD9SYR++uvvxAZGYnBgwejYcOGqF69OpKTk7Ft2zZcu3YNo0eP1gvgSXP1uYl/E0dng4iIiByg6AzfUunDijvUu+jyWRIPzczfRoJqocAXIZ4lT1BLRJWXUwXUALB48WKEhYVhzZo1+OmnnxAQEIDJkydj7ty5cHEpe9lsc9IPGTIEMpkM8+bNw4wZMyCVStG9e3fMnz9f7/7pWrVqYeTIkTh27Bh2796Nx48fw8fHB61atcKsWbP0AnUiIiIi0ig6w3eFHOptwvJZWllKzRJ3t7JucTQeURXidAG1q6sroqOjER0dXepxSUlJFqXX6tu3L/r27VvqMQEBAVi2bJlJ5yMiIiKiSqSM5bO0s31//ONdeNZ1R8yxGMjEvJeaqKoou8uXiIiIiMhEyZlK3HiQDQBIy/274qw7XU4hvjKsGhkBpdIbnz+7FbGdYqEsUOL8g/NIzU51dPaIyMacroeaiIiIiCqmS8lZGLLqFJSqQshkcsw49QryCnMr7mRkxZUwOZl2aHuAe0009PGGTCxjTzVRFcEeaiIiIiKyWHKmEkNWnQIAbHqtDVaOboS8wlzEdoqt+EFl0cnJlrcBMu+VeGiQVxDiBsTpeqoz8jLsmFEisjcG1ERERERkMe3M3qtGRiCyQSBqVJMCqKCTkRWnnZwsai2gUpR6TzWgCapLWj6UiCoXBtREREREZDX+nm5IzU6tfPdO+4YCAQ3MTnYr6xbvpSaqxBhQExERkc2o1WosWrQIjRo1gru7O0JDQxEdHY2cnByTz/Ho0SPMmDED9erVg7u7OwIDA9G1a1ccO3bMhjknc6Xn5APQTEQ2IG6A7h7iSnHvtIm0dQAAflI/3b3UA+IGMKgmqqQ4KRkRERHZzLRp07B06VIMGjQI0dHRSExMxNKlS3HhwgUcOHAALi6lX9u/c+cOunTpguzsbLz++uto0KABsrKy8McffyA5OdlOpaCyJGcqMWHLecgkroCrAsoCJWI7xSKiRkTFH+5tAu3SWRO2nMeB6EiE+Mp091Kff3AeMcdicCvrVpWoC6KqhgE1URWTnHMHV9K9jO7zk/qxsbcx7VIyAFBQUIB72cDlFDnEYjH8PN0Q4itzYO6IrOvy5cv48ssvERUVhZ07d+q216lTB1OmTMH27dsxYsSIUs/xyiuvoKCgAH/88QeCgvj55Ky0909veq0NAqs9BFBJ7p0uSbHZvrVLZ43ecAYZOfm6z/IgryBEIAIysQzTDk+r+JOzEZEBBtREVUQ1Nx8IagmWX56L5ZeNH8PlPWxH23sxdUdCsT1ifP7naQCATOKq69kgqgy2bdsGQRAwdepUve3jxo3DzJkzsXXr1lID6qNHj+L48eNYunQpgoKCoFKpoFKp4OHhYeOcU3lpl4+qtIrO9i3x0ExU9m9QXVLZg7yCsKjLIkw4MAEZeRlsY4kqGQbURFVEgHtN5NyMxtKX66NuDcMe6ltZtxBzLIaNvY2E+MpwIDoSGUXurysoKMDx48fRsWNHJD3KxdQdCXo9G0QV3dmzZ+Hi4oI2bdrobXd3d0fLli1x9uzZUtPv27cPAPDkk0+iX79++H//7/+hsLAQ9evXx4cffohXXnnFZnknMko72/fdU5qg+u6p/7b/q+h91Fp+7lXnPnKiqoYBNVEVIhT4oo53QzTx93F0VqqkEF+ZXrCsUqlwxwtoGuwNsZgfx1T5pKSkICAgAFKp1GBfSEgITp48ifz8fLi5Ge/Zu3btGgBNj3b9+vWxadMm5OfnY+HChRg5ciRUKhXGjBlT4uPn5eUhLy9P979cLgcAXU93eWnTWnKOCqugABIAqoICoEj5H2Qp/t1dAJeCAt3flbKePWsCwa0hlnhAtGscBIkHCt44iWpu/pBJXDBhyzn8PKUDgot83hdYqU5swWnruRJiXduHterZ1PT8BkdEREQ2oVAojAbTgKaXWntMSQH148ePAQDVqlXDoUOHdMcNHDgQ4eHheO+99zB69OgSJzaLjY3FnDlzDLbv37/fKsPG4+PjLT5HReOjSEIXACdOnECWh2ZSuEd5QGyCK9xcgAu/HUe6y18AgBPHT+C2+LbFj+ms9SxrMA/+2dcRcWcVTsT/gCyPMIyuJ8KqRFf8uP8QQosMBkspSAEA7D66GxfEF+Dr4uuYTJfCWeu5MmJd24el9axQKEw6jgE1ERER2YSHhwcePHhgdF9ubq7umJLIZJoevuHDh+sF3X5+fujfvz82b96Ma9euoXHjxkbTx8TEYPr06br/5XI5QkND0atXL3h7e5tdHi2VSoX4+Hj07NkTEomk3OepkFIvAteADh06AEEtAGgmVsz//TQ2jHoa9YJVeHHvPLi7uuOF7i8gyLP8txBViHpOvQhsWKWrj9opcqxKPI2OHTuiafB/r7HUnFRs2LsB3yu+h7urO3b23WlR3VhThajnSoJ1bR/WqmftqKayMKAmIiIimwgODsaVK1eQl5dn0FOdnJyMgICAEnunAaBWrVoAgJo1axrs0874nZGRUWJ6qVRqtIdcIpFY5custc5Tofx7e4pELAb+LXtWnhoAUMPHA9mFycgtzMWqHqvwpO+TVnlIp67nYvWhvX0nK0+tl+cnfZ/EDwN/0C2hlV2Y7XRlcup6rmRY1/ZhaT2bmrb0xR+JiIiIyql169ZQq9U4c+aM3vbc3FwkJCTgmWeeKTW9djKz+/fvG+zTbqtRo4aVckvlUXT9ab8is1xX1Um4iq5HnZyp1NsX5BWEcJ9wAJqJQFOzUx2RRSKyMgbUREREZBPDhg2DSCTC4sWL9bavXbsWCoUCL7/8sm7bzZs3cfXqVb3jBv7/9u48Lqp6/x/4C5hhmGHYZNEBUcR9KxQ1TbloLpV5My21MjK9WfZzuSpacdvUUq+ViWukVpZ2TS2Lblop39TMcAmlrkuaCS5AIsgiMMAMnN8f04wMc4Z1dl7Px4OHcs7nnPl8DjDnvOfz+bw/Dz0EHx8fbNu2DSUlt9dwz8nJwZdffokuXbqgU6dOVm0D1U2//nRSXDTcJYW4VHTJ3lWyK/161GpNldGqDnoBsgDIJXIkHE7A2OSxDKqJXACHfBMREZFV9O7dGzNnzsS6deswfvx4jB49GufOncOaNWsQGxtrtAb18OHDcfnyZQiCYNgWEBCAt99+G88++ywGDhyIadOmobKyEu+++y4qKyuxdu1aezSLRAgeNzE2OQ5qrRpyiRwBspbZQw3UvRa3SqlC8thkw9BvLlVJ5PwYUBMREZHVJCYmIiIiAhs3bsSePXsQFBSE2bNnY8mSJWazc9f0zDPPICgoCG+++SZeeeUVuLu7Y9CgQfjPf/6jSwRFdpNVqMbFXN3IgVuVRVBr1VgesxzRIdEMEuugUqoQWXF76HeALIDXi8iJMaAmIiIiq/Hw8EB8fDzi4+PrLJeZmWl23/jx4zF+/HgL14yaI7ekAiPePQS1pgpyqQd85LrkPZF+kS0zOCzLa1TxmkO/5RI5kscmt8zrRuQCOIeaiIiIiBqlWK2BWlOFxElRSImPRYiP+HrjLk8RCEgVwI44oPCq0a58kTnUevqh38tjlkOtVaOgwny2eiJybAyoiVxMVqEap7OKTL70w/KIiIgspVOIEmH+cntXw378w4FJWwFNGXAlFSi8Wmem75pqZv0mIufFId9ELiSrUI0RK3VD8MTUXtaEiIiImimoq66Xevd0QKpA2MzjSIqLxpQPjqOgtLJlf+BA1AIwoCZyIfrlSxInRaFTiNJkf4C3J2/sRETUbEVqjeH/OSU5LXu5LP9wYOZxXQ/17ulAWT4CvTs06hRMTkbkvBhQE7mgTiFK9Arzs3c1iIjIRS3bcw5yaSQ0bjcxNnkSl8vyDwfK8k02X8wtqfPD7NrJybbctwU9AntYu7ZEZEGcQ01EREREjVKurUZSXDRkMrVhuSxmqr5NP4967o50jFh5yOxcan1ysqQRSQCAp759CjklObasKhE1EwNqIiIiImq0wBo5OVrscllmhPnLkRIfi8RJUVBrqlBQT8bvwWGDsWroKmb8JnJCHPJNRERERGRhYf5yFIjkMzEnwKuFDpcncnLsoSYiIiIispS8CyZrUhOR62IPNRERERE1Wl75nyipaMHZvWtTBBotn4WZxwH4Nvo0zPhN5FwYUBMRERFRg+SWVCAEgIdXKRakPoGKqvKWnd27JpHlsxoTUNfO+M0kb0TOgQE1ETVc3gXx7YpA3YMEERG5tGK1BiEApsSqsOhyOZbHLEd0SDQDPz0zy2fl15GUTE+f8TstNw0JhxNQUFHA60rkBBhQE1H9ag5jE6Mf2sagmoioRVDKdI+QzO5dN/3yWTO2piElPtbsetR6KqUKkRWRNqodEVkCA2oiqp9+GJvIp+7Iu3B7aBsDaiIiIp28CwhrF4ikuGhM+eA4LuaW1BtQE5HzYUBNRA3jH86AmYiIkOPhgWvlf9q7Go6rVnKyrnE/NKqXWo/JyYicA5fNIiIiIqIGuVF5E2PbqpB45UMmIzNHP6pr/CZAU4Y2klIkxUVDralCQQPmUtdMTjY2eSyOZB1BTkmODSpORE3BgJqIiIiIGqRYWwK1uzvmtpvKLNR18Q8HgroYvg309mzwofrkZEkjkgAAM1JmYGzyWAbVRA6KATURERERNUpbrzYMphsq7wKkJVmNOkSlVGFw2GAkj03G8pjlUGvVSMtNY1BN5IA4h5qIiIiIyNJqzKXuLJEjFCsafQqVUoVoRHN9aiIHxoCaiIxcKrokup2JUYiIiBpBP5f6Sircd09HgNutBq1HXRvXpyZybAyoiQiAcRIUMfxUnIiIqJH8ww1LTnpJ3Bud6VuP61MTOS4G1EQE4PYn4AUVBSb7LhVd4qfiREREzfDa8NZ48Ftdpu/mrEfN5bSIHIvDJSWrrq7GqlWr0K1bN3h5eSE8PBzx8fEoLS21yvF79+7F3XffDW9vb7Rq1QoTJkxARkaGURlBELBt2zY8+uij6NSpExQKBdq1a4cHH3wQx44da3abiRyFSqlCj8AeJl+RfvxUnIiIqEn+mkvd68eZCEVek4Z9A6bLaTFBGZFjcLiAet68eZg/fz569OiBtWvXYsKECVizZg3+/ve/o7q62qLH7969G2PGjIFarcZbb72FhQsX4ocffsDgwYORnZ1tKFdRUYG4uDicP38ejz76KNauXYtnnnkGJ0+exKBBg7Bt2zaLXwciIiIicgH+4cCkrXDXqqGSlmLG1jRkFaobfRr9SDJ91m9zOU+IyLYcasj3mTNnsHbtWowfPx6ff/65YXuHDh0wZ84cfPrpp3j88cctcrxGo8Hs2bMRHh6Ow4cPQ6lUAgDuv/9+REdHY9GiRdi4cSMAQCKR4ODBg4iNjTV6venTp6Nnz56Ij4/H448/Dnd3h/t8goiIiIjsTREEAHhjiCf+ceB6k4d918z6Pe/gPOY2IXIADhUBbt++HYIgYO7cuUbbp0+fDoVCUW9PcGOOP3ToELKzs/H0008bgmkAiIqKwtChQ7Fjxw5oNBoAuoC6djANAK1bt0ZsbCxyc3ORm5vbyNYSERERUYvw17Dv7qnxSJEtbPS61DWplCqsGroKaq1aNO8JEdmWQwXUJ06cgLu7OwYMGGC03cvLC1FRUThx4oTFjtf/f9CgQSbnGThwIIqLi3HhwoV663zt2jV4enrC39+/3rJERERE1AL9tYTW1WGroXCrgEf5zWadLsArAIAuQRnnUhPZl0MN+c7OzkZQUBBkMpnJvrCwMPz000+orKyEp6dns4/Xz5EOCwsTLQsAWVlZ6Nmzp9n67t27F8ePH0dcXBy8vLzMlquoqEBFRYXh++LiYgC6Yef6XvCm0B/bnHNYmlarNfxr0XpptZDWOL8jtdmaGvszttb1r/O8f/1sNFot0MzXdMTfaWuq2V6r/e04kJb887XEeYjIyfmHo8K/EwCgSN28v+uaCcq4rCWRfTlUQF1WViYaDAMwBKxlZWVmA+rGHF9WVgYAouVrljXn999/R1xcHMLCwrBy5Uqz5QBg+fLlWLx4scn2ffv2QaFQ1HlsQ+zfv7/Z57CUbK3ug4ojPx5BhiSjntKm5JV58NSWmGz3Kc9GNKDLqq6IcKg220JD23u1BAAk+PHHH3FZWV/phqvr5+pXlomhAI4cOYIiRdOHsNXUEn++1vrZOaKW+PNtjrruRUTkXHzlUgDAsj3nsKbbwCYvn6VPUJaWm8ZlLYnszKECaoVCYXYucnl5uaGMJY7X/1uz57ihr5WRkYHhw4fDzc0N33zzDYKDg83WCQASEhIwf/58w/fFxcUIDw/HqFGj4OvrW+exddFoNNi/fz9GjhwJqVTa5PNY0rmb57Dh2w0YPGQwurfq3riDi65B8t7dcNOIPzwKUgXuGnY/9h0751BttqbG/ozPZBfj7f8dxZAhQ9AztOm/W7XV+XPN+QU4DwwePBhQ3dms13HE32lrqtneCzfUVvnZOZKW/PNtTnv1o5qIyPmFKHUdOW2rrqLkegbg36PJ51IpVYis0C1rybWpiezHoQLq0NBQnD17FhUVFSY9x1lZWQgKCjLbO93Y40NDQw3bu3fvblIWEB8OnpmZiWHDhqGkpAT/93//h969e9fbLplMJtoTLpVKLfJQaanzNEZOSY5oIowrpVcA6BK5NbpOlUWApgwYvwkI6mKy200RCIl3GwDn7NJme2poeyUSieFfS16fOs/71z6pRAJY6DVb4s9XIrmdBNHV294Sf77NaW9LulZELk8RiGqJHKuxAdW7PgRmndDNr24iDv0msj+HCqj79++Pffv24fjx44iJiTFsLy8vR3p6Ov72t79Z7Pj+/fsDAFJTUzFixAij8xw9ehS+vr7o0sU4qMvMzMTQoUNRVFSElJQU9OnTp8ltdWY5JTkYmzwWaq34GopyiRwBsoCmv0BQFyA0Snwf5xKSi7uYazrlAQACvD2bPDSQiIgchH84fp/wPTZ8tBWrsQEoy29WQF176HdabhqiEc2gmsiGHCqgnjRpEpYtW4bExESjgHjTpk0oKyvD5MmTDdv++OMPaDQadOvWrUnHx8bGQqVSYfPmzZg3b55h6axffvkFBw8exNSpU416BS5fvoxhw4ahsLAQ+/fvR3R0tFWugTMoqCiAWqvG8pjliPSLNNnPIUdEjRfg7Qm51ANzd6SL7pdLPZASH8ugmojIyWmUYbgo6EZB3rxyGq0Ugc0OqvVrU7Onmsj2HCqg7t27N2bOnIl169Zh/PjxGD16NM6dO4c1a9YgNjYWjz/+uKHs8OHDcfnyZQiC0KTjpVIpVq9ejUmTJiEmJgbTp09HcXExVq1aheDgYKMkYrdu3cKwYcOQmZmJ2bNn4/z58zh//rxR3UeOHInWrVtb8eo4nki/SPQIbPrcHyK6LcxfjpT4WBSUVprsu5hbgrk70lFQWsmAmojIyQV4e0It8UeZIEOrb2eiOkUO92YO/WZPNZH9OFRADQCJiYmIiIjAxo0bsWfPHgQFBWH27NlYsmQJ3N3rXza7McdPmDABcrkcb7zxBhYsWACZTIbhw4djxYoVRvOn8/PzkZGhy2y8du1a0dc9cOBAiwuoiciywvzldQbMHA5Ozqi6uhqrV6/Ge++9h8zMTAQHB2PixIlYsmQJvL29G3WusrIy9OrVCxkZGYYP0ImcTZi/HFvjH8bhM12xd89uiwz9BthTTWQvDhdQe3h4ID4+HvHx8XWWy8zMbNbxemPGjMGYMWPqLBMREWHUE05EZEscDk7ObN68eVizZg3GjRuH+Ph4w8ixU6dOISUlpUEfluu9+uqruHHjhhVrS2QbYf5yFER0MQz9tpTaPdWXii4xoCayMocLqInIcV0qumS6sTgTAR4e4O3aejgcnJzVmTNnsHbtWowfPx6ff/65YXuHDh0wZ84cfPrpp0bTsepy8uRJJCYm4s0332zwh+ZETiPvAtDMudR6NXuq5x2cx15qIitjQE3khLIK1WaDK2uouSyHGHlbFZLVeQyqrai+4eBEjmj79u0QBAFz58412j59+nS8+OKL2LZtW4MC6qqqKkyfPh333Xcfxo8fz4CaXELNudSK3dMBqQKYedxiQfWqoaswI2UG51MTWRkDaiInk1WoxoiVh6DWVInul0s9EOBtfr32ptAPIRNbe/xS5gEknE5CgaaEATURGTlx4gTc3d0xYMAAo+1eXl6IiorCiRMnGnSeVatW4bfffjPq5SZydmH+crwWdy9GfPAWdtwvIPzAPy0yl1ov0i+S86mJbIABNZGTKSithFpThcRJUegUojTZb60EVSqlSvxGfOOCxV+LiFxDdnY2goKCIJPJTPaFhYXhp59+QmVlJTw9zX8ImJGRgddeew2vvvoqIiIizOZQEVNRUYGKigrD98XFxQAAjUYDjUbT8IbUoj+2OedwVtVV1YZ/rd3+lnCd/WTuyEYQyv5avlWj1QIWam+QLAifPfAZTuWewsupL+NG6Q0EyYJMyrWE6+woeK1tw1LXuaHHM6AmclKdQpToFeZn72oQEZlVVlYmGkwDul5qfZm6AuoZM2YgMjIS8+fPb/TrL1++3GgZTL19+/ZBoVA0+ny17d+/v9nncDYZeecBCXD+/HlU5u+1yWu68nW+WgIAEqSnp6MrgCNHjqBIkWXR18jWZgMAjvx4BBmSDLPlXPk6Oxpea9to7nUuKytrUDkG1ERERGQVCoUCubm5ovvKy8sNZczZtm0b9u/fjx9++AFSqbTRr5+QkGAUiBcXFyM8PByjRo2Cr69vo8+np9FosH//fowcObJJ9XJmKcduAX8AXbt2xYi7Rlv1tVrCdT6TXYy3/3cUHbr1BK4CQ/p0g9DxHou+xrmb57Dh2w0I7R2KPiF9oPI2Hm3WEq6zo+C1tg1LXWf9qKb6MKAmIiIiqwgNDcXZs2dRUVFh0lOdlZWFoKAgs73TFRUVmD9/PkaPHo02bdrg4sWLhuMAoKioCBcvXkRQUBD8/f1FzyGTyUR7yKVSqUUeZi11Hmfi7uFu+NdWbXfl6xzsp4Bc6oEXv/0TKTI5JJ8/ZbHEZIbX8A6GXCLHy6kv1zmX2pWvs6PhtbaN5l7nhh7b8MUfiYiIiBqhf//+qK6uxvHjx422l5eXIz09Hf369TN7rFqtxo0bN7Bnzx507tzZ8DV06FAAut7rzp07Y/PmzdZsApFVhfnLkRQXjUuaAJwesh7QlOkSk1mQPrHo8pjlUGvVoglGiajp2ENNRJZReBnIThffZ6G1NYnIuUyaNAnLli1DYmIiYmJiDNs3bdqEsrIyTJ482bDtjz/+gEajQbdu3QAA3t7e2LVrl8k5b9y4gf/3//4f7rvvPvzjH//AHXfcYf2GEFlRpxAl5FIPLP6/6/jcAxZdk1pPpVQhsiLS8H1OSQ4KKgoQIAsQTVRGRA3HgJqImsfrr8Ro378OVL4qXsaCa2sSkfPo3bs3Zs6ciXXr1mH8+PEYPXo0zp07hzVr1iA2NtZoDerhw4fj8uXLEAQBgG6o3SOPPGJyTn2W744dO4ruJ3I2+l7qhA+uo1omh7uF16Su7eT1k1hzag3UWjXkEjk+e+Azi78GUUvCgJqImsente7f8ZsB3wjT/XkXgN3TLbq2JhE5j8TERERERGDjxo3Ys2cPgoKCMHv2bCxZsgTu7px5RgQAgd6eyEYQfp/wPbpWnLbKfTNAFgC5RI4VJ1ZALpHjhf4vYMWJFSisKLTYaxC1RAyoicgygrsAgT3sXQsicjAeHh6Ij49HfHx8neUaur50RESEoRebyNVolGGAT6XuGwsP/dbPpdYP9eZcaiLLYEBNREREROQA8ksrgZBA3ZBvKwz9VilVhgzf+oC6oJyBNVFzcKwVEREREZEdBXh7Qi71wIytaTiU64U/434Axm+yStZvw2v+NQR8weEF+F3zO3JKc6zyOkSujgE1EREREZEdhfnLsWvGIADAlA+OY9imP5Dr1d6qr6lSqrDlvi0AgI9KP8LDXz+MnBIG1USNxYCaiIiIiMjOeoX5ISU+FomToqDWVKFYrdHtyLsAFF61ymv2COyBz8d8jkcUj6C8qpzzqomagHOoiRxQVqEaBaWV0Gq1uFoCnMkuhkSi+3O9mFti59oRERGRNYT5y1EQogQAVHm1stpc6ppU3iqEuIcAAC4VXUKALMAwz5qI6seAmsjBZBWqMWLlIag1VX9tkeDt/x01KiOXeiDA29P2lSMiIiKb+NMtGF1nHgeupOqC6iupuh1WCKoV7gp4eXgh4XAC5BI5kscmM6gmaiAG1EQOpqC0EmpNFRInRSGilRd+/PFHDBkyxNBDDeiSl4T5y+1YSyIiIrKGmgnKUuJjEdZukNV7qv3d/fH5mM/x681fkXA4AWm5aYhGNINqogbgHGoiB9UpRImeob4IVwI9Q33RK8zP8MVgmoiIyDWF+cuRFBcNtaZKN83LP1wXRFs567fKW4XokGjIJXIkHE7A2OSxTFJG1AAMqMn2Cq8C2emmX3kX7FotIiIiIkfQKURp6KXOKlTrguqgLlZ/XZVSheSxyVgesxxqrZpJyogagEO+ybYKrwLrB+g+YRUjVQCKQNvWicgF1JWsjlMEiIici76XesoHx1FQWmn8Hp53QfesZIW51IAuqI6siDR8n1OSg4KKAiYrIzKDATXZVlm+Lpgev0n8k1Yr3iCIXJF+rt3cHelmy8ilHrp5eAyqiYicRmDt5KOKQJtk/a7p5PWTWHNqDdRaNZOVEZnBgJrsI6gLEBpl71oQOb0wfzlS4mNRUFopuv9ibgnm7kg37eEgIiLnop9Lrc/6nXfeagF1gCwAcokcK06sgFwixwv9X8CKEytQUFHAgJqoFgbUREROLsxfzmCZiKgl0AfQUgWwI856a1P/NZdaP9RbP5e6oJxzqolqY1IyIiIiIiIHlV97BJJ/ODBpq1UzfgO6oLpHYA+olCpDj/W8g/OY+ZuoFgbUREREREQOpuZ61Keziox3KoJsWheVUoVVQ1dBrVUjLTeNQTVRDQyoicg28i6IL5dWeNWu1SIiInJEYf5y7JoxCAAwISlVt3yWHUX6RXKNaiIRnENNRNZVMyupGBtlKiUioubzqCiqvxBZTK8wP/PLZwFWX0KrJv286rTcNCQcTkBabhqiEc0kZdTiMaAmIuvSZyUVm+eVd0EXaJflM6AmInJ0hVehOrYUaBOAapmvvWvTYuiXzzKaS117Ca1JW4Ggrla/l6qUKkQj2tBTzaW0iDjkm4hswT9ct0xa7S+xtciJiMgxleXDraocAKCVh9i5Mi1HzbnUhmHf+g+rn/hc9/22h4H1A2wyjUrfU708ZjnnVBOBATURERERkcMK85cjKS4aak0VCmr2UvuHA51G6ALr8ZusnvW7JpVSheiQaKM51UeyjjCwphaJATURERERkQPTD/sW5R9ulxFf+p7qpBFJAIAZKTOYrIxaJAbURERERERO4GJuid2zfdekUqowOGyw0RDwS0WX7F0tIptiQE1ERERE5MD086jn7kjHiJWHzAfVeRfsshxlzSHg8w7OYy81tSgMqImIiIiIHFiYvxwp8bFInBQFtaYKF3NLjAvUzPpto+RktamUKqwaugpqrRoFFQU2f30ie2FATURERETk4ML85ejfoZVpxm/gdtZvGycnqy3AKwAAcKnoEnupqcVgQE1ERERE5ARqZvw26aWumZzMTkO/A2QBRpm/GVRTS8CAmoiIiIjISXQKUYr3UgOmQ7+z021aN65RTS0RA2oiIiIiIidhdl1q4PbQ7yc+133/4f0276kWW6OaQTW5MocLqKurq7Fq1Sp069YNXl5eCA8PR3x8PEpLS61y/N69e3H33XfD29sbrVq1woQJE5CRkWFS7vjx45gzZw4GDx4MpVIJNzc3bNmypTlNJXIpl4ou4Wz+WdEv3kiJiIgsp951qTuNACZttdt86to91UxSRq5MYu8K1DZv3jysWbMG48aNQ3x8PM6dO4c1a9bg1KlTSElJgbt73Z8BNOb43bt345FHHsGdd96Jt956C0VFRUhMTMTgwYPx888/IzQ01FB27969WL9+Pbp164Y777wTP/30k9WuAZEzqTlfyhy5RI7ksclQKVU2rBkREZFry6/dQ12TIsh2FRGhUqoQWREJQPehe4AsgM8B5JIcKqA+c+YM1q5di/Hjx+Pzzz83bO/QoQPmzJmDTz/9FI8//rhFjtdoNJg9ezbCw8Nx+PBhKJVKAMD999+P6OhoLFq0CBs3bjSc47nnnsPChQvh7e2Nzz77jAE10V/0n0Kb+/T5UtElJBxOQEFFAW+kREREFqBfl3rG1jTsmjEIvcL8zBfOu6CbW+0fbrsK/qXmh+5yiRyrhq5CpF8knwfIpTjUkO/t27dDEATMnTvXaPv06dOhUCiwbds2ix1/6NAhZGdn4+mnnzYE0wAQFRWFoUOHYseOHdBoNIbtrVu3hre3d9MbR+TCVEoVegT2EP2K9Iu0d/WIiIhcSpi/HLtmDAIATEhKNU1OBjjM2tTJY5ORNCIJADAjZQbGJo/FkawjnA5GLsOhAuoTJ07A3d0dAwYMMNru5eWFqKgonDhxwmLH6/8/aNAgk/MMHDgQxcXFuHDhQlObQkRERERkNb3C/MwnJwMcZm1qlVKFwWGDRQNrBtXkChxqyHd2djaCgoIgk8lM9oWFheGnn35CZWUlPD3FEzE05vjs7GzDdrGyAJCVlYWePXs2p0kAgIqKClRUVBi+Ly4uBqAbdl6zF7yx9Mc25xxNodVqDf82+rW1WkgBaLRaoAn1tlebbUns+jpze/Xt+T3/d8P/DQouItjDA8HXz0LQaqHVauFXlgnt1TRA8tfbkyIQ8Gtr41rbhi1+vs36e7UwV/h9bgxLtbelXC8iajx9crKLuSUI8PZEmL/cuIB/+O1A2o5DvwFdYK3vsU7LTUPC4QRcKrrE4d/k9BwqoC4rKxMNhgFdL7O+jLmAujHHl5WVAYBo+ZplLWH58uVYvHixyfZ9+/ZBoVA0+/z79+9v9jkaI1ur+zDiyI9HkCExzYheF7+yTAwFcOTIERQpsppcB1u32ZaulgCABD/++CMu/zUbwZnbW1hdCCmkeDn1ZdH9Xm1V+OrrWVBVVUEKYCgAnL+9X+vuie+7/xtqT/smV7Ema/58xX6f7M2Zf5+bornttdS9yF6qq6uxevVqvPfee8jMzERwcDAmTpyIJUuW1DuV6sKFC9i2bRv27duHP/74A+Xl5ejYsSMmTJiAuXPncioWtXj6udRzd6RDLvVASnysaVBdc+i3VKHrtbZTUA38tawWdMtqzTs4j0lLyek5VECtUCiQm5sruq+8vNxQxhLH6/+t2XPcmNdqjISEBMyfP9/wfXFxMcLDwzFq1Cj4+vo2+bwajQb79+/HyJEjIZVKLVFVg5zSHBRWFIrvLAKQCgweMhjdW3Vv5Il/Ac4DgwcPBlR3Nrpe1myzoziTXYy3/3cUQ4YMQZdguUu0d1jpMNHfp4yiDLyc+jJujN+IIJ8IaLVaHDt2DHfddRckEgnc8i9Akvwcht11Z5N+XxydLX6fa/4+9Qxt+vuNJbSEv9+aLNVe/agmZ9Wc1Ts++OADrF+/Hg8++CAmT54MqVSKAwcO4OWXX8bOnTtx9OhRyOVys8cTubowfzlS4mNxIuMm5u5Ix8XcEvFe6pnHgSupuqD6Surt7XaiUqqwaugqzEiZwaSl5PQcKqAODQ3F2bNnUVFRYdJznJWVhaCgILO90409Xr8kVlZWFrp3725SFhAfDt4UMplMtCdcKpVa5KHSUufRyynJwSN7HoFaK5Lg4i9yiRzB3sGNf92/hvFKJRKgGXW2dJsdieSvaySRSAxtdPb2tvNvh3ZoZ7Ld0NY2PSAN7AFoNCj633VIwqN17bXQ74ujs+bPV+z3yd6c/fe5sZrbXme+Vs1dveORRx5BQkIC/PxuZzCeMWMGOnfujKVLl+L999/HrFmzrNoGIkcX5i8HOrQyZP0W7aXWB88O1FMd4BUAgEtqkfNzqKRk/fv3R3V1NY4fP260vby8HOnp6ejXr5/Fju/fvz8AIDU11eQ8R48eha+vL7p06dLUpji1gooCqLVqLI9Zjh1jdoh+cXgOkXO5mFuC01lFJl+imWGJLKS5q3f069fPKJjWmzRpEgDg9OnTFqsrkTML85fXnaAMME1SdiXVLpm/9WouqcXM3+TMHKqHetKkSVi2bBkSExMRExNj2L5p0yaUlZVh8uTJhm1//PEHNBoNunXr1qTjY2NjoVKpsHnzZsybN8+wdNYvv/yCgwcPYurUqU7dK2AJkX6R6BHYw97VIKJmqDm/TozZOXdEFtDc1TvMuXbtGgDdkpZEpKNPUJZvLqAGxHuqn/3JBrUzpU9QdqnoEuYdnIcZKTMgl8jZaUNOx6EC6t69e2PmzJlYt24dxo8fj9GjRxvmWsXGxhoNCxs+fDguX74MQRCadLxUKsXq1asxadIkxMTEYPr06SguLsaqVasQHBxskkTs8uXL2Lp1KwDdEDYA+O9//2u4qcfFxaF9+/ZWuzZERE2hn18n1mNxMbcEc3eko6C0kgE1WUVzV+8QU1VVhddffx0SiaTO4eKA662yYXc1Vmqoqqqyevtb7HVuIh9PN8il7pix9Wdsf3qA+bwZ3m2AZ3+C29VUSJKfg7b4OgD7XOcgWRCCQoLw2QOf4VTuKV1eldIbCJK5ZiJS/k7bhq1X2XCogBoAEhMTERERgY0bN2LPnj0ICgrC7NmzsWTJkjoTlzTl+AkTJkAul+ONN97AggULIJPJMHz4cKxYscJk/nRGRgZeeeUVo227d+/G7t27AQBDhgxhQE1EDinMX86Ameyiuat3iJk7dy5SU1OxbNkydO3atc6yrrbKhr35lWUi5K//n0pPh9sf4olgLa2lXefmmNkNWHPGAxPfS0VCVBVaif/5AQD8ym5gKIBTR/YDvnfY/TrrV5H54ocvcEpyCv7u/natjzXZ+1q3FLZaZcPhAmoPDw/Ex8cjPj6+znKZmZnNOl5vzJgxGDNmTL3lhg4datQbTkRERHVr7uodtb3yyitYt24dnnnmGSQkJNRb3hlX2XBoOb/g979Wy+wTFYXRXevObdNcLfY6N1OP3/Mw7eOTaN9rAGI619HTW3QNwqV/Y9CV9djfZSmGPPCYXa9zTmkOPvj6A3xW9hm8PLzwdszb6ODXASpv1xn+zd9p27D1KhsOF1ATERGRa2ju6h01LVq0CG+88QamTp2KpKSkBh3jbKtsODzJ7cdGDw8Pm7W9xV3nZuoa6g+51AMzt/9Sd46MoA7ApK3AtofhqS2x+3Vu598OXz30lWFO9ayDs1x2TrW9r3VLYatVNhwqyzdRS5JVqBbNunwxt8TeVSMisojmrt6ht2jRIixevBhTpkzB5s2b4ebmZo3qErmEmhm/632mUOh6sH3Ks4GiazaoXd1UShUGhw1G8thkLI9ZDrVWjYKKAntXi6hO7KEmsoOsQjVGrDwEtaZKdL9c6oEA74bPKSQickTNXb0DAJYsWYLFixcjLi4OH3zwQYPyqRC1dJ1ClHWvS62nCIQgVSD6chKE9z62+9rUeiqlCpEVkQCAgnIG1OTYGFAT2UFBaSXUmiokTopCpxClyf4Ab0+E+cuZBZKInFpzV+9Yv349XnvtNbRr1w4jRozAf/7zH6Pzt27dGiNHjrRZe4ichb6XesoHx3Ei4ybQoZV4UO0fDu2zP+HX/yYh+nISUJbvEAE1cHud6nkH52HV0FWI9It0uaHf5BoYUBPZUacQJXqF+dm7GkREVtOc1Tv061RfuXIFU6ZMMdkfGxvLgJrIDH0v9dwd6ZBLPcz3VPu1xS2vUN3/8y7c3q4ItGtwrVKqsOW+LXjq26cMa1QzsCZHxICaiIiIrKY5q3ds2bIFW7ZssU7FiFxcmL8cKfGxOJFxE3N3pONibonZod+VEiUEqQJuu6ff3ihV2H0IeI/AHkgem2xIVKYPrF0xURk5L05EIiIiIiJyQWH+cvTv0Mown/p0VpFoObVnELTP/gQ8c0j3NX4ToCkDrqQChVdtXGtjYonK0nLTkFOSY9d6Eemxh5osr/Cqbg6OmJpDiYj+cqnoEgBAq9UiW5uNczfPQSKRAMWZCPDwgMrc742dh6MRERE5ujB/OXbNGIQJSamYkJRa59BvSDvo/q8I1PVQ757uED3VgC6wjkY05BI5Eg4nsKeaHAYDarKswqvA+gG6TzXNkSp0b9TU4ukTjiQcTjDavuHbDYb/y9uGIjl5BlRVIhnRHeQmT0RE5Mh6hfkZkpTVNfTbwD9cd3+9kqoLqh0kWZlKqULy2GSk5aYh4XAC0nLTEFkRiQBZAANrshsG1GRZZfm6YHr8JiCoi3gZ9irSX/Q3Rv0ak1qtFkd+PILBQwZDIpHgUtElJBxOQMGED6DyjTA+OO+CQ93kiYiIHFmDl9LS8w+/PeIw74LDPL/V7qkGwN5qsisG1GQdQV2A0Ch714KcgEqpMtwANRoNMiQZ6N6qO6RS6e1CwV2AwB52qiEREZHzq7mUVoN6qQGHHPoNGH8gb/jwvaKAATXZBZOSERERERG1ADV7qc0lKDOiH/qtT1KWd976lWwglVKFHoE9EOkXCUCXj4WJysgeGFATEREREbUA+gRlADAhKRVZher6D/IPB9oN0vVQ74ize9bv2mrmYxmbPJZBNdkcA2oiIiIiohZCn6BMranCiYybyG5oUD1pq8MspVWTfvh3zSW1zuafxdn8swyuySY4h5qIiIiIqAXRD/2euyMdcqk7ZnZrwEFBXR1yPjUgnqgMYLIysg0G1ERELdzF3BLR7QHeng1LWkNERE4lzF+OlPhYXMwtwYytP2PNGQ8MyS5GVPs6ljWtvZTWldTb2x1A7ZVDmKyMbIUBNRE5vEtFl0w3FmciwMMDvEU2XYC3p6GHQoxc6oGkuGgEenuaPZ4BNxGRcwrzlyPMX47tTw/AxPdS8djm40iJH1r3+7o+eHbgnurawfOloktcp5qsigE1kRVlFapRUFppst1cjyAZq5loRIy8rQrJ6jwG1U2k76EQ+x3NL63EjK1pmPLBcbPHy6UeDVvLlIiIHFbPUF9M61qNpHNuDVtOy8F7qvVqPkPIJXKsGroKkX6RDKzJ4hhQE1lJVqEaI1YeglpTJbpfLvVAgJmeP9KpPXyrpkuZB5BwOgkFmhIG1M2g76EQYy7YBnQfCs3dkY6C0koG1ERETq61XIBc6o4ZW9Owa8Yg9Arzq/sAsZ7qSVt186wdJLDWP0NcKrqEeQfnYUbKDM6pJqtgQE1kJQWllVBrqpA4KQqdQpQm+zlctmHEhm8BAG5csH1lWpi6gm0iInIdrWTA9qcH4LHNJzAhKRVJcdHoFKKsf/j3zOO6tal3xAHbHnbYIeDJY5ORlpuGhMMJSMtNQ2RFJIeBk8UwoCaysk4hyvo/6SUiInICBR4e9q4CWUnPUF/smjEIE5JSMeWD45BLPervrfYPNx0CnnfeYQJqPbEs4BwGTpbCdaiJiIiIqF456jzMCwmCW7UEPp78oNgV9QrzQ0p8LD6aNgAAMCEpFaeziuo/0D8caDdI10O9Iw64mOJQa1UDt4eA7xizA0kjkgAAM1JmYGzyWK5XTc3CHuoWLKckR3xuqlhGZSJHVXgZyE433a4IdLhPyImInFmBpgRqd3cEXx2FIK829q4OWYl+uo++t3pCUmrDElD6hwNTvwE+vN8hh38DxtPIag8Dj0Y0e6qpSRhQt1A5JTkYmzwWaq1adL9cIkeALMD8CQqvAmX5ptvzOK+VbMTrr96R718HKl813e+AN3IiIlfgofWydxXIBnqF+SEpLhpTPjjesOzfABAa5RQZwAHTYeAcAk5NxYC6hSqoKIBaq8bymOWI9Is02V9noobCq8D6AYCmTHy/VKHrHSSyJp/Wun/HbwZ8I4z35V3Q3cjL8h3yJk5EROQMOoUoIZd6NDz7N+AUGcD1zGUC33LfFvQI7GHv6pGTYEDdwkX6RTb+DaMsXxdMj98EBHUx3c+htmRDlzwlgKzW8mOengjw8OByWkRERM1Qe+h3Ulw0Ar0961+pxAkygOvVzASuD6yf+vYp9lZTgzGgpqYL6qIb2kNkBwGyAKNsnbXJ26qQrM5jUE1ERNQMvcL8jLJ/A4Bc6lH/vGqxDOAOPgRcpVRhy31b8NS3Txl6qxlYU30YUBM1Q1ahGgWllaL7LuaW2Lg2LYv+02TRxHqZB5BwOgkFmhIG1ERERM2kz/5dUFqJi7klmLsjHScybgIdWjUsWRlgOgRcEeSQoxp7BPYQHQa+augqBHjp8gtxDWuqiQE1URNlFaoxYuUhqDVVZsvIpR4I8PY0u5+ap2a2TiM3mByPiIjIkvTZvwO8PSGXemDujvSGrVUNiA8BB5xqGPiMlBmG/XKJHMljkxlUEwAG1ERNVlBaCbWmComTotApRClapt45RkREREROJMxfjpT4WFzMLcGMrWkNn1tdcwh4Wf7tBKJOMAy85oi4S0WXuNQWGWFATdRMnUKUDct6STZ3qTQLyD8ruo/DtSzD3NQGfphEROS6aq9VXXNu9cf/GIDQv/aL0gfWikCnyAQOGI+Iq5nDpeZQcD5XtFwMqInI5QRIlZBXVyPhdBJwOkm0jNxDhlXDVhvmQxkdz5tivWoO+RMjl3oYeiz0tFotrpYA2YVqtA+W2qimRERkLWJzqyckpTZsKLi5TOAOHFgD4kttAWACsxaMATURuRxVYFckXy9EQXWF6P4CDw/MCwk2mg9VE+dG1U8/5E8sKV9+aSVmbE0z9FgYk2D9b0eQEj+UPdhERC6g9txqtaYKak2VYSh4pxBlw4aBO1FgXXsoeEF5gVECMz5DtCwMqInI9fiHQzXjKFRl+eL78y4gOXkGCiZ8AAQbr6WunxtVUFHAm2E9wuoY0icWbGu1Wny+/wi2XtTlIGBATeRcbpbp/qY9Je5MuEkm9B+0Arr3eP1Q8JojlsxOB6orsJ76jcMu01pzKHjy2GSk5aYZ5ldHVkQC4Ki3loABNVE9zC2NxWWxHJz+5myGqqoKKt8IILCH7erUgogF2xqNBj/KBTvViIiaq7RCCwCYNqQDPxAjUfrfi9qJyxq8frVYYP3h/Q7dW62nUqoQjWjD/Go9uUSOLfdtQQ8+b7gsBtQkrvCqLgOjmLyWsyRRfUtjcVksIiJqaZQyPj5S/fQfrIqtX10QomxYRvCp3+gCaicYBg7AJCO4fij4U98+hVVDVyHc2zHrTc3Dd0QyVXgVWD8A0JSZLyNV6LIzurj6lsZiJmOipqlrhAf/roiIXIfY+tUAGjYUPDTK/PxqRZCujCLQoQLsmsPAAWDLfVvw1LdPYUbKDHh5eGGS1yScu3kOEomEw8FdBANqMlWWrwumx28CgrqIl3GwNy9r49JYRJbhLQXkUnez2cGBBgwJJCIip1Ozt7p28so6g2tz86v1HHyedY/AHoas4HMPzMVHpR/ho28/AgAuu+UiGFCTeUFdHPbNicgixKYvFGfq/r1xAagwnTvf0j5MsrRWMuDbOYNxq1J8LrV+SCCTlhERuZ6a+TUaHVzXDKz10xLL8oznWTt4r/XnYz7Hnv/bg8FDBuOW9pboslv65TwZYDsPBtTU4plLOgYw8ZjLUgTqPtHePd10n6cUCFMBu58GKjWm+6UK3c3cgW7UzibUXw6plOtQExG1ZE0OrmsnHa05z1rPQYeFq7xVCJWEonur7pBKpaLLbulxXWvnwYDaxeWU5BgSI9R0qeiSHWrjeOpLOgYw8ZhLqv0Jd03FmcCxV3Dp3sWAd5jxvsLLwPevA3+mAVW3RE/NT5Qto6kfZnH+NRGR82lscK0X4O2JMP0869q91mIBtoMlNKu97FbtZGb6da1r9lwDfNZwNA4XUFdXV2P16tV47733kJmZieDgYEycOBFLliyBt7e3xY/fu3cv3njjDfzyyy+QyWQYPnw43nzzTXTo0MGk7Pnz5/HCCy/g0KFDqKysRN++fbF48WLcc889Fmm7peWU5GBs8liotWrR/XKJHAGyANF9LUV9SccAPqC7LDPLagX4toY8TY6E00nix4WpgGOvmD2tXCJH8thk3uiaqHbSmsbi/GvHY+v7OhE5t4YE13q3g2xfAL4AgICgrggzF2DX7rkGHKf3ulYyM/2869o914D54eH6jjQG3LblcAH1vHnzsGbNGowbNw7x8fE4d+4c1qxZg1OnTiElJQXu7u4WO3737t145JFHcOedd+Ktt95CUVEREhMTMXjwYPz8888IDQ01lP3jjz9w9913QyKR4Pnnn4efnx82bdqEe++9F9988w1GjBhhtWvSVAUVBVBr1VgesxyRfpEm+wMq1FAVXweKrxvvaEHLYukx6Rjp1V7ywsiNC7qh4Pe8Avi3N9l9qTQLCaeTUFBRIHojqz1iRKvVIlubzWyfNdRMWtNYnH/tmGx5Xyci1yIWXOvVH2T/1Tkm74CguB/QpvKyac814LBBtj7Arv1MYm54+KuDXsWS1CVQa9VMdmZjDhVQnzlzBmvXrsX48ePx+eefG7Z36NABc+bMwaefforHH3/cIsdrNBrMnj0b4eHhOHz4MJRKXe/k/fffj+joaCxatAgbN240nCMhIQGFhYVIS0tDVFQUAODJJ59Ez549MXPmTPz2229wc3Oz5OWwmEi/SNPF5AuvAh8ON780lhMui1XXXGj2MlNj1P6U2MDDBxCkwLevih/41/zrS+f/C7Qy/mCqoLIY835dA3VVhclhG77dAMD0E+eaWtINseYDVFOYGy7O9wHbs+V9nYhcm9i9obFBdptH/g8e5TcN2yXqm2iX8gzc6wuy7Rhgiz2TiA0PTzicALlEjuUxy7EkdYnZZGe1taTnC2txqIB6+/btEAQBc+fONdo+ffp0vPjii9i2bVudN87GHH/o0CFkZ2djyZIlhmAaAKKiojB06FDs2LED69evh1QqRWlpKb766isMHTrUEEwDgFKpxNNPP41XX30VJ06cwIABA5p9DWymvqWxHOCTucaoby602LwbgEnHqJHqmnsNIKDgd8iPL0bC79tE98urBSQNfgMBgbq/Oa1WiyM/HhHN9mlyLIeS16u+4eLm3gf0xzLYtjxb3teJqOVpTpCt44FQrIBKWop/PdAdfnKpaJBdLZHjyoiN0MpbwVcuRYhSVn/lrPgsLTY8vOZQ7+iQaLPJzmqrL+AGGHTXx6EC6hMnTsDd3d0kMPXy8kJUVBROnDhhseP1/x80aJDJeQYOHIjvv/8eFy5cQM+ePfHrr7+ioqLCbFn9+ewRUBdWFxqGi9ZmSDwmtvyPfli3iyyNVddc6LrfSJl0jBrJzNxrAFCFRiE5IBIFxVdNdxZeRsD+xVCVVxr+HjVaLW5WVqJ7RSWkEm8kD1yGAo3phzz6oeRpuWmIrBCZvlHPjS4nO028TgACfMOhCo02e2xdzCU9bEidrKGu4eINeR8wF2wDDLibypb3dSIioGFBdk36+8PDX+pHbeqC7AA3XfLRQLdiJAmJiPg2rlH1qBmE61Vpq+BWmAnk/AKIPLs3iEigXjvANpfsrLaGBNxAw4Luurj6HG+HCqizs7MRFBQEmcz0U5+wsDD89NNPqKyshKen+ANPY47Pzs42bBcrCwBZWVno2bNng8uaU1FRgYqK28M8i4qKAAA3b96ERiOyLE8DXSu+hneur4TmC63ZMl7VAiRbp6K42rTntsrDCxeulkFzM7PJdbA1rVaLC7ll8Dtz2ehDhEt5paiuKEOQVAOVl/H1UHm5Y9fUXigsE79O/goJvKrKkJ9vZvi7HWk0GpSVlSE/P79FLDPkCu31lEWgdXCE6Q5ZJCSVy1C8/WmjzX0BqH8F1AC8//qqTeLuAWlYGzy/73nR1/Ry98Qb3Z+Bv6dpYr2ikj/x0vkPUe4uPiXFq1rA0q5T4adsU2e7aiusLMHL5zaivFr8AUWsTlVVVbieew5HT9yEh4dHo16vuaQA3rlHg7LKapN9JRUafHL8KhZ9eND88R5umDwgHEpZw38vq6qqcCO3pNm/z7du6R7qBEF87W5HZsv7uhhr3X81Gg0KCn7H0RPbbP67bM6tci1Kys2vWGEJF3NOoqq8CiXFpcjPFx+pY0mucE9wBi3hOnsBUHmJ76vvOREA/lc6FJLyQhRVaJCYchHlWtN7SU2t3G4hUboBrZKfMH09AOrfdPf9phAkclSNfRdCjUC9Lp4AWpvZ1xrAh91fRJHIh/l6+vv99P+KLDXaQF7unljY6XG8dfE/KK+urPO5xRKqqqpQUJBvs/uvQwXUZWVlojdNQPdptL6MuRtnY44vK9MFT2Lla5at+W9DyopZvnw5Fi9ebLJdLJO4NXQ1u+cWsHSwTepgKzGJ9q4BkbUU1rn3Acxs8plH44UmH1uX5tTJEe1v4nGzsNAir3/r1i34+TlX8kRb3tfF2Pv+66oewTMAnrF3NYgc2g6rnfkW8MbD9RdzMI/jF6PvbfOMYJv7r0MF1AqFArm5uaL7ysvLDWUscbz+35qfXFuirJiEhATMnz/f8H11dTVu3ryJwMDAZiUyKy4uRnh4OK5evQpfX98mn8eZtLQ2s72uje11bZZqryAIuHXrltHKE87Clvd1Mbz/OjdeZ9vgdbYdXmvbsPX916EC6tDQUJw9exYVFRUmn0hnZWUhKCjI7KfQjT1ef2GysrLQvXt3k7LA7eHcNcvWVrusGJlMZlIff39/s+Uby9fXt8X9Uba0NrO9ro3tdW2WaK+z9Uzr2fK+Lob3X9fA62wbvM62w2ttG7a6/zrU4o39+/dHdXU1jh83ThpTXl6O9PR09OvXz2LH9+/fHwCQmppqcp6jR4/C19cXXbroMvH27t0bMpnMbFkA9daNiIiopbHlfZ2IiMgeHCqgnjRpEtzc3JCYmGi0fdOmTSgrK8PkyZMN2/744w/89ttvTT4+NjYWKpUKmzdvRknJ7Yn4v/zyCw4ePIgJEyYYJrErlUr8/e9/x8GDB/HLL7fH/5eUlGDz5s3o3Lmzcy2ZRUREZAO2vK8TERHZheBgZs2aJQAQxo0bJ2zatEmYP3++IJFIhNjYWKGqqspQrn379oJY9Rt6vCAIws6dOwU3NzchKipKWL9+vbB8+XIhJCREaN26tXDt2jWjsr///rsQEBAghISECMuXLxfWr18vREVFCR4eHsK3335rnYtRj/LycuG1114TysvL7fL69tDS2sz2uja217W1tPaaY8v7uq3wZ2sbvM62wetsO7zWtmHr6+wmCI61DkdVVRUSExOxceNGZGZmIigoCJMmTcKSJUugVN5OrR4REYHLly+bpDFv6PF6X3/9Nd544w38+uuvkMlkGD58OFasWIGOHTualD137hxefPFFHDp0CJWVlejbty8WLVqEESNGWP5CEBERuQBb39eJiIhsyeECaiIiIiIiIiJn4FBzqImIiIiIiIicBQNqIiIiIiIioiZgQO2EqqursWrVKnTr1g1eXl4IDw9HfHw8SktL7V21Blu+fDkmTJiAyMhIuLm5ISIios7yx44dw4gRI+Dj4wNfX1/cd999SE9PFy2bnZ2NJ598EsHBwZDL5ejXrx927dpl+UY00IULF/Dqq69i4MCBCA4Oho+PD6KiorB06VLRn9n58+fx0EMPISAgAN7e3oiJicH3338veu6ioiLMnj0bYWFh8PLyQs+ePfHuu++azEG0pfPnz2Py5Mno3r07/Pz8oFAo0K1bN8yfPx85OTmi5Z25vWLKysoMv9uzZs0y2e8KbXZzcxP9EpvT6grtBYCbN29iwYIF6NSpE7y8vBAcHIxhw4bh8OHDRuWc+f2Kmua9997D5MmT0a1bN3h4eMDNzc3eVXJqrvCc4wwa+yxGjdfYZ0BqusY+f1qUTVKfkUXNmTPHkPF048aNwrx58wSJRCIMGzbMbhlPGwuA0KpVK2HEiBFCQECA0L59e7NlU1NTBZlMJkRGRgrvvPOO8M477wiRkZGCUqkUfv31V6Oy+fn5QocOHQRvb2/hlVdeEd577z0hNjZWACB88MEHVm6VuBdeeEFQKpXC448/LqxZs0Z49913hYkTJwoAhDvuuEMoKyszlL148aLQqlUrISQkRFi2bJkhm7xEIhH2799vdN6Kigqhf//+gkQiEebNmyds3LhRGDdunABAeO2112zcyttSUlKEYcOGCQkJCcL69euF9957T5g1a5bg7e0tqFQq4fr164ayrtBeMfHx8YJSqRQACDNnzjTa5yptBiDExMQIW7duNfr69NNPjcq5SnszMzOFiIgIISgoSHjhhReE999/X3jnnXeEp556Sti+fbuhnLO/X1HTtG/fXlAqlUJMTIzQtm1b0Wzl1HCu8JzjDBrzLEZN05hnQGqexjx/Whrf8Z3M6dOnBTc3N2H8+PFG29esWSMAED755BM71axx/vjjD8P/e/bsWeebeP/+/QUfHx+jpcyuXbsm+Pj4CCNHjjQqu3DhQgGA8NVXXxm2abVaoX///kKrVq2EW7duWa4RDXTixAmhsLDQZPtLL70kABDWrl1r2DZhwgTB3d1dOHXqlGHbrVu3hHbt2gldunQRqqurDdvXr18vABDWrFljdN7x48cLUqlUyMzMtHxjmmHnzp0CAGHFihWGba7Y3rS0NMHDw0NYuXKlaEDtKm0GIEyZMqXecq7S3iFDhght27YVsrOz6yzn7O9X1DQZGRmGQO+BBx5gQN0MrvKc4wwa8yxGTdOYZ0CyDrHnT0vjO76T0f8B/vDDD0bb1Wq1oFAohPvvv99ONWu6ut7Ef//9dwGAMG3aNJN906ZNE9zc3IScnBzDtrCwMKFjx44mZT/++GMBgLBjxw6L1bu5fv31VwGA8OyzzwqCIAglJSWCTCYT7rnnHpOyS5YsEQAIx44dM2wbPHiwoFAoBLVabVT2hx9+sPobR1McO3ZMACC8+OKLgiC4Znu1Wq3Qt29f4YEHHhAyMjJMAmpXarM+oK6oqDAb+LlKew8dOmQU6FdWVgqlpaUm5Vz5/YoajgF187jic44zYEBtW7WfAcl6aj9/WgPnUDuZEydOwN3dHQMGDDDa7uXlhaioKJw4ccJONbMOfXsGDRpksm/gwIEQBAFpaWkAgJycHGRlZWHgwIGiZWuezxFcu3YNANC6dWsAwK+//oqKigqzbQVu17+6uhonT55Enz594OXlZVR2wIABcHNzs3tby8vLkZeXh2vXrmHfvn149tlnAQCjR48G4HrtBYBVq1bht99+w7p160T3u1qbP/vsMygUCvj4+CAkJASzZ89GUVGRYb+rtHfv3r0AgHbt2uHvf/875HI5vL290aVLF2zbts1QzpXfr4hspaU951DLVPsZkCynvudPa2BA7WSys7MRFBQEmUxmsi8sLAx5eXmorKy0Q82sIzs7G4CubbXpt2VlZTW6rL1VVVXh9ddfh0QiweOPPw6gcfUvKCiAWq0WLSuTyRAUFGT3tm7evBnBwcEIDw/Hvffei8LCQmzbtg0xMTEAXK+9GRkZeO211/Dqq6+aTeziSm0eMGAAFi1ahM8++wwfffQR7rnnHqxbtw4xMTEoKSkB4DrtPX/+PABg+vTpuHnzJj766CN88MEH8PT0RFxcHD788EMArvt+RWRLLe05h1oesWdAspz6nj+tQWK1M5NVlJWVid5kABh6dcrKyuDp6WnLallNWVkZAIi2uWZ7G1vW3ubOnYvU1FQsW7YMXbt2BWC5turL27utDz30ELp164aSkhKcOnUKX331FfLy8gz7Xa29M2bMQGRkJObPn2+2jCu1+dixY0bfP/nkk7jjjjvw0ksvYfXq1XjppZdcpr23bt0CAPj4+ODAgQOG99eHHnoIkZGR+Ne//oUpU6a47PtVS1FYWIjExMQGl58zZw5atWplvQq1UC3tOYdaHrFnQLKc+p4/rYEBtZNRKBTIzc0V3VdeXm4o4yr0bamoqDDZV7u9jSlrT6+88grWrVuHZ555BgkJCYbtlmqrvry929q2bVu0bdsWgO7N7eGHH0b//v1RVlaGhIQEl2rvtm3bsH//fvzwww+QSqVmy7lSm8UsXLgQixcvxp49e/DSSy+5THvlcjkA4LHHHjN6iA8ICMCDDz6Ijz/+GOfPn3fJ96uWpLCwEIsXL25w+SeeeIIBtRW0tOccalnMPQOS5dT3/GkNHPLtZEJDQ5GXlyf6EJaVlYWgoCCX+tQ2NDQUgPjQR/02/fDIxpS1l0WLFuGNN97A1KlTkZSUZLSvMfUPCAiAXC4XLVtRUYG8vDy7t7W2O+64A3369MGGDRsAuE57KyoqMH/+fIwePRpt2rTBxYsXcfHiRVy+fBmAbl3lixcvorCw0GXabI5UKjW8RwGu8zPW35jbtGljsk+lUgHQDVl3tferliYiIgKCLllrg746depk7yq7pJb2nEMtR13PgGQ9tZ8/rYEBtZPp378/qqurcfz4caPt5eXlSE9PR79+/exUM+vo378/ACA1NdVk39GjR+Hm5obo6GgAugfbsLAwHD16VLQsALten0WLFmHx4sWYMmUKNm/eDDc3N6P9vXv3hkwmM9tW4Hb93d3d0bdvX5w6dcrkoeP48eMQBMEhfxfUajVu3rwJwHXaq1arcePGDezZswedO3c2fA0dOhSArve6c+fO2Lx5s8u02Zzy8nJcu3bNkGTFVdqrT46kTyJTk35bSEiIS71fEdlLS3vOoZahvmdAsq6az59WYbX84WQVv/76a53rM27dutVONWu6+pZq6Nevn+Dj4yNkZWUZtmVlZQk+Pj7C8OHDjcouWLDA7Lqu/v7+QnFxscXr3xCLFy8WAAhxcXGGtUrFPPLII4K7u7uQnp5u2KZfs7dz585Ga/auW7fO7Jq9EolEyMjIsHg7GqLmskA1ff/994K7u7vREkqu0N7Kykph165dJl8bNmwQAAj33XefsGvXLuH8+fOCILhGm/Py8kS36//+ai5v5QrtvXnzpuDj4yOEhYUZLRGWnZ0teHt7C126dDFsc4X3K2oeLpvVPK74nOMMuGyW9TT0GZCapzHPn5bmJgiCYL1wnaxh9uzZWLduHcaNG4fRo0fj3LlzWLNmDQYPHozvv/8e7u6OP/Bg69athiGxa9euRWVlJeLj4wEA7du3R1xcnKHsTz/9hGHDhqFt27aYPXu24Zjr16/jyJEjuPPOOw1l8/PzER0djfz8fMyfPx9hYWHYvn07Dh48iM2bN+Mf//iHDVups379esyaNQvt2rXD66+/bvLzad26NUaOHAkAuHjxIgYMGACpVIp58+bB19cXmzZtwv/+9z/s2bMH9957r+G4yspK3H333fjll18wZ84cdO/eHXv37sUXX3yBl19+Ga+//rpN26k3btw45OTk4J577kH79u1RXl6OtLQ0fPrpp1AoFDh48CCioqJcpr3mZGZmokOHDpg5c6bRMlqu0OZ58+bh6NGjGDZsGNq1a4eSkhLs3bsXBw4cwF133YUDBw4Y5h27QnsBYOPGjXj22WfRs2dPTJs2DZWVlXj33XeRk5ODr7/+GqNGjQLg/O9X1DT//e9/8csvvwDQjUo5f/684ffV398fs2bNsmf1nI4rPOc4g8Y8i1HTNOYZkJqnMc+fFme1UJ2sRqvVCm+//bbQpUsXwdPTUwgNDRXmzZtn1HPi6GJjYwUAol+xsbEm5X/66SfhnnvuEby9vQWlUimMGjVKSEtLEz33tWvXhCeeeEIIDAwUZDKZ0KdPH+HTTz+1covMmzJlitm2irX37NmzwoMPPij4+fkJcrlcGDx4sLB//37RcxcUFAgzZ84UVCqV4OnpKXTv3l1Yu3atUa+fre3YsUN44IEHhLZt2woymUzw8vISunbtKsyaNUu4fPmySXlnb685GRkZAgBh5syZJvucvc1ffvmlMGrUKCE0NFSQyWSCQqEQ7rzzTmHp0qWCWq02Ke/s7dX7/PPPhbvuuktQKBSCUqkURo4cKfz4448m5Zz5/Yqapq73efb6NZ4rPOc4g8Y+i1HjNfYZkJqusc+flsQeaiIiIiIiIqIm4JgZIiIiIiIioiZgQE1ERERERETUBAyoiYiIiIiIiJqAATURERERERFREzCgJiIiIiIiImoCBtRERERERERETcCAmoiIiIiIiKgJGFATERERERERNQEDaiIiIiIiIqImYEBN5KLc3Nzw1FNP2bsaTVJWVoY5c+agXbt28PDwQEREhL2r1GgREREYOnSozY8lIiIiItthQE3UCAcPHoSbmxvc3NywadMm0TJubm4YM2aMjWvmWlasWIG1a9di0qRJ2LJlCxITE+1dJVGLFi3Cl19+ae9qEBEREZGdMKAmaqJFixZBrVbbuxouaf/+/ejduzfeeustxMXF4aGHHrJ3lUQtXrzYbEB9/vx57Nu3z7YVIiIip9GvXz/07t3b3tVokNOnT0MikWD//v1We43k5GR4enri999/t9prEFkDA2qiJujXrx+ys7MdtufU1qqqqlBWVmax8/35559o1aqVxc5nSRqNBuXl5fWWk8lk8PT0tEGNiIjI2Wi1Wpw+fRp9+vSxd1UaZP78+Rg8eDBGjhxptdcYO3YsevfujRdeeMFqr0FkDQyoiZpg4sSJiI6OxooVK5Cfn19veXPzmbds2QI3NzccPHjQsG3RokVwc3PD2bNnMXfuXKhUKigUCgwfPhznz58HAOzevRt9+/aFXC5HREQENm7caPa1U1JSMHDgQCgUCrRp0wb//Oc/UVJSYlKuqKgIL7zwAjp16gSZTIbg4GA89thjuHTpkmidU1JS8Prrr6Njx47w8vLCzp0767wGWq0WK1asQI8ePeDl5YXAwECMGzcO//vf/0zOnZGRgUOHDhmG1y9atMjseTMzMw1ltm/fjjvuuANeXl5o164dFi1aBK1Wa1T+t99+w//7f/8PPXv2hI+PDxQKBaKjo7F582aTc+t/FmfOnMH8+fPRtm1beHl54dNPP4WbmxsA4KOPPjLUU78NMD8P+tSpU5gwYQJat24NmUyG8PBwPPbYY/jjjz/qvH4A8PPPP2PcuHEICgqCTCZD165dsXTpUpM2njlzBhMmTEBYWBhkMhnatGmDYcOGYc+ePfW+BhERWd/Zs2dRUVHhFAF1amoq9u/fj/nz51v9tf75z3/iiy++wJkzZ6z+WkSWIrF3BYickZubG/79739j5MiRWLp0Kd555x2Lv8aUKVOgVCrxr3/9Czdu3MDKlStx77334vXXX8fzzz+P5557DtOmTcP777+PZ599Fj169MCQIUOMznHy5El89tlnmD59Op588kkcOHAAa9aswenTp7F//364u+s+UysqKsLdd9+NK1euYNq0aejZsydycnKwYcMG3HXXXfj555/Rvn17o3MvWLAAGo0G06dPh6+vL7p27VpneyZPnoydO3di5MiReO655/Dnn39i/fr1GDRoEA4fPow+ffrgb3/7G7Zu3Yp58+YhKCgIL730EgDgjjvuqPd6ffXVV7h06RJmzpyJNm3a4KuvvsLixYtx+fJlfPjhh4ZyBw8exA8//IAxY8agQ4cOKC0txa5duzB9+nTcuHEDCQkJonWXy+WIj4+Hm5sb+vTpg61btyIuLg4xMTF45pln6q0fAHz99dd4+OGH4e3tjaeffhqdOnXCn3/+ie+++w6nT59Gx44dzR67Z88ejB8/Hp06dUJ8fDxatWqF1NRUvPrqq0hPT8euXbsAAPn5+bjnnnsAADNmzED79u2Rl5eHn3/+GceOHcMDDzzQoLoSEZH1pKenA4BTBNQbNmxAUFAQRo8ebfXXGj9+PJ577jkkJSVh7dq1Vn89IosQiKjBDhw4IAAQ3nrrLUEQBGHkyJGCTCYTMjMzDWUACA888IDRcQCEKVOmmJzvww8/FAAIBw4cMGx77bXXBADCmDFjhOrqasP21atXCwAEHx8f4cqVK4btubm5gkwmEx599FGT1wQgfPHFF0bb58yZIwAQtm/fbrTNy8tLSE9PNyqbmZkp+Pj4GNVdX+cuXboIpaWl4heqln379gkAhIkTJxq1KT09XfDw8BCGDBliVL59+/ZCbGxsg86dkZEhABDc3d2FtLQ0w/bq6mrhoYceEgAIqamphu0lJSUm56iqqhJiY2MFX19fobKy0rBd/7OIjY0VNBqNyXHmfq5ibSgtLRWCgoKE4OBg4dq1a6J1MHesWq0WWrduLcTExJjU45133jH6HUpOThYACDt27BCtFxER2d/cuXMFAEJBQYHR9gsXLghTpkwRQkNDBalUKnTs2FF4++23je6desePHxfuv/9+wcfHR/D39xf+8Y9/CIWFhYJcLheeeOIJi9RTo9EISqXS5BlDT3+fTElJER599FEhJCREkMvlQv/+/YVDhw416TXvvfdeoU2bNs2pNpFNccg3UTOsWLEClZWVeOWVVyx+7jlz5hgNIY6JiQEAPPjggwgPDzdsDw4ORteuXUWTeHTt2tUkodeLL74IAPjiiy8AAIIg4JNPPsHf/vY3hIWFIS8vz/Dl7e2NgQMHiibXeu6556BQKBrUFv1rvfTSS0ZtuvPOO/H3v/8dP/74I27cuNGgc5kzcuRI9O3b1/C9m5sbnn/+eaPXBwBvb2/D/8vLy5Gfn4+bN29i1KhRKC4uxm+//WZy7rlz50Iiad6Anu+++w55eXmIj49HWFiYyX79aAEx+/fvx/Xr1zF16lQUFhYa/Yz0PQb6n5Gfnx8A4JtvvkFxcXGz6kxERNaRnp6ODh06wN/f37Bt3759iIqKwk8//YRZs2ZhzZo16NatGxYsWGAYsaX3zTffYMiQIbh48SJee+01LFmyBGlpabj//vuhVqst1vOdlpaGkpISDBgwQHT/qVOn4OHhgcceewxqtRqvv/465s+fj7Nnz+L+++9HTk5Oo19z0KBB+PPPP0Xvx0SOiEO+iZqhT58+eOyxx/DJJ59gwYIFDRqa3FCRkZFG3wcEBAAAOnToYFI2ICAAly9fNtnevXt3k20qlQr+/v6GudE3btxAfn4+9u3bh+DgYNG6iAV7Xbp0qb8Rf8nIyIC7u7tofXr27Ikvv/wSGRkZZl+/IcTO3aNHDwAwmgdeUlKCRYsWYefOnbh69arJMQUFBSbbGtNWc/QfeDTlIefcuXMAgGnTppktc/36dQBAbGwsnnzySWzZsgWffPIJ+vfvjxEjRmDSpEmG60FERPaVnp6OYcOGGb7PyMjA+PHj0bdvX3z33XeGD6xnzJiBgQMH4p133sHLL78MhUKBP//8E48//jj69euHffv2GT4ojouLQ0REBADLDSU/e/YsAJidkpSeno6qqiq8+OKLRnOsO3XqhKlTp2Lnzp345z//2ajX1L/WmTNn0K1btybWnMh2GFATNdMbb7yBzz77DC+88AK++eabRh1bO5lUTR4eHo3aLghCo1679nEjRoxoVGbNhvZOO5rHH38cX3/9NZ555hn87W9/Q2BgIDw8PLB3716sWrUK1dXVJsfYu636n9Fbb72FqKgo0TKhoaGG/3/00UdYuHAhvvnmGxw+fBgrV67E0qVLkZiYiFmzZtmiykREZEZmZiYKCwuNgt433ngDZWVl2Lx5s8k9Z+jQoTh27BguX76M7t27480330RxcTHef/99o1FX/v7+iIqKwqFDh8zeKxpLP3pMbOWNgoICXLlyBUOGDDFJWDZ8+HBDWxsrMDAQAJCbm9voY4nsgQE1UTN16NABzz33HFavXm2UrbumVq1a4ebNmybba2fQtjR9z2ZNOTk5KCwsNPSABwcHw9/fH8XFxRgxYoRV6hEZGYnq6mqcO3fOpBdf/+m3WM97Y4i1VX9ufVsLCwvx9ddfIy4uDklJSUZlU1JSmvX69dH3cqenp2PUqFGNOrZz584AdMPVG/oz6tWrF3r16oWFCxeisLAQd911F1588UXMnDnTaNg9ERHZ1qlTpwDc7kWurq7GF198gWHDhokm+NR/qOrt7Q1BELBjxw4MGTLEbO9t+/btDaPadu7ciTVr1iA9PR1BQUEmAa5Wq0V8fDy2bt2K6upqPPzww1i/fj28vLwAwHC/EPvQXt+Op59+2mSf/sNppVIJANi1axemTp1q2KdWq40+DHj77bcxY8YMo9fivYqcBedQE1nAyy+/DF9fX8Oc3dq6dOmC1NRUo7WaCwoKjLJPW8P58+fx5ZdfGm1bsWIFABjmVru7u2Py5Mk4fvw4PvvsM9HzNPdTYv1rLV++3OimfPr0aXz11VcYMmRIs4Z7A7p5xidPnjR8LwgC3nzzTaPX1/fu134wyMnJEV02qz5KpVL0gxIxo0aNQlBQEFauXCk6p6yuEQb33nsvQkJC8O9//1v09dRqNW7dugUAuHnzpkkvu7+/Pzp06ICysrIGraFNRETWUzugvnbtGgoKCsxOyzl9+jQCAgIQHh6O69evIzs7G9HR0SblBEHA2bNnjXq+AwICMGvWLCxdulT03MuWLcOBAwfwv//9D7///jvOnj1r9CyjvzeL3Xv0mcr79etnsu/YsWNGbZwwYQJKSkpQUlKC//znP/D39zd8X1JSYgima75Wc58LiGyFPdREFhAUFISFCxeaTU42a9YsPPHEE7jnnnsQFxeHwsJCbNq0Ce3bt8eff/5ptXr17t0bTzzxBKZPn47OnTvjwIED+OyzzxAbG4tJkyYZyi1duhRHjhzBxIkTMXHiRAwcOBCenp64fPky9u7di+joaGzZsqXJ9Rg5ciQmTpyITz/9FAUFBRgzZoxh2SwvLy+sWbOm2W298847cc8992DmzJlQqVRITk5GSkoK4uLiMGjQIACAj48PRo0ahW3btkEul6N///64fPky3nvvPXTo0KFBa4rXNHDgQKSkpGDFihVo164d3Nzc8Oijj4qWVSgUeP/99/HII4+gV69ehmWzbty4ge+++w7z58/H2LFjRY/19vbGxx9/jIceeghdu3bFtGnT0KlTJxQWFuK3337D7t278cUXX2Do0KH4+OOPsWrVKowbNw6dOnWCVCrFoUOH8N1332HixImQy+WNu7BERGRR6enpCA4ONiSo1PfEenp6mpS9evUq9u/fj7i4OLi5uRk+mBfLbbJ3717cuHHDaLj3yJEjAcDkw3W9zZs348033zTUZdGiRZgwYQJWrVoFDw8P9OrVCwBEE5/qA2qxpJ3vvPMOWrVqJToi6+TJk3XO8b548SIAGF6byNExoCaykPnz52PDhg2ivY+TJ09GdnY21q1bh/nz5yMyMhKvvvoq3N3dDZ/iWkPfvn3xzjvv4KWXXkJSUhJ8fX0xa9YsLFu2zOhm7OfnhyNHjmDlypXYuXMnkpOTIZFI0LZtWwwZMkR0OFdjffLJJ+jbty+2bNmC+Ph4eHt7IzY2Fq+//jp69+7d7PM/+OCD6Nq1K5YvX47z588jJCQEr7zyismHHNu2bcOLL76I//73v/joo4/QuXNnLF26FFKp1DAcraE2bNiAmTNnYunSpYYeYnMBtb6OP/74I5YtW4b3338ft27dQuvWrRETE1PvNbj33ntx4sQJ/Pvf/8a2bdtw48YNBAQEoGPHjpg/f75hKP3QoUNx6tQpfP3118jJyYGHhwc6dOiAt99+m/OniYgcwKlTp4wCyrZt28LX1xc//PCDUTm1Wo24uDh4eHggISEBABAeHg6JRGIyxez69euYPXs2gIYnJCssLMTVq1eNAvC+ffvi1q1byMzMRMeOHdGnTx/4+vri6NGjJsfrA+pDhw4ZDVV///33cezYMbzzzjuGId81nTx50mhVjtqOHj2K1q1biw5/J3JEbkJTMxkRETmAzMxMdOjQAa+99hoWLVpk7+oQERGZlZ+fj6CgILzwwgv497//bdj+1ltv4fnnn8cDDzyAMWPGoKioCB988AEuX76MnTt34sEHHzSUffbZZ7Fx40bcf//9GDt2LK5fv46kpCQolUr8/vvvuHLlitHymoCuh3ru3LlGc6ivXr2Kdu3aIScnB23atAEAaDQaeHp64tSpU4ZAe+rUqfjyyy/x559/QiaTAQAqKiqgVCrRu3dvnD9/HnPnzkVERAQOHjyI7du3Y+LEidi+fbvoPOjQ0FCsXLkSjz32mMm+kpIStG7dGtOmTcPatWubfJ2JbIk91ERERERENqCfP107C/eCBQsAAElJSdi3bx8CAwMxbNgw7N69Gz179jQqu2rVKkgkEuzevRs//PAD+vfvjw8//BDr1q1DWVmZSTBtjo+PDwCgqKjIEFAXFhYa7QOA5557Dlu2bMHXX3+Nhx9+GIBuXrdWq8X8+fNRWFiIlStXIjs7Gx07dsSqVaswe/Zs0WA6JycHOTk5ZnuoP//8c5SVleHZZ59tUBuIHAEDaiIiIiIiGxgxYoRoEko3NzcsXLgQCxcurPccCoUC69evx/r16w3bbty4gX379mHatGkNrou/vz/Cw8ORnp5uGF596tQp+Pj4GNazBoABAwbg3nvvRWJioiGg1g/3vuOOO3DHHXc0eErRyZMnoVQqDStf1LZ69WqMGzeO86fJqTDLNxERERGRE9BoNNBqtUbbysvLMWXKFAiCgLlz5xrtq6qqQnl5OTQaDQRBQHl5OSoqKgz7n376aSxfvhzZ2dm4ceMGFi1ahKeeesqwKobeypUrkZqain379gHQBd5SqdTs0l3mnDx5ElFRUaK9119++SVOnz5tWI2EyFmwh5qInFpERESdS04RERG5iiNHjuDpp5/GY489hnbt2uHatWvYtm0bMjMz8e6775ok8tq6datRwk25XI727dsb5lL/61//Ql5eHnr27Inq6mo88sgjogFtz549jQJ5fa+2WGbyutSVkOyhhx5CZWVlo85H5AiYlIyIiIiIyAn8/PPPeP755/Hrr7+iqKgI/v7+uPvuu7FgwQLExMTYpA6CIMDPzw9jxozBf/7zH5u8JpEjY0BNRERERERE1AScQ01ERERERETUBAyoiYiIiIiIiJqAATURERERERFREzCgJiIiIiIiImoCBtRERERERERETcCAmoiIiIiIiKgJGFATERERERERNQEDaiIiIiIiIqImYEBNRERERERE1AQMqImIiIiIiIiagAE1ERERERERURP8f7nQC72F+GqVAAAAAElFTkSuQmCC" }, "metadata": {}, "output_type": "display_data" } ], "execution_count": 14 }, { "metadata": { "ExecuteTime": { "end_time": "2025-05-31T11:15:14.440909Z", "start_time": "2025-05-31T11:15:14.387047Z" } }, "cell_type": "code", "source": [ "coords = [[-1.5495, 1.5181, -4.9033],\n", " [ 1.8002, -0.5530, -3.8560],\n", " [-1.9474, 0.6230, -4.3363],\n", " [ 1.7321, -0.6857, -3.8155],\n", " [-1.2961, 1.6802, -4.8287],\n", " [-1.2839, -2.1370, -4.4393],\n", " [-1.4424, -1.7286, -4.2799],\n", " [ 0.1110, -2.0428, -4.0486],\n", " [ 1.7312, -0.6954, -3.8144],\n", " [ 1.7297, -0.6824, -3.8322],\n", " [-1.8395, -1.7283, -3.9620],\n", " [ 1.7296, -0.6818, -3.8273],\n", " [ 1.8919, -0.8495, -3.5727],\n", " [ 2.1612, 1.0300, -2.7974],\n", " [-0.8509, 2.2663, -2.4021],\n", " [ 2.4569, 0.3862, -1.1353],\n", " [-2.3553, 1.1776, -1.1737],\n", " [ 1.9910, 1.1444, -1.0023],\n", " [-2.5883, 0.0416, -0.7842],\n", " [-2.5706, -0.4352, -0.3717],\n", " [-1.0482, 1.9849, 2.2524],\n", " [ 0.2583, -3.0923, 1.6670],\n", " [ 0.2733, -3.0734, 1.6618],\n", " [ 0.2736, -3.0727, 1.6619],\n", " [ 0.2721, -3.0689, 1.6643],\n", " [ 0.2788, -3.1115, 1.6720],\n", " [ 0.2725, -3.0669, 1.6684],\n", " [ 0.2710, -3.0689, 1.6641],\n", " [ 0.2585, -3.0979, 1.6599],\n", " [-1.0291, 2.0454, 2.2981],\n", " [-1.0465, 1.9903, 2.2726],\n", " [-1.0302, 1.9728, 2.2429],\n", " [-1.0280, 1.9718, 2.2419],\n", " [-1.0539, 1.9851, 2.2746],\n", " [-2.5836, -0.1239, 2.0100],\n", " [ 0.6796, 2.2723, 2.5656],\n", " [-0.1359, 2.5075, 2.0266],\n", " [-1.0477, 1.9909, 2.2711],\n", " [-1.0507, 1.9939, 2.2730],\n", " [-1.0606, 2.0036, 2.2905],\n", " [-1.0532, 1.9953, 2.2756],\n", " [-1.0605, 1.9991, 2.2831],\n", " [-1.5282, -1.5603, 3.4762],\n", " [-2.2670, -0.2648, 2.6845],\n", " [-1.9903, -0.6650, 3.4736],\n", " [-1.4865, -1.2766, 3.9683],\n", " [ 1.7136, -0.7725, 4.5989],\n", " [ 1.8753, 1.3465, 4.3027],\n", " [-0.5179, 1.5121, 4.1774],\n", " [-0.8766, 0.8558, 4.4702],\n", " [-0.0182, -1.2837, 4.9791],\n", " [-0.1444, 1.1217, 4.6578],\n", " [ 1.7559, -0.6154, -3.8510],\n", " [-1.2387, -1.9353, -4.9707],\n", " [ 1.7268, 1.1658, -4.3823],\n", " [-1.4515, 1.6441, -4.8593],\n", " [-1.3179, 1.6815, -4.7743],\n", " [-0.1045, -2.3308, -4.3743],\n", " [-1.8832, -1.3721, -4.3317],\n", " [ 1.7287, -0.6889, -3.8307],\n", " [-0.6607, 2.0334, -4.5526],\n", " [ 1.7270, -0.6859, -3.8331],\n", " [ 1.7289, -0.6878, -3.8302],\n", " [ 1.7307, -0.6913, -3.8281],\n", " [ 1.7300, -0.6917, -3.8338],\n", " [ 1.7237, -0.6834, -3.8404],\n", " [ 0.9324, 2.1103, -3.8345],\n", " [ 0.1314, -2.6416, -3.7561],\n", " [ 0.4108, 2.4644, -3.4821],\n", " [ 1.8581, 1.6913, -2.9619],\n", " [-0.6988, -2.8416, -3.4301],\n", " [-2.4096, 1.0791, -3.0608],\n", " [-1.9346, -2.3986, -3.2612],\n", " [-2.8202, -0.3674, -2.5191],\n", " [ 1.5948, -2.3387, -2.6920],\n", " [-2.3447, 1.4450, -2.6945],\n", " [ 1.8883, 1.8531, -2.4968],\n", " [-2.7066, 0.8713, -2.0058],\n", " [ 1.2271, -2.0250, -1.7775],\n", " [-0.4909, 2.5491, -1.7718],\n", " [-2.4650, 1.2539, -1.6431],\n", " [-2.4215, 1.2844, -1.5542],\n", " [-2.9195, -0.0815, -1.5910],\n", " [-0.2205, 2.4693, -1.3814],\n", " [ 0.1663, 2.6569, -1.5103],\n", " [ 2.1484, -1.5973, -1.3556],\n", " [-2.2260, 1.4108, -0.9103],\n", " [ 1.9613, -1.7548, -1.1233],\n", " [-2.4416, 1.0491, -0.3177],\n", " [-0.2563, 2.7018, -0.8662],\n", " [-2.7791, -0.5757, -0.5431],\n", " [ 0.4024, 2.6131, -0.4431],\n", " [ 2.5178, 0.8502, 0.4847],\n", " [-2.6602, 0.8035, 0.3658],\n", " [ 0.2553, -3.0933, 1.7118],\n", " [-2.5910, -1.0201, 0.2433],\n", " [-2.7835, -0.8216, 0.2306],\n", " [ 2.5159, -0.1739, 0.9913],\n", " [ 0.2363, -3.0927, 1.6966],\n", " [-2.7367, -0.6971, 0.3999],\n", " [-2.7609, -0.3865, 0.7086],\n", " [-1.6522, 1.8659, 1.7182],\n", " [ 0.2578, -3.0862, 1.6667],\n", " [-0.2298, 2.6499, 1.5963],\n", " [ 0.2508, -3.0918, 1.6665],\n", " [ 0.2482, -3.0926, 1.6696],\n", " [ 0.2737, -3.0784, 1.6605],\n", " [ 0.2481, -3.0917, 1.6644],\n", " [ 0.2647, -3.0850, 1.6596],\n", " [ 0.2623, -3.0884, 1.6588],\n", " [-1.4646, 1.8452, 2.0915],\n", " [-2.2643, -1.6206, 1.0842],\n", " [ 0.2301, -3.1009, 1.6605],\n", " [-1.4628, 1.8018, 2.2425],\n", " [ 0.2339, -3.0795, 1.6793],\n", " [-1.0385, 1.9833, 2.2603],\n", " [-1.0577, 1.9904, 2.2839],\n", " [-1.0558, 1.9922, 2.2834],\n", " [-1.0527, 1.9960, 2.2797],\n", " [-1.0536, 1.9928, 2.2801],\n", " [-1.0539, 1.9982, 2.2807],\n", " [-1.0590, 1.9991, 2.2892],\n", " [-1.0658, 2.0011, 2.3000],\n", " [-1.2474, 1.8863, 2.3004],\n", " [ 2.1478, 1.7096, 2.9009],\n", " [-1.0622, 1.9916, 2.2844],\n", " [-2.3035, -1.0750, 2.2711],\n", " [-1.0710, 1.9968, 2.3003],\n", " [-2.6559, -0.5099, 2.6154],\n", " [-2.5435, -0.7722, 2.6196],\n", " [-1.7327, -1.5407, 2.8306],\n", " [ 1.4247, 2.1963, 3.1533],\n", " [-2.4239, -0.7195, 2.7774],\n", " [ 1.0783, -1.5793, 3.5572],\n", " [-1.0719, 2.0107, 2.3254],\n", " [-1.5413, -1.5747, 3.8089],\n", " [-1.9877, 0.3660, 3.7720],\n", " [-0.8537, -1.5105, 4.3160],\n", " [ 1.2687, -1.1840, 4.4178],\n", " [-1.1016, 1.9143, 2.5185],\n", " [-0.5844, 1.9916, 3.0937],\n", " [ 0.4118, -1.4831, 4.8097],\n", " [-1.9231, -0.8451, 4.5775],\n", " [ 1.6286, 1.5225, 4.2854],\n", " [ 0.6973, -1.3760, 4.7879],\n", " [-0.7651, 1.6440, 3.5630],\n", " [-1.6317, -0.8411, 4.5377],\n", " [-1.3141, 0.5300, 4.4915],\n", " [-0.2546, -1.3260, 4.7748],\n", " [ 0.8105, -1.3046, 4.9323],\n", " [-1.2935, -1.0732, 4.7983],\n", " [ 1.1187, 1.4635, 4.6111],\n", " [ 0.1263, -1.4405, 5.2035],\n", " [-0.7197, 0.8044, 4.7162],\n", " [-1.2921, 0.2434, 4.8551],\n", " [-1.4319, 1.6379, -4.9875],\n", " [-1.3789, -1.7148, -4.7961],\n", " [-1.0506, -1.9610, -4.9114],\n", " [ 1.8139, -0.3751, -3.9478],\n", " [-0.4422, 2.0030, -4.6756],\n", " [-1.5153, 1.4905, -4.8983],\n", " [-0.7448, -2.0965, -4.8363],\n", " [ 1.7369, -0.6929, -3.8165],\n", " [ 1.1666, 1.8592, -4.3868],\n", " [-1.5347, 1.4869, -4.8752],\n", " [ 1.7298, -0.6822, -3.8200],\n", " [ 1.7221, -0.6895, -3.8375],\n", " [ 0.5449, 2.1305, -4.2536],\n", " [ 1.8106, -0.5354, -3.8379],\n", " [ 0.4226, 2.2470, -4.3040],\n", " [ 2.0053, -0.0148, -3.8170],\n", " [ 1.7022, -0.7035, -3.8582],\n", " [ 1.9207, -0.2926, -3.7746],\n", " [-2.5486, 0.5570, -4.0015],\n", " [ 0.4743, -2.4599, -3.9817],\n", " [ 1.7211, -0.6852, -3.8501],\n", " [-2.7976, 0.2078, -3.4566],\n", " [ 1.9234, 1.6622, -2.9035],\n", " [ 2.6970, 0.6452, -1.9762],\n", " [ 0.8624, 2.4908, -1.7694],\n", " [-2.7716, 0.7279, -1.8379],\n", " [-2.5015, 1.3891, 0.7576],\n", " [-2.5478, 1.2249, 1.2333],\n", " [ 0.2852, -3.1159, 1.6838],\n", " [ 0.2703, -3.0723, 1.6628],\n", " [ 0.2747, -3.0758, 1.6664],\n", " [ 0.2716, -3.0663, 1.6699],\n", " [-1.0502, 1.9967, 2.2694],\n", " [-1.0356, 1.9797, 2.2523],\n", " [ 2.3012, 1.7356, 2.6705],\n", " [-1.0417, 1.9858, 2.2603],\n", " [-2.5048, 0.7891, 2.2492],\n", " [-1.0761, 1.9841, 2.2889],\n", " [ 0.2233, -2.7180, 1.8989],\n", " [ 2.0025, 1.5902, 3.8203],\n", " [ 2.3503, -0.5705, 4.4868],\n", " [-1.9414, -0.4823, 4.0726],\n", " [ 0.5874, -1.5055, 5.0040],\n", " [ 2.0987, 1.1740, 4.4301],\n", " [-1.5761, -1.0223, 4.9043],\n", " [ 0.7406, -1.4267, 5.0236],\n", " [ 1.1782, -1.2781, 4.8671],\n", " [ 2.3957, 0.4659, 4.7731],\n", " [-0.7265, 1.0960, 4.3860],\n", " [-1.6559, 0.0731, 4.6102],\n", " [-1.4022, -0.9981, 4.6817],\n", " [ 0.4934, -1.4326, 5.1184],\n", " [ 0.8276, -1.3685, 5.1070],\n", " [-1.5080, 0.0846, 4.9621],\n", " [-1.5497, -0.0830, 4.8425],\n", " [ 1.5397, -0.8816, 4.9830],\n", " [ 2.0744, 0.9103, 4.7717]]\n", "coords = torch.tensor(coords)" ], "id": "26173542a2a972b6", "outputs": [], "execution_count": 9 }, { "metadata": { "ExecuteTime": { "end_time": "2025-05-31T11:15:30.659463Z", "start_time": "2025-05-31T11:15:30.464237Z" } }, "cell_type": "code", "source": [ "fig, ax = plt.subplots()\n", "ax.scatter(coords[:, 0], coords[:, 2], s=10, c=coords[:, 1], cmap=\"viridis\")" ], "id": "5430f012112dae35", "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGhCAYAAABLWk8IAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAaWtJREFUeJzt3Xd4VGXax/HvOVMyk94TAiGh994RRBEb2JXF7tqwY9/VXRuuu2yz664u6mvv2Dv2gghSDb2TBBLSe6ad5/0jEAgJkDZzZpL7sxd7eZ7MnPNLIDP3POcpmlJKIYQQQggRRHSzAwghhBBCHEwKFCGEEEIEHSlQhBBCCBF0pEARQgghRNCRAkUIIYQQQUcKFCGEEEIEHSlQhBBCCBF0pEARQgghRNCxmh2gNQzDYNeuXURFRaFpmtlxhBBCCNEMSikqKipIS0tD1w/fRxKSBcquXbtIT083O4YQQgghWiE7O5tu3bod9jEhWaBERUUBdd9gdHS0yWmEEEII0Rzl5eWkp6fXv48fTkgWKPtu60RHR0uBIoQQQoSY5gzPkEGyQgghhAg6UqAIIYQQIuhIgSKEEEKIoCMFihBCCCGCjhQoQgghhAg6UqAIIYQQIuhIgSKEEEKIoCMFihBCCCGCjhQoQgghhAg6UqAIIYQQIuiE5FL3QghxJEoplq7ZSV5hOb27JzGwZ6rZkYQQLSAFihCiw1FKcd9Tn/HZonX1bdfMPIrfnzbOxFRCiJaQWzxCiA7nhxVbGxQnAP996yd27i4xKZEQoqWkB0UI0eHk5JeiaxqGUg3acwtK6d4lzq/XXrYum++WbSbMZuXUowf79XrVtW525JUQG+mkS6Ls7C46FilQhBAdTkaXuEbFiQakp/i3OPls0TrufepTLBYdlOLNhSuYf8959O2e1O7XWr1pFzc//C4V1S4Azp46jD9cNLVZ29gLEQrkFo8QosOZOKwHZx47tEHbTRceQ7eUWL9e97HXvgPA5zPwGQq318dz7y1u9+t4vD5uffQ9qmrc9W0Lvl7FJwfd1hIilEkPihCiw9E0jT9eehwzjh5IXmEFvbol0LNbot+vW1ZZ2+DYMBQlFdVtOueaLbtZuTGXmEgn08b2xRFmI6+ovNG1rBadNVt2M+OogW26nhDBQgoUIURIUUo16zaGpmkM6Z3GkN4BCLXXsL5dWbkhB5+h9maAEf261X89O6+Ex1/5jpz8UvpmJDHnwmOIj4k45Pne+2Y18/7vy/rxNK9+uoz5d59LXFR4ozE2hlIkxB76XKFKKUVhRRV2q5WYcIfZcUQAyS0e0aFUe9y8s3kNL6xdzobiArPjiHZUWlnDTY+9y4SrH+WYG57k5c9/NTtSI/dddRI9uibUHx87ug+XnV43tbmkvJrZ973GohVb2ZZTxJc/b+Dav7yJy+1t8lw1Lg//evFrgPpCZFtuEW8uXEFkeBjXnHMUUNdzomkaaYnR/O644X787gKvsLyK8x5/jWP/Mp+j7v0vd772GR6fz+xYIkCkB0V0GGWuWs766BU2lxahAbqm8fixpzGjRz+zo4l28KenP2bZhmx8hqKyxsUjb31PYmwEJ40bYHa0esnxUbz0l4vIKyonzGZt0KPxw7ItlJbX1B/7DMWOXcX8tmkXowd1b3SukvJqvD6jQZuua+QVleP1+khNjOb0Y4bg8fjo1z2ZUycPIjI8zH/fnAnufP0z1uXuqT/+aPk60hNiuPaECSamEoEiBYoIWT9v2MGyzTnERDg5fexAnl67hG1lxQAowKcUt3//CSdl9MGiS2dhKHN5vCxZt7NBm6bBdyu2BFWBAnVFRFpSTKN2n2E08ei6AbVNSYqLJCo8jMoaF/vu5Hh9Bj27JnDNg2+zYmMumqahlKJHt4QOV5wA/Lp1/+0yqPu9/mVLNtciBUpnIAWKCEkvfbucf7/3HRZdRynFq9+voPuEeNRBj6vyeih3u4hzOE3JKdqHRdex6FqDNytN07DbQuclbMKwHjjDbLg8XgxDYdE14mLCGdy7S5OPt1ktzLvhVG5/5H1qXB4Apo7pg9VmYeXGXKBufAbAE2//wIwJA0iMjfTr91BeVcuabXmE2a0M7dkFq9Xi1+tFOcMortzf66RrGrHh8rvcWYTOb7cQe1W7PDz0wfdA3adSn12xnTJcuxTKoG7BC0BHI87hJDasZQPrtpeXcMfiT9hYWkj3qDj+Ou5EBsWntPN3IVrCatE597iRvLJwGVD3RqUBM48dZm6wFkhNjObxP8/kH88uZHdBOb3SE/nz7BOJOEzPx5hB3Xn3wcvZtLOAmEgnfTOS+O+7i7BY9Aa3fxSQX1Lp1wJlw849XPvQ2/WzhwZlpvLkrWcT6fRfz83N0ydz95tfYNHrfqktus7s48b67XoiuEiBIkJOWXUNxt5P0p4IRXVa3Qv11qpSbLoFt9ULGjitVv479fQWLVxV4XYx64tXKKytwqcUZe5azv3iVb467UqSw/376VQc3o0zjyY5LpIff9tKpCOMi04azeCeTfc++JvPMPhpxVaKy6rp3yOF/j2aV8AO6t2FF+dd3KJrxUWHM3ZwRv1xn/TERmNTbFYL3Zq4rdSe/jz/k/pF4QDW7cznfx/8zC2zjvHbNc8cM4jk6Ai+ytpCmM3C2WMH0zvV/9PFRXCQAkWEnKToSBKiwimprKEmZe+I/r01iKEUU7v04qKhwxmamEqis2XTLn8tyCG/prL+2KcUFR4X3+7ayu96Dz3MM8WhVNW42Zi9h/AwO33Sk9D11q10qusaF5wwigtOGNXOCVvG6/Vxy7/eZUnWjvq22y6ZyjknjGiX8+/IK+HlT5ZSXlXLyP7dmHnciAY/s2mj+7Lk6J28+/1vANgsOn+58mRiIv1368MwFDt2Fze4hWoYik3Z/p8pd1S/TI7ql+n367QHn+Ejr7YEpzWMeHuU365T4allZ2UJyc4okhwd94OTFCgi5FgtOo9cfhrX/e9dSize+uIE6goKt8/H1PRerTr3npLKJttr3Z5Wna+z27izgOsfXFC/WNnYgd15cM7pOOw2k5O13sc/rGlQnAA89OI3TB3Xj/iY8DadO3dPKZfc9woutwdDKb5Ztpntu0v448XH1T9G0zT+fMnx/G7qcApKK+ndLZHkOP+9GUJdcZgUF0lBaWX9gF2LrtHVz702oSS3upA/rppPbk0hACd3Gcut/Wdi0dp3gP43uzdx4y9vU+vzogE3DzqWq/tPatdrBAuZ2iBC0tDMLnx+75VkRseiH3ALR9c0hiSltvq8rkIvei3Uf1Q0QPNAsjc0PqVsrsjj2/wstlTkmR0FgDv/+xFlVfsHOf66LpvnP15iYqK2y80vw2pp+NJpKEV+UXmbz73gm9W43B58hqovBBZ8vYryqtpGj+2TnsTEIT38Xpzsc8/vT8RqsdR/HkiMjeTq0ycG5Nqh4J7fnmd3TXH98ae7l/BO9g/teo1iVxVzFr+Ny1e3do4CHlrzDT/v2dau1wkW0oMiQlZ4mI35M87gwg/eJr+6rudjXFo3bhx9+CmItW4vOwtLiYtwkBTTsPCIdTqIXGenJsOLz6nQa8G500rKlOAvUJ7d8iXPbPmy/vjKXsdzWa/jDvMM/3J7vOzML2nQZijFhh17DvGM0NCja0KjMSBWi97k1OKWqq51182fPmg+Wo3LQ3SEuauojh+Uwev3XcySdTtw2G0cM6IXUbKyKwA1Phdbq3Y3aNPQ+K1sGzOZ0m7X2VRegMtouLCfRdNYVZzLhOQe7XadYCEFighpfeIT+eaCy1hXWIDDZmNAQlKDHpWDrdq+i+vnv09Zdd0n0kuOHcUtp06uH0g7dWhv0j9dTN7WCnyGquuRyUxlSKY5gzGba11ZToPiBGD+loVMTOpH/+huh3iWf9msFqIjHA0+/Vt0jZT4xp/4t1flsLlyBzG2KEbGDcKi+Xf6aluceNQAflq5lS8XbwDqvqe7rjqJmKi2jwGZMCSTd75ZXX9s0TXSU+JI8vP04ebKSI0jI9W/O0KHojDdhl234Tb23wrWNY1YW/v+vSWGNT6fT6kOOw5FChQR8sJtdkZ16XrEx7m9Xm545n0qavbPRHjhm2UM7JbCySPrVpuNdIbx0q3n8b/PfiG3qIw+aYlceeK4Rl36wWZbVX7T7ZV7TCtQ6sZKTOPOpz4G6tbsiI8O5/JTxzd43Jf5P/HUlldRe3sNBkf35e6BN2DVg7NI0XWNv1w/g9+dOILC0ir6ZSbTNTm2Xc49ZWRvbj7vGJ58+wfcHh+905P4+/WntnpgsQgMXdO5uvcpPLbx3foxJ05LGOdmHNuu1+kVncj5PUfx6tZlWDUdnzIYHNeFU9IHt+t1goWmlDp4baugV15eTkxMDGVlZURHR5sdR/jR6oLdzFv6HfnVlYxK7spd444lpoXrmuyzLb+Y0//+QoM2q0Vn1lHD+OOZx7Q9rIlWlWzn6qVPNWp/aszVDIvLDHygA2zYsYdf1u7AGWbj+LH9iD1gtkmlt5pLl/wBg/23TDQ0rug5i5NSjzYjblAwDIXb48URZt5g4iXF3/B9wcd4DQ8j4o5iWsrZQd2zdbBN+YX8vHknTruNEwb3Icbp/9tRvxStY2nRBsKtYcxIG0+Ko/17m5RSfJq7lrWleaQ6o5mZOYIwS+j0NbTk/Tt0visR1JRSvLF4NQt/24TDZuWCo0YwsW/GkZ94GNvLS5j58Wu4DR+GUmwvL2FLWRFvn3LBYW/jHEpcpJOD7+4bhiI+sm0zL4LB0NgMzk4fz4LsxfVtZ6ePN704AeiXkUy/jOQmv1boKm5QnEDdp9H82s690aOua6YWJ8tKfuDN7P0F78L8BXgMN6ekXWhappb4dv1W5rz8IT6lUErx368X88Y155EU7d9bIeMSBjAuwb9bL2iaxvRug5jebZBfrxMMgrvfWoSM/329hAfe/ZpfNmfz/fptXPXMOyzauOPITzyM97esw7O3OIG6e63L9uzisw0bWnW+2AgnV51Yd3vBquvomkZafDSzjgr99U00TePW/qfz+KgruH3AGTw+6gpu7X+62bGOKCksAZvW8HOST/no6mz9TCzRdr8Ufd2obXHRVyYkaZ27F3yBzzDqtwIoqKjiya8XH+FZIthID4poF//33a/1/61U3USEl39c0aZelEPdfbz1lU+oPtXDOWOHtPic1540gQFdk1mxLZe4yHDOnjCY6AB0/QaCpmmMTujN6ITeZkdptgirkxv6XMyjm57Hp+p6UsbGD+PYZNkMTrSO12dQdMDUdqjbOTq3pO3TwEVgSYEi2oXb62twrFTdDrRtcXJmX55Y9TO+fYWKAt0Fmhv+8u7XnDysHxFh9haf99ghvTh2SOOF3Co8tdy/8mN+3LOFaJuDOQOnMqObeYPPPIaX7VV7sOkWMsKTW7Rkfyg5KnE0vSIz2Va5k2hbFAOje3fY7zVUjIk/hq1Vaw9o0Rib0L4DPv3FatHJTIxjZ1Fpfe+rrmkM6JJkcrLWUUrx/up1vLd6LbquMWvkUE4c0MfsWAEhBYpoF8cN6s3nqzfWvyAAHD+kbb9E/eKTeOHEmVz3xQeUumvQazTC8i1oaHgNg8KK6lYVKIdyy5K3+blgKz6lKHXXcNvSBcTanRyV3LpVadtid00xNy+fT05NEQCj4nrx9+GX4rS03/cbTFIdiaQ6ZI+VYDEmfgo+5eG7vYNkR8ZN4oTUmWbHarYHz53OFc+9Q0l1XU/KiIw0rp46/gjPCk6vLVvN3E/333L7aetO/n3GyZw6pL+JqQJDChTRLuaeMw2Ar7I2Y7Na+P3Ro5g1oe1jO45Ky+DO/kdz/7v7f0E1wGm3kRLTfgPeKjy1/LhnS4M2i6bxSXaWKQXK/Vmvs7t2/yJnK0q28syWz7mh76kBzyI6p/EJ0xifMK3Zjy8ur+aLZRuo9XiZODCTvt3M67EYkJbMZ7ddyprcfJw2G4O7pWDRAzPkstpbw/9tf4PVpeuItIYzK/00xia0fp+mZ3/+tVHb//2yTAoUIZorPMzOvy6Y7pdznzN2CD9v2snCrM0A2K0WHrpgBg5b+/3z1ZvcL0ML2IvawTZU5NSPyQAwUGSVHX7QcYGrmGXFa7BoOmPihxBrlyn4IjB2FZVz8T9eo6SyGg2NJ9//iX/PPpUpwwJf3O8T5QhjfK/uAb/uo5ueZXXpGgwUpZ4yHtz4NPcMvJlBMf1adT7XQbfPofEt9Y5KChQR9Cy6zsMXnkJWTj6lVTX0T0tq9+mCEVY7M7oN5tOcuhcWHQ2F4qyM9tmhtqXi7JHsqS2tnxKto5Ecduil1DdWbOeerEdxGW4AonZEMG/orXR1pgQgrejsnv74Z8qqalAKFApNwQOvfmlqgWKGSm8VK0uzGrTp6PxUuLTVBcr0gX15cenKBpMGThrYt005Q4VMMxYhQdM0hqSnMrl/D7+tZfDXkafz+97j6ROdzMiE7syfeCHD481ZhfXmfmegoWHRdDRDI6zWwfldDj1I8ektr+M5YJntKm8Nz297JxBRhSCvuG5riH0UUFxRjWGE3DqgbaIf4i21LYO+b5s2mfNGDsFpsxFht3H5hFFcM2lsq88XSqQHRYi9wixWbh9yArebHQSYlDSQ+WNv4MM1K/jipe1UlLq5/NU3uPj0cVz1u6MaveDtcRVhHLAEnYFBXm1hoGOLTmpgRgrLNubUD5K36Bo9uyQEZIn+Km85CoMIS0ybCgGlFIuKvierbBVhljCmJp9I9/DMFp0j3OpkTNxwfi1ZVdeTtLcn9uik1g/QtVss3Dv9OO6dbt7Gn2aRAkWIINU7Mo2fXvuUqvK6nhEFvPD+L/TolsCJRzVcrTIjvCvryrfUr8qqo9MjwpzeH9H5zJ4xnjXb8/h1Yw4AcVHhzLvcP2PS9nEbtbyx4yHWV9QNIu0VOZTzM27HYYlo1fk+2f0eH+5+B23v/5YWL+aP/e9tcZFyQ5/LeGXnO6wuXUuENYKZ6afQL6pz3epqL1KgCBGkCooryStsuLiUxaKzYl1OowLlut4XcE/WoxS662b+pDmTuazH2QHLKjo3p93GUzeew8bcAlxuL327JeH081L9n+16kQ0Vy+qPt1Zm8UHufH7X/aYWn8tQBp/mfQDUjaFRKHQFX+V/xqU9rm7RucIsdi7rcW6LM4jGpEARIkhFhYehaXWL3tVTipjIxivfdnEm8djIu9hQsQ0LFvpF98Cum7eXi+h8dF2jf3rTey75w+bK1fU7YAMoDLZW/taqcxnKwKsaLiypUNT6atuUUbSNDJIVIkhFhIdxyenjgLqeE4uuER3p4JwTm55Z5LQ4GB47gCGxfVtVnCilyCpbzEe7XuDbPe9S7a1sU34h/CnCGoXGgWNONJyW1g2gt+pW+kYOaDDIVaEYHBP6+3SFMulBESKIzZ55FD26JbB8bQ4xe4uTpDj/zGL6Iv91vtmzAB0LCsWS4i+5vvc/CLf6dwdYIVpjWsp5PL/t/voiRaE4IfWCVp/vip7X8czWJ9hYuR6LZuHElFOYlBgay/t3VJo61I5sQay8vJyYmBjKysqIjpbFqIRoq0pvGQ+svbxBm4bOCanncmzyWSalEuLwcqo3saLkWxSKYbGTyYgYcOQnHYHHcGPRrIdYvFG0VUvev039G6iurqZnz55omsb1119vZhTRRm6fj/yKSnyGceQHi6BT7a1o1KahUektMyGNEM3TLbwPp3a9ktO6zm6X4gTAptulOAkSpt7iueeeeygoKDAzgmgH7/22lrs/+RKX10ec08HjZ5/K2AyZ4hpK4uzJhFuiqPFV1g88NPCREd661S+FEKKtTCsTly9fziOPPMLcuXPNiiDawZrd+fzxg8/r94soq3Ux+833KK6qNjmZaAmbbuf3mXc2GGR4TNKZDImZYGIqIURnZkoPis/n48orr+Skk07irLPO4tZbbzUjhmgHS7NzOXAurKEU1W4P6/ILOKpnhsnpREt0j+jLnQOeptidT7gliihbrNmRhBCdmCkFysMPP8z69etZsGCBGZcX7SjaEUZT46yjHGEmpNnvh1Vb+WLpBqy6zumTBzO8T1dT84QKm24nxZFudgwhhAj8LZ5t27Zx7733cs8995CZmdms57hcLsrLyxv8EcHhpP596ZUYj65pWLS6CX/H9u7B4C7m7aL70U9ruPnx9/j8l/V8sngts//5JkvW7TQtjxBCiJYLeA/K1VdfTc+ePbnlllua/Zx58+bJWJUgFW638eYl5/LcL8vYVV5Bv+RELho9HL0Nm3a11VPvLwLqbjeh6u5APfvRYsYO6G5aJiGEEC0T0ALl5ZdfZuHChXz//ffYbM1f6fLOO+9sUNCUl5eTni7d0MEiyhHGjVMmmh2jXlWtu8GxUlBZ7TIpjRBCiNYIWIHicrm45ZZbmD59OqmpqWzevBmA3NxcAMrKyti8eTOJiYnExsY2eG5YWBhhYeaOaRChY+LgTBb+uhHDqBsbo2lw1NCeJqcSQgjREgFbSba0tJS4uLgjPu5f//oXt91222EfIyvJioOtWJvD9pwiuqbGMKBXKnc98yk//bYNDThl4iD+dPE0bFaL2TGFEB1AVun3/Fr8KQqDobHHMjLuRDQTb2uHkpa8fwesByUiIoK33nqrUXtBQQHXXnstJ510EpdffjlDh8rmTKGgxuthe0Ux8Y5wUpxRpmZ58uXveOWDX+uPZxw7mEfmnEGt24uua4TZZMspIUT7+K30O97NebD+OLt6HR7DxfjE001M1TEF7JXbZrNxzjnnNGrfvn07AL169Wry6yL4/FqQzewf36TMXbcV+eX9xnHnsONM+QSxYVt+g+IE4ONvsjjhqP6MGSrrsAgh2tcvRR80altc9L4UKH4gGw6IFnH5vMz+8U0q3PsHnT674Rc+zl5nSp5d+U3vFZObXxrYIEKITsFneBq3Ka8JSTo+0/u+MzMzm1zoSwSn7KrS+p6TfayazsqiXE7pPjDgeTK6xjfZntktIcBJhBCdweDYKeTnbz+gRWNIzBSz4nRo0oMiWiQ+LJyDb+QYKBIdEabk6ZmeyHUXHt2g7cLTxzB8gGxWKIRofxMTz2Ry0iycligcegRj42dwXMrFZsfqkAI2i6c9ySwecz2a9T2PrfkBq6ZjKEV6ZCzvH38ZUXaHaZm25RTtncUTS9/MZNNyCCGEOLSgnMUjOo4bBx/NoLhUlhfmEB8Wzqyew00tTgB6dEugh9zWEUKIDkMKFNEq07r2ZVrXvmbH6PRqfBXsql6PTXfQNXwAFk1+pUXrKaUoLqvGYbcSES6LYwpzyauZECFqd80mXt/xZ2qNSgC6OPpxXsZfCbOEm5xMhKI9RRX84Z/vsXHbHgDOPH4Yt1w+FYsuQxWFOeRfnhAh6v3cf+AyquuP82o38VPhayYmEqHs7kc+YsuOgvrjdxeu4o2Pl5uYSHR2UqCIVvktN4+PVq9nza58s6PUW74mmzc+XsZ3SzbV78PTURnKR4l7Fwqjvk1hsKd2m4mpRKjy+gyyNuzCd9DvzfI1O01KJITc4hGt8OAXP/DMj/tXb716yjhuPM7c3Yz/98ZPPP/OYjStbvfiSaN6Me+20zps97SuWYi0xlPpLQH2boqITqw91dxgIiRZdA2Hw0ZN7f5FyHRdIzrSaWIq0dl1zFdv4Tcrs3c3KE4AnvruF7Jy80xKBDt2FfP8O4uBuuIE4MdlW/huyWbTMgXCjLSbsWgW2LsyTZQtkUlJ55sbSoQkTdO4+rxJAFgsGhZdw2a1cMFpY0xOJjoz6UERLbKtsPgQ7SUM7mrOp/e8gvJGbbqukVfQ9DL4HUXPyFFc3vM/bK9aiU130DdqAg6LOQvmidA38+SRpCRGs2j5VpxhNk4/fiiZXWXqvjCPFCiiRTLiY5tuT4gLbJADr901Hl3XGow7MQxFz/Qk0zIFSkJYNxLCZNVc0T6OHtObo8f0NjuGEIDc4hEtNDKjK5dMGNmg7fKjRjG0m3ljH1ITo7lj9vHo+v5F+M+bMYrxwzNNyySEEKJtZKl70SrLd+SyvaiUHolxjOieZnYcAHbvKWNbbhEpCdH06p5odhwhhBAHkaXuhd+NzOjKyIyuZsdooEtyDF2SY8yOIYQQoh3ILR4hhBBCBB0pUIQQQggRdKRAEUIIIUTQkTEoQgghAs5nVLK95F9UupZht6bSPfY2Iuz9zY4lgogUKEIIIQJKKYN1e66g3PUrYFDl2UBZ7WKGd/kUhy3d7HgiSMgtHiE6oVLXBn7YdRVf7DyDX/Pvwe3r2KvuiuBS491KuWsJ1G926cNQLgqrPzAzlggy0oMiRCdT5cnlu9xLMZQLhUGVJ4cKz1aO6foCmmYxO57oBJTyHKLdG+AkIphJD4oQnUxO5Rf1xQmAwkeJaw1l7o69uaIIHk5bb5zWXsC+glhDQyM+/AQzY4kgIwWKEJ2O0WSrOkS7EO1N12wMTHmBGMc4dC0ChzWD/snzibAPMDuaCCJyi0eITiYtYirrip+mbo8LAw0LkbbuxNhlkzgROGHWNAalvGx2DBHEpAdFiE4myt6DSWn/JcbeG7seS0r4BCalPYWu2cyOJoQQ9aQHRYhOKNE5iuPS3zA7hhCdQm51Fruq1+C0xtAv+hhsusPsSCFBChQhhBDCT1YUv8u3+f9FQ0dhsKL4Pc7NfBib7jQ7WtCTWzwiaBSXVpGTX4rPkMGaQojQV+ur5Lv8p4H9g9CLXNtYWfKhmbFChvSgCNN5fQZ/n/8FH3+3BoD01FgeuuNsuqXEmhtMCCHaoNpb3Gh2nIaFSk+BSYlCi/SghJD1uwt4a+lvfL1uC15fx+lleOPTZfXFCUDunjL+9JCsKCmECG3RthTsejig1bcZeEly9DIvVAiRHpQQ8ebS1cx9/6u9U0NhfM90nr7kTGyW0F/5c9X63AbHhqHYtLOAWrcHh11mlgghQpNVD+OUrnfzQc59eJULgAHR0xgUIwvSNYcUKCGgtLqWv3z4dX1xAvDL1mwWLMvi3LHDTMvVXuKiw7HoGj5j/3foCLMSZpN/nkKI0JYROYorer9MoWsbTksMCWGZaJp25CcKucUTCvLKKhq8eQNYdJ3s4sNv8GYoxeLsbD7ZuJGcsuDdDO7C08bgdNix6BoWS90/yRsuOEZ+iYUQHYLTGkN6xHASHT3kda0F5CNqCOgaF43NouM5YNyJ1zDomRR/yOd4fD5mf/A+323fDoBN13l8ximc0Dv4VgtNT43jxb9fzAff/EZ1jZsJw3swflim2bGEECLglFKsKFnA6pIPUCgGxZzEmITz0LTO15+gKaXUkR8WXMrLy4mJiaGsrIzo6Giz4xyR2+vFUOA4xC0LpRQ7ikrxeH30SIrHamn8D/GT1Ru44+3P8O6dgnv8wN48dO4MLHrT/2hfWLGC+7/9psFtIafVyrJrrsFhlXEdQggRjFYUv8P3e/7ToG1C4u8Zm3ihSYnaV0vev6UHxY/cPh/3ffIVC1atQQFT+/Tk32ecTGSYvf4xVS4317/0Ab9szQagZ1I8z1x2FqkxUQ3ONX1oP4Z0S2Hd7gISIsIZmZF22K7CzcXFWHS9vqABqPF6yausJDM2rn2/USGEEO1iTdknjdqySj/tMAVKS3S+PqMAeuL7xfXFCcC3m7dx36dfNXjMo1/8xNJtOfXHO4pK+NPbnzd5vvT4WE4Y1IdRmV2PeB8zIzam0bgVu8VCckRky78RIURAuDzbKKp8hZKqd/EZlWbHEcJUUqD40Tebtja4xWIoxfdbtjd4zPIduzAOuMvmMxSrs/PafO2Lhg1nZFqX+mNd0/j78ScQbpPbO0IEo/Kab9iw+zhyiu9gZ9EcNuadjNdXbHYsEWBDYk9p3BY3w4Qk5pNbPH4U7QhDgwZFSoTd3uAxKdGRrN9dUF+kaEBCZHibrx1mtfLqOTP5dvs2imtqGJHahb6JiW0+rzg8n3KzsvBJcqq+x6aHMyju92REHW92LBECsotuQeGtP3Z7s8kve4Su8febmEoE2tDY01FKsbp0/yDZUfG/MzuWKaRA8aNrjhrH5TvfwaJpKOp6UG44enyDx8w5fiK/bM3G5fGCBkrBn045pl2ub7NYOL5X8M3a6ciW7PkH2yo+Zl9Z+lP+XVh1J10jJpkbTAQ1Q7nwGoUHtfpweXeYkkeYR9M0hsefyfD4M82OYjopUPxoUq8MXr5oJm+uzMIwFNMH9eW4vg2XOO7XJYn35lzEhyvX4fUZHDewFwO7ppiUWLSFobxsr/iEhn1mGlvLP5ICRRyWroVhs3TD49sF9Xu36Dhs/cyMJYSppEDxszEZ3RiT0e2wj+kWH8M1U8cf9jFCiI4tI/FJtu65EENVABBuH0pKzByTUwlhHilQhGgnumYlM+pktjXoRVH0iO6cA9xEy0SEjWRA2g9Uu1ega+FEhI1B02RQu+i8pEARoh2NTfojdj2KnKrvsOrhDIq7hG4Rk82OJUKE1ZJAtHOa2TGECAqykqwQfuLxlZNd+Qkeo4Ik5xjiHcPNjiSEEKaSlWSFaEdFtevZUPY2PsNFt8ij6dGMacMuXzHfZM+i1lcAwDog3j6CeGcPwiyJZEZfgM0S4+fkQggRuqRACVJKqVbtermruJxnPv+FgrIqBmekcum00dgPsQeQOLLC2jV8nn0Vau//tlcupMZbwMC48w/7vFUF/6DaV0DdyjYAikL3CgrdK7BikFv5AUelvYnNIj2AQgjRFHnnCjKvb/+RZ7d8RY3Pw7jEPtwzeCYx9uYt3FZYXsUF/3yV8ppafIbix7XbWLszn0dmn9Ypt/hWymB1yZtsr/wJm+5kWNy5dI0Y2aJzrCl5BYWBYv+eRquLn2VA7HmH/Znuqvqmida6x3vQKXHvIqfyPXrEXNyiPEII0VnIUvdBZOHuVTyy4WMqvLV4lY+fCzdw9+rXmv38j5aso6y6tn4PHqXgu6yt7NhT4q/IQW1xwdMsLvgveTWrya5awsc5t7KrelWLzuExKhsUJwBeo4aGa500ZuBhf+8JDf5bAwwslNRuaFEWIYToTKRACSLf7lmDfsAbmaEUS4o2U+vzNOv51S43TX2or3E37/kdiVIGWSVvH9gCwNrS91p0nrTwCQ2ONSx0CR+Lph3+VydMj+PQRUzdX1KRa2uLsgghRGciBUoQCdMb33HT0bAe4c1wn0kDezTYeNCia6TERtIzNaHdMoYKhYGB76A2hc9wt+g8A2Jn1d3O2furkuwczlGp9x3xeWNS/k7dr5fiUIWKRXe2KIsQQnQmUqAEkbPTJ6BpWoNelN9lTMSqW5r1/KE9uvDXi08myhkGQGZKPP+97izCOuEgWV2zkhExsb6wqKPoEXV0i86jaTqjk27k/N7fc26vbzih25M4LLFHfF5y+FhOSH+XSL3pvZAU0CP69BZlEUKIziRg66Bs3LiRl19+mS+++IItW7ZQW1tLr169mDlzJjfddBMRERHNPldHXgdlVcl2Xt3+A5XeWiYm9uPczElYmtmDso9SCq/PwGZtXmHTUVV7ivggew5lnlx0LAyOO4vxSdcGfMBwmWsji3f/iUrflr39KRp9Yy5hWOKNAc0hhBBma8n7d8AKlDvuuIMnn3yS0047jfHjx2Oz2fjmm2948803GTp0KIsXL8bpbF6Xd0cuUET7UEqxMPd2cquXoDDQ0NE1G2dk/B8x9u6m5uqMM6qEEAKCdKG2c845hzvvvJOYmP2LU1199dX06dOHv/71rzz77LNcf/31gYpjOqUUxbU1OCxWIux2s+N0OFXefHKqF9cfKwwM5WVz+WeMSpxtWi4pTppm+IqornoKw5eH1TYEZ8RlaFrnuzUphNgvYK8Ao0ePbrJ91qxZ/PWvfyUrKytQUUy3p6qS2R+/z6o9eQBcMHgYc4+eikWXIUHtxaeanrlkKG+Ak4gjMYxSSgqnY/h2A+CqeRePexnRcU9JQSdEJ2b6O2JOTg4AKSkpJicJnDmff0xWQX798atZq3h25TITE3U8UbY04uy90Ng3DkcDFBmRLRskK/zPVfMuhi8X8O39o3DXfoTPu9nkZEIIM5laoPh8Pv7yl79gtVo5//xDLx3ucrkoLy9v8CdU+QyDJbty8B0w9EcBP+XsNC9UB6RrFk7s9iBdwkdi1ZxEWlM4tstfSHYONjuaOIhhlNHUS5FSZYEPI4QIGqbe5L3pppv4+eef+dvf/ka/fv0O+bh58+Yxd+7cACbzH13TiLDbqXS7G7TFhjlMTNUxhVsTOanbw2bHEEdgtx9FNf8+oEVH02KwWPv79bo1VS4WfbqKqooahk7oQ2b/NL9eTwjRMgGbxXOwu+++mwceeIDZs2fz9NNPH/axLpcLl8tVf1xeXk56enrIzuJ5YfUK7vv+ayx7769bdZ13zjmfgUnJJicTwhw1Va9RWfYnwI2upxId/yw2+3C/Xa+itJpbTnuQnC170DTQdJ07/vN7Jp8ywm/XFEIE6TTjA913333MnTuXSy+9lGeffbbFA+E6wjTjL7Zu4qttW3FYrVwweBh9ExLNjiSEqZTyoIxyND3e74Njn/vb+yx46msM3/59lpwRYby9/p/oMlhdCL8JymnG++wrTi655BKeeeaZTjtK/4SefTihZx+zYwgRNDTNhmYJzLYM+TuL6nbTPEBNlYuq8lqiYpu3e7gQwr8C+lHh/vvvZ+7cuVx00UU899xz8klFCGGKzP5pDXZI0nSNuKQoImNkfyQhgkXAelCefPJJ7r33Xrp37860adN49dVXG3w9JSWF448/PlBxhBCd2NlXH8eqRZtY9dNGAJzhYfzpf5d32h5dIYJRwMag/P73v+eFF1445NenTJnCt99+26xzdYQxKKL5cqt+odi1gXBrEplR07BoNrMjiQ7A5zPYsHw71ZW1dOkeT8HOQiJjI+g1PFMKFSH8JOgHybaVFCidx8qiZ1hV/BwaOgqDZMdQTuj2uBQpol2sX7qZx659hs0rt6F8dVs5DhjfhzNvnMGQyQNITIs3O6IQHUpL3r9lEIgIWpWe3awqfg6o20sHYE/taraWf2ZmLNFBrFu8kRvG/5lNy7ehDOoWG9Z11i3Zwt/Of4wLe1zL6u/Xmh1TiE5LChQRtKq9hY3aNCxUefeYkEZ0NPec+a8GM3k0XUfTtLrbOxr4vIq5Z//LxIRCdG6yXagIWtH2dHTNhnHAxn8KH/FhfU1MJVrL8KzHcP2EpkegO6aj6ebdnq2pqqV0TxnsG2ui1e0wvm/siaZpKBTlRZXUVrtwhIeZllWIzkp6UETQclhiOTp1LvoB400Gxp5HesQkE1OJ1vDVfo6n8FR8FfPwlv0Jd8F0lK/AtDxVpVV1m2AdYQie1W4lzGkPTCghRAPSgyKCWkbkMZyT+S5l7u2EW5OItqebHUm0kFIKb+kdgAH7Vh8x8vFWPokt5j5TMsWlxhKXGkNJXll9kaLpen0vilIKFNzwxGUyo0cIk0gPigh6Tms8qeEjpTgJWS5QZdBgaTQfyrfLrEBYLBb+/tldxKVEA3XFiDLqBmLXFSeKcacMZ/oVsjaTEGaRHhQhhF9pmgMs6eDLBfbtfaOj2waYGYueQzN4dedT5G0vIDzayYZfNvHL56tIyUzgzOtPxuGUHcaFMJOsgyKE8DvD8xueoktAlQKg2Sdgi3+2rngRQnQaQb1ZoBCi89FtQ7Anf4vyZIEWgWYbjKZZzI4lhAhiUqAIIQJC06PRwiaaHUMIESJkkKwQQgghgo4UKEIIIYQIOlKgCCGEECLoSIEihBBCiKAjg2SDwPryjWyo2EikNZKJieNxWmTqpRBCiM5NChSTLcz7mhd3vIqOjkLxed6X3DfoT4Rbw82OJoQQQphGbvGYqNZXy8s7XgfAwEChyK/dwxf5X5mcTAghhDCXFCgmKvdUYNQv/V1HQ6PEXWpOICGEECJISIFionh7HJHWCDT275bqw0dGRHcTUwkhhBDmkwLFRFbdyo19rsNhCatvm5Q4gWOSJrfL+T0eH299spyHnv2Ktz9djtfra5fzCiGEEP4mmwUGgSpvNTk1uURZI+niSEXTtCM/6Qh8PoObH3ib5Vk7seg6PsNg9JAMHvzz2VgsUpcKIYQIvJa8f8s7VRCIsIbTL6oPac4u7VKcACxdvYNlv+1EKfD6DJTa25a1s13OL4QQQviTTDPuoErLqw/RXhPgJEIIIQKt3OViwfo1lNXWMjatGxPTQ29soxQoHdSA3l2w6Bo+Y/8dPIuuMaB3qomphBBC+FtpbQ1nvPkqO8tKsWg6j6qfuXvyMVw2fJTZ0VpEbvF0UBld47nrhunYbBYAbDYL99w4g/QucSYnE0II4U/Pr1pBdnkZCvCquqUs/vbjd1S53eYGayHpQenATpg8gKNG96KwuIKk+CjCnXazIwkhhPCzPVVV6JqGccAcGJ9SlNTWEGEPnfcB6UHp4CKcdjK6JkhxIoQQncSQ5BS8xv5FQHVNI8HpJCUi0sRULScFihBCCNGBzBo0hN8NHFx/HGm38/SM07FZLCamajlZB0UIIYTogHaUlVJSU0Pv+AQig+TWTkvev2UMihBCCNEBZcTEkhETa3aMVpMCJcgUuvbwXu4r7KnNo6szgzO7XUC0LcbsWEIIIURASYHSRpUuNztLS0mOjCAxIqJN56ryVvDQhvuo8tbtcpxfu4ud1Vv444B52PXg6J4TQgghAkEKlDb4but2bnj/I6o9HjTg5skTuXbCuFafL6tsBRXesvpjA4M9rjy2VK5nQPTQdkgshBBChAaZxdNKJTU1XP/eh9R4PAAo4KEfFvHT9h2tPqehjBa1CyGEEB2VFCittKWomBqvlwOnQFk0jZW78lp9zv7RQwjTHWh7/1p0dKKtMfSM7NvGtEIIIURokQKllRLDwxu1GUqRENG4vbni7Anc0OdPdHWm49CdZET0Yk7fu3BaWn9OIYQQIhTJGJRWyoyP46IRw3hpxSqsuo5PGQxISuaMgQPadN6MiF78ccDf2imlEEIIEZqkQGmDe6Ydy+huXVmTv4eUqEh+N3QwDpv8SIUQQoi2knfTNtA0jRkD+jFjQD+zowghhBAdihQoQgghRAezs6qAJzd9xK6aYvpFd+W6PqcQZw+tzQKlQBFCCCE6kCJXBVf/+iSV3loMZbCjqoCN5bt4dtwcbHrovO3LLJ525PXJeiVCCCHM9UNBFhWe6vo1tAwMtlblsbYs2+RkLRM6pVQQW7Mrn1vf/IQdRaUkRUXw1zNPYHKfTLNjCSGE6IS8hgFo0GClLvApnyl5Wkt6UNqotLqWy59/h+ziuiXqCyuruO6V99lWUEyZp5q7V73KKd/+lQsXPcLiwo0mpxVCCNHRTUjsj123oqMBYEEnxRHLgJjuJidrGSlQ2ui33DzKamoxVF2lqlTdrZ6ft+7k9uUv8PWe3yhyV7C1Mp9bl/8f68pyTE4shBCiI+sansAjI6+kR2QqEVYHg2MzeGzkVTgtobXprNziaSNnE+ueKMCFm9/KdhzQptA1nS/zVjMgplsAEwohhOhshsRm8sL4m82O0SbSg9JGw9PTGNYtFV3b25Wma6TFRjG5b2aTj9/7MCGEEEIchvSgtNLm/CKWbMkm0mHn8fNP5flFy9mQV0i3uBiunzqehIhwRsX3ZEXxNgwUOhoaGid2Gc4vG3fy+Mc/UVJZw7i+6dx6+hQiHKHV9SaEEEL4kxQorfDVms3c8vLH+AwDBWQmxvLKtecSG+Fs8Lh/DL+YRzd8zIrircSHRXJNn5Nwl+hc89Q7GEqhFOxaXE5eSQVPXnUmmnSvCCGEEIAUKC2mlOLPb35RX5wAZBeVMf+bpdx+ytENHhthdfCnQWc3aPvnN9/uPU/dsaEUP63fQVFFNYnREX5OL4QQQoQGKVBaqMrlpqLW1aDNQJFbUtas56uD5qXXt6um24UQQojOSAbJtlBEmJ3k6Ij6QbEAGhp9UhOb9fyTR/ZHqf2DZXVNY0yfdOk9EUIIIQ4Q0ALFMAwefvhh+vfvj8PhID09nVtvvZWqqqpAxmgTTdN46IJTcNpt9W0je3Tl8mPGNOv5QzO78PiVp9OnSyJJ0RFMH9Wfhy87VcafCCGEEAfQVADvLdx444089thjnHnmmZx88smsW7eOxx9/nMmTJ/Pll1+i682rl8rLy4mJiaGsrIzo6Gg/p25aSVUNWdl5hIfZGZ7RBUszswshhBCdVUvevwM2BmXNmjU8/vjjnHXWWSxYsKC+vUePHsyZM4fXX3+d888/P1Bx2iwuwsnk/j3MjiGEEEJ0SAH72P/aa6+hlOKmm25q0H7llVcSHh7Oyy+/HKgoQgghhAhyAStQli5diq7rjB07tkG7w+Fg+PDhLF26NFBRhBBCCBHkAlag7Nq1i8TERMLCwhp9rWvXrhQWFuJ2u5t8rsvlory8vMEfIYQQQnRcAStQqqurmyxOoK4XZd9jmjJv3jxiYmLq/6Snp/stpxBCCCHMF7ACJTw8HJfL1eTXamtr6x/TlDvvvJOysrL6P9nZ2X7LKYQQQgjzBWwWT1paGmvXrsXlcjXqScnNzSUxMRG7vekN88LCwg7Z+yKEEEKIjidgPShjxozBMAyWLFnSoL22tpaVK1cyevToQEURQgghRJALWIEya9YsNE3jkUceadA+f/58qqurueCCCwIVRQghhBBBLmC3eIYMGcJ1113HE088wVlnncX06dNZt24djz32GFOmTAmpRdqEEEII4V8B3c34kUceITMzk//97398/PHHJCYmcsMNN3D//fc3e5l7IYQQQnR8Ad2Lp70Ew148geRTPlaXbqLCU0Xf6AxSHc3bOVkIIYQIJkG5F49oHY/h4d6s//Jb2SYArJqFPw64jPEJQ01OJoQQQviP3Fcx0dLsHOZ99R0Pfvsj24pKmnzMR7u+J6tsc/2xV/l4cP0LeAxPoGIKIYQQASc9KCb5ZN0GbnrvEyy6jlKK55eu4M2Lz2VASlKDx+XU5KOj4WP/nbhaw02xu5wUR0KgYwshhBABIT0oJpn31fcowGsY+JTC7fPx+I8/N3pcmiMZg4bDhMJ0G3H2jj/2RohgpYwSDPcKlC/P7ChCdFhSoJikpKamwbGhFAWVjfciOrXrFPpH9ag/tmg6N/e9CLtu83tGIURjvpqPqc0fh6voLGr3TMRT+V+zIwnRIcktHpOM7JrGkp05+PZOotI0jXEZ3Ro9zq7b+NvQOSwvWUeFt4r+UT3oGp4c6LhCCED58nCX3gzsGwOm8Fb8E902EkvYODOjCdHhSA+KSf556kn0Sdo/huS43j25YdL4Jh9r1S2MTRjMcSnjpDgRwkSGdwP7i5N9dAzPb2bEEaJDkx6UVnpr+W/854dfqHZ7mNq3J3efPJVwe/Nvu6RGRfLepReQU1aO3WKhS3SUH9MKIdqDpqc00WqgWZpqF0K0hRQorfDp2o3c9dGX9cfvrV5HtcfDo+ec0qLzWHSdjLjYdk4nhPAX3dYfi/N8fDWvUvfy6UW3j8PiOMnsaEJ0OFKgtMLHWRvQoH5ujaEUX6zbjNcwsMqS/UJ0aLaYB7CETcTwrkezdMXiPAtNk0HrQrQ3KVBawarraJrGgbsEaBpoJmYSQgSGpmlYnDOwMMPsKEJ0aPJxvxVmjRyCUqq+INH2tlmk90QIIYRoF9KD0goTenbnqXNPZ/6iX6l0uTmuX0+uPbrpGThCCCGEaDkpUFrpmL49OaZvT7NjCCGEEB2S3JMQQgghRNCRHhQTLM/fxW3ffcLOijIyo+N4+JjpDElKNTuWEEIIETSkByXA8qoquPCTN9leXorXMNhaVswFn7xJYU2V2dGEEEKIoCEFSoAt2rWTaq8HY+8UZUMpyt0ulublmJxMCP9QviKUaxHKs77B1HwhhDgcucUTYGGWpn/kh2oXIpQp1/eokuuB2roGxxkQ83c0TT4bCSEOT94VA+yY9B50j4oht7Icn1JYNI3M6DgmpnX363XLPaW8l/syuTXbSbCncEbXC0l2dPHrNUXnplQNqnQO4NrfWPse2MdB+NlmxRJChAgpUAIswmbn7dPO599Lf2RLaRF94xO5bfRkHFb/LZXtMdw8sekBCly7MTDYU7ub7VWbuHPAv4iyxfjtuqKT8+WCqj6o0YryrpdVl4UQRyQFigmSwyP555TAbS62vWoT+a7c+mMDgypfBVlly5iQODVgOUQnoycBFsB3QKOBZpEZa0KII5MCpRPwKV/T7TTdLkR70PQYiLoTVfEAdePxDbD2h/DzzY4mRKstK/6Nj3Z/hdvnZnzCSGakTUWXMVV+IQVKJ9Ajoi8xtngqPKUYGGjo2HQbA6OHmx1NdHBaxMVgGwSelaDHgWMGmhZmdiwhWmVFSRZ/X/+f+uONlduo8FZxfsbpJqbquKTs6wTCLA5u6HM3PSL74rREkObszvW97yLenmR2NNEJaPZRaBGXoznPkuJEhLTP875DO2gE1Se7v5bp834iPSidRFJYKnP63Gt2DCGECFkew4eiYTHiU4ZJaTo+KVCEEEKIw3C5vTz3yo9kLbNSYkklYlIJ9q4udDQmJo5E08yfl7a0YCdbygvJiIxjfHJmUGRqKylQOoBKbxW1Phfx9lgZrCWEEO3sgYc+5vufN6GUQtPCKdnpJO3SAiYPGMzlPc81Ox7/WPUV8zf8XH98fq+RzB15csgXKVKghDBDGfzfttf5Iv97ANIcKdwx4HpSHDK2RAgh2kNpWTXfLdpYf6wUWNA5as/JXHea+cs0ZBXvblCcALy6ZTnT0wcyPjnTnFDtRD5uh7DP876rL04A8moLeHDD0yYmEkKIjsXrbWqMiYbPFxxjT3ZUFjfZvrOyJMBJ2p8UKCFsXfmmBiPKDQx2VOdQ66s1MZUQQnQcCfERDOqXhq7vf631+QymTOxrYqr9ekUnNtne+xDtoUQKlBAWaY1oNOXNplmx63aTEgkhRMeiaRrz7jqTCaN6Eu60k5oczb23n8qIIf7dP625+semcMvgYxq0Xd1/IiMT080J1I40FYITuMvLy4mJiaGsrIzo6Giz45gmr2YPd/42j1qfC02rm+52ccY5zEibZnY0IYQQAbS+NJ+tFUV0j4xjcFzwbgTbkvdvKVBC3J7aQhbmf0+Nr5ZhsQMZEz/c7EhCCCEO4PMZFBRXEhFuJyrCYXYcU7Xk/Vtm8YS4ZEciF2ScZXYMIZrF683B692ExdINm62P2XGE8Ltt2UXcPu8ddheUowHnnTaaay88OuSnAAeCjEERQgREVdWr7MmfQHHRBRTsmUJ52d/NjiSEXxmG4va/v0t+UQUACnj1g1/59Lu15gYLEVKgCCH8zuvNpqz0D3DADtqVlY/hcv1oXigh/Ky4rIrde8owjP0jKSwWnZVrs01MFTqkQBFC+J3XuxE4eN0IHY9nnRlxhAiICGcY+sG3cpQiJsppTqAQIwWKEMLvLJZuTbQah2j3H6VcsvOsCBinw8alMycAdT0nuq4RFelg5vSRJicLDTJIVgjhdzZbPyIir6Wq8j/UfS4yCHOciMNxYkCurzwb8JVeD75toEWjR/8F3TkjINcWndul54wns1s8y7OyiYpwcNaJw0hKiDI7VkiQacYhZG35WlaWrsSm2ZicNJlUR6rZkYRokdra7/B61mOxdsPhOBktAJtbKqMaX+FUMEqoGwOjARqWhAVotiF+v74QYj+ZZtxKe6oq+Tk3mzCLhaO7ZxJuC54VWX8s/JFntz2LBQsKxVd7vuKuAXfRLTywXeRCtIXDMQUcUwJ7Ue96MAoPaFCAjnL9IAWKEEFMCpS9VuTv5sIP3qLK4wYgMyaWt888j8TwCJOT1Xkj+w0AfHtnQXgMDx/t/oire11tZiwhgp/W1O+wAi084FGEEM0ng2T3uu2rT6nxeuqPs8vL+Ncv5k6BLPdU8MbOt/jPpqep9FY2+JqBQbmn3KRkQoQQa1+wT4H6fassoCegOU8zM5UQ4gikB2WvHeWlGAcMx/EpxaaSItPyVHmrmbvmAYrdxSjqch04W01Do19UP5PSCRE6NE3DEvcfVNXTGO4sNEsqeuS1aHq82dGEEIchBcpemTGxbC0tqS9SLJpGv3jztqteXLSYIndRfXECGihVX6SMjR/LjC4yC0GI5tC0MLTIOdJlLEQIkQJlrwennsyFH75FhbtuDEr3mFhuGzfJtDzVvho0tAYFigKu7XkN/aL7EmOLMS2bEEII4W9SoOw1LKULX51/OUt2ZRNmsTKpWwZOm820PAOjB/A279Qfa2iEWyIYEjsYp0VWIRT+5fPuxOv6CU1zYHNMQ9Nl3YZgppSBq/ZjvJ7NWKw9cDhPC8gU7poaNzu2FxIREUa39HjZAE+0KylQDpAcHsEpvfubHQOAXpE9ubLHZTy//SU8ykOsLYY5fa6X4kT4nce1iKqiiwEXALolncjE99EtSeYGE01SSlFWcgO1Ne9S95LupbbmY2Lj/+fXgmHTpjzu+MMblJZWA3D0lH7cdfcZWCxyI020D1morQ2qvC62VuQTZXOQEZHklxcDn/JR460hwhohn05EQJTljUMZeezfO8eCPfxcwmNl9+Fg5HYtprjwrEbtcQmvEeanNWeUUpx/7n8oLKyo3whP02D21VP53e/G+eWaomOQhdoCIKs0mxt/fZ5yTw0AJ3QZyv3DfoelnbtVLZqFSFtku55TiENRykAZu4EDP7f48Hm3mRVJHIHPt/sQ7Xl+u2ZlZS179jRc5kDTNDasbzqLEK0hfXGt4FMGty17iUpPbX3bF7tX8/aOxSamEqLtNE1Ht2QClgNaLVhswXHrUzRmsw1i/xov+2h72/0jPDwMu73x59uEBPkwJdpPwAqU3Nxc5s2bx5QpU+jSpQsREREMGjSI22+/naIi89YbaY0SdxVF7kqMAz5lWjSddeW5JqYSon2Exz2Bpu1/o9Gt/XFG3WpiInE4VltfomPnsf/lXCMqZi42+2C/XdNi0blhzgl7/1tD0zTi4yM597wJfrum6HwCdovnww8/5L777mPGjBncfvvtREVFsWTJEh555BFef/11li5dSmpqaGx+F211YtUseJWvvk2hSArrPBsXio7Lah9KVPL3+DzLQHNitY9F04JnXyrRWHjExYQ5TsDn3Y7F2h2LJc3v15w+Yxjp3eNZsXwHERF2ph0/mJgY2T5AtJ+ADZJds2YNCQkJjYqQZ555hiuvvJJbb72Vf//73806VzAMkn1n5y/MW/M+Fk3HUIouzlhemHgdsXb5BRVCCBGalFK8l72cRQWbibSGcWHPifSKSm6387fk/dv0WTwVFRVER0dz4okn8tlnnzXrOcFQoACsLN7Or8VbibY5OTltOFE2J4sK1/L57mWAxvS00YxLkHv3QgghQsMTG75k/qbv0NHQNLBpVl6ZfBW9o1La5fwhNYsnJycHgJSU9vnmA2l4fCbD4zPrjxfmreAva15F2ztg7Zs9q7h/yEUckzzUpIRCCCFE83gMH89u/h6gboylAvDx6rbF3DP09IDnMX0Wz7333gvAJZdccsjHuFwuysvLG/wJRi9u+xKoG4+yb4n6l7Z9ZWYkIYQQolnchrfBprlQd8unyusyJU+Le1BKS0t55JFHmv34OXPmEB/f9K6hDz74IG+99RazZ89m6tSphzzHvHnzmDt3bkujBly1r/FfYlNtQgghRLCJsIYxOLYr68p241N1CzUaKCYm9TYlT4vHoGzfvp0ePXo0+/GbNm2id+/G39wzzzzD7NmzmT59Ou+++y62w+x743K5cLn2v9GXl5eTnp5u+hiUgz20/h3ez11c33uiofG79Mlc1/dUk5MJIYQQR5ZfU84ty14jqzQHi6ZzRe+juabv1HZbyTzoB8k+99xzXHHFFZxwwgm8//77hIWFtej5wTJI9mAun4d/rn+br/JWAHBSl1Hc0v9s7LrpQ32EEEKIZqv2urDrVqy65cgPboGgLlD2FSfTpk3jgw8+wOFwtPgcwVqg7OM16tZHae+/WCGEECKUBe0snueff54rr7ySqVOn8v7777eqOAkFUpgIIYQQbROwAuWDDz7g8ssvJzo6mlmzZrFgwYIGX4+MjOSMM84IVBwhhBBCBLGAFSjLly/HMAxKS0uZPXt2o69nZGRIgSKEEEIIIAhWkm2NYB+DIoQQQojGWvL+bfpCbUIIIYQQB5MCRQghhBBBRxboECLIVdT+TEn1+4BOQsRMIsJGmB1JCCH8TgoUIYJYSfUnbCu8hn2dnYWVr9E7+UWiHZPNDSaEEH4mt3iECGK7Sv+99798e/8Y7C592MREQggRGNKDIkQQ8xml7N3zfC+F1ygxKY0QHV9h7QZyqn7GotnpFX0C4dZEsyN1WlKgNJOhFM8tXc7CTZtx2qxcNmYUR/fINDuW6OCiHJMoqf4AMPa26EQ7ppgZSYgOa0fl93y96y5AAxSri1/m1O7zibZ3NTtapyS3eJrpoR9+4u/ffs+y3F38tH0nl7/1Lj9t32F2LNHBdY9/gCjHpPrjWOeJdI29w8REQnRci/IfRGGg8KEwcBuVrCh6zuxYnZb0oDSDUornf12x/xjQNY2XV6ziqMwM84KJDs+iR9Mn+WW8vlLQNKx6jNmRhOiQlFLU+hrePlUYVHn3mJRISA9KMyjAaxgN2gylcHt95gQSnY7VEivFiRB+pGka8WF90di/2auGTpJjoImpOjcpUJpB1zRO7NsbXdMatJ/cv69JiYQQQrS3Y7rc22BQbKpzJCMSLjMxUecmt3ia6W8nHY9V11m4aQthVgtXjRvD2YODp7Let6WSdlARJYQQHY3P66O62k1klKNdX/Ni7Omcnfkqpe5tWDQ7sfZMNE0+x5tFNgsMcT7l46Ndr/JT4UIUilFxkzi726XYdLvZ0YQQot198PovzH/oMzxuH2np8dzz8Plk9k42O5ZoJtkssBNZmP8u3xZ8jEe58SoPS4q/5YPcl82OJYQQ7W75z5v5z98/xuOuG/+Xl1vCXde9iMfjNTmZ8AcpUELcqtJfGhwrFKvKfjnEo4UQInQtX7wFi3X/25ZhKArzy9m1s9jEVMJfZAxKiLNrjW/l2PQwE5IIIYR/RUQ6UEbjUQnhkcH/mreocBUrSzYQYXUyvcskkhxxZkcKetKDEuKOTTm1UdvU5MZtQggR6k48cyTRseHoFh1Nrxsce/xpw0lKCe4p+G9lL+Sva5/ls7xFvJ39Fdcv/wd7aqXX50hkkGwHkFX2K4sKv0ShGB03mVHxk478JCGECEGF+eW89fyPlJZUMWBoOqfOGovFEryftT2Gl7N/ug2f2r+WlgWdGWmTuar32SYmM0dL3r/lFk8HMDhmNINjRpsdQwgh/C4xJZpr/jg9INdSyqDaV0aYHoG1lTMja32uBsUJ1C3+We6pbIeEHZsUKEIIIcRBCmq3sSD7Pso9e9CxcHTKpYxNaHmPR6Q1nK7OZHbXFGLs3fTTwGBwbO/2jtzhBG+/mBBCCBEgtb5KCmq34/ZV41Me3tp5NxWeQgAMfHyb/wxbKpa0+LyapnHvoNmkOOLr205NO5qTUie2W/aOSnpQhBBCdGqrSj7hy7wnUPiwanYmJ11OpbeowWN0LOysWkWvqLEtPn/X8GSeHnMXRa5SnBYHUbbw9oreoUmBIoQQotPKr93MwrxH64+9ys23+f9r9DiFIswS2errWDSd5AN6UcSRyS0eIYQQndbumnWN2pTmo0fEKAA0LGjohFtjGBZ3UqDjdWrSgxJCan0u/rflLZYWZ+Gw2JnV/WSmpUwwO5YQQoSscEvTC6ZNSJxFn+iJ7KpeR7g1ltHxZxJhlcXVAkkKlBDy2MaX+bloJQaKci88vukVIq3hjE8YZnY0IYQISb2ixtPVOZjcmjXoWDDw0idqEl3DB9MtYgjD4wIzpVk0JgVKiPAaPhYVrUSxf109DY3v9vwqBYoQQrSSRbMys/s8Vpd+SplnN4lhmQyKOR5N08yO1ulJgRIiNK2uIGlYoNQNvBJCCNF6Vt3OyPjTzY4hDiLvbiHColmYljKefTW9hoaB4niZSy+EEKIDkh6UEHJVr1nE2KP4pWg14RYn56Qfz7DYfmbHEkIIIdqdbBYo2kV1lYt1q3aiaRqDRmQQ5rCZHUkIIUSQkc0CRUDtyi7iD5c+Q2F+OQBdMxL55/9dTkKSFI9CCCFaR8agiDZ79L73KC7cvzPn7pxinv7HJyYmEkIIEeqkQBFttm1jHoZv/3bihs9g64bdJiYSQggR6qRAEW2W2i0OXd+/ZoBu0UjrnmBiIiGEEKFOChTRZjfcfTphzv2DYiOjnMy+XVZfFEII0XoySFa0WZ+BXfnfezfx648b0XSN8VP6E5vQ+l0/RdusXbKFBf9ZSHVFDWOPH8Lps6ei6/JZRAgRWqRAaaFSVw33LlnIr3tySHJG8qdRxzI2Jd3sWKZLSo3h5HPGmB2j01u/bCu3n/ovlFIYhmLFd+soyivlivvOMTtah1O3QoMXTZMp9UL4g3ysagFDKS796i0+2r6O3KpyVhfu5oKFr7OxtMDsaEIA8OGz36IAw9i/vNG7T32F74BBzKLtqir/j7zdfdm9K4OCPafg9eaYHUmIDkcKlBbYVl7MisJd+PaubWegMJTBR9vXmZxMiDquWjcHr73o8/nweXwmJep4amsWUlb2Z5SqAsDjWUVx0SUoJUWgEO1JCpR2EHpr8YqOavxJw1AH9J7oFp2RUwZgl5V9202t6ysa3h334fWuwzDyzYok2plhKNxer9kxOj0Zg9ICPaLjGZ7Yhd+K8vAphY6GrumckjnA7GhCAHDczPGU5Jfz2kMf46p2M/LYgdz+n8vMjtWhaJoTaPyppK5dhDKlFE8u/Jlnv1mKx2cwrlc6/7pgOvGR4WZH65RkL54WKqmt4Z4lX/DrnhySnZH8afSxjEvpHtAMQhyJUgqllMze8QOvdysFe05AKRfgAzSc4ecRF/dvs6OJNnr7l9+4b8GX9ccWXWN0j248e5UMMm8vshePH8U5nDx+9OlmxxDisDRNQ9O0Iz9QtJjV2pPEpE+orHgSwygmLGwiEZGzzY4l2sH367ehsb9/zGcolmzJxuP1YbNazIzWKUmBIoQQLWSz9SUu/lGzY4h2Fh5mQ9O0BgPNbVYLFumJNIX81IUQQgjgokkj0XUNXdPY1wF5xbFjGmzlIQJHelCEEB2aUkpud4lmGdQthZevncUrP62k2uVmcv8enD12sNmxOi0ZJCuE6JAqSqt58JZX+PXbdYQ57Zx/44mcdeUxUqyIZvs1N5ftpaX0iotjRFqa2XE6BBkkK4To9P5xw4us+HEjhs+guqKWZx54n9iESI47W7Zk6Ew8Xh9ltbUkRka06Hn3f/MNL6xYUX98zdix3DZpUnvHE4chBYoQosPxuL0s+359g+VKNE3j5y+yOlWB4jWqKKj+FkPVEu8Yj9PW1exIATX6L09Q5fbUH184fhh/njEVgN1lFWwsKCQlMpL+qUkNnrc0J6dBcQLw3yVLOKlPHwanpLBg4xr+tvg7yly1jE7tyqNTZ5ASIRuktjcpUIQQHY5u0bFYdHze/cvPaxqEdaIVdd2+IpbsOo8abzYAuhbGiJT/Ee8ca3Iy/1u8dSeX/d+CRsvpvbx4FVuLSkiIDueD39bXf33WyCHMnX5c/e2/bSUlTZ53W0kJpZ5abv3m0/q2pbtzuPTTd/jo7IvQ5fZhu5JZPEKIDsdi0Tnz8mPqjzW9bl2YUy7pPF30m0sep9a7q/7YUB7WFNxpYqLA+Hj1Bi5tojiBug61Hzft5P3V6xt8/Y3lv7Fw/eb6457x8U2eu2d8PAu3b8aq7X/r9CnF2qI95FVVtM83IOqZVqAYhsGECRPqXjROOcWsGEKIDurSO09h9j1nMPyovow/fjD/ePN6BozMNDtWwNR4dqA4cJNIg1rf7g6/qeHDC3885Ne0ff+nNW7fsKew/nh0165cOWpUg8fcOGECg5KTCbNYUE2UP3aLLOTW3ky7xfOf//yHrKwssy4vAqyyykXu7hISEyJJiJN7tcL/dF3nzCuO4cwrjjE7iiki7H0orl0C7CtIdMKt3dG0jt1xXl7rOuTXFFC/VKzWsD0tpuGMkjumTOHkvn3ZUVpKz/h4BqekAPC7/kN4cc1KMHz4lEIDTu3Vn0RnywbhiiMzpUDJycnhT3/6E3PnzuXWW281I4IIoB+XbOa+f3+Iy+1FA666+GguOGuc2bGEaFc1VS4+fWsJxQUV9BnUjaNPHmLqlOZesddTUruUSvd6AKx6BIOT/2lankCZ0DOdL9du5uB+on19HpoOhtawTlEapMVFNTrXsC5dGNalS4O23nEJLDjjfJ5Yvpji2mrGp6Vz3YjxfvhOhCnroJx++uns2LGDZcuWYbVamTFjBh999FGzn9+R1kEprK3kvpUfsrI4hyRHJH8cciLjk3qaHavdFJVUMnP2//B4fA3aH3vgXEYMTjcplRDtq7bazU3n/oedW/ag6xo+r8HpF03k6j+damouQ7kpqV2Kz6gl1jECu6XpsRUdSWl1LXNe+5Cl23Pq2yyaRlKME3QLI9K78Mm2TXi9Ck3VFSe6Dkf3yuSZc840MXnnENTroLz99tt8+OGHLFq0CEsnv2fnUwazf36ZTeV78CmDUnc1sxe9zNvHXEXfmBSz47WLbTuLGhUnuq6xduMuKVCE33g8Plau2EF1tYuBg7qRlNT403F7+vK9ZezcnI9SdRvMAbz/0iLOuPgoUruZVxTomp0E51GmXd8MseEOXrjsHEqqa7DoOjFOR6PHfPHQ43iVt75XxQDKXe6A5hRHFtACpaysjDlz5nDVVVcxfnzzu8RcLhcu1/77iuXl5f6IF3DbKgpZX5ZXf2yg0ND4fNfaDlOgJMQ1vi9rGErGoQi/qal2c+str7Bh/W6gbmrxX+fNZMSITL9ds6SoEl3X8fka3lgoLao0tUDprDRNIz4i/JBfn9wjg683b8W39waCBhzTs0eA0onmanGBUlpayiOPPNLsx8+ZM4f4vVO2/vCHP2AYBvPmzWvRNefNm8fcuXNb9JxQ0PScedWh5tL36J7IaScM44MvVmG16PgMgwF9ujB1Uj+zo4kO6rVXF7Fp4/7C3+3y8sD97/H2Ozf6bUzIgOHdGxQnmqbhCLeT3jPZL9cTbfP3k09gzgcf89P2nWjAecOHMnvcaLNjiYO0qkBpSbFw4YUXEh8fzw8//MD8+fN56aWXiI2NbdE177zzTm655Zb64/LyctLTQ//2QGZkAiPi01lVkoOhFDoaVs3CjG4da3Oq2645npFDu7Np2x5SEqKYPm0IdpusESj8Y+fOIg4cWqeUorSkmupqNxERYX655ujJ/bh4zvG8+PhCUOCMsHPXYxcSEdX49oIwX4zDwQu/O5tqtweLrhFmldejYNTiv5XMzExaM672+uuvZ9iwYYwbN47Nmzc3+Fp1dTWbN28mNjaWxMTERs8NCwsjLMw/Lyxm0jWd/44/n39kfc6KomySnVHcMmgamZGNfwahTNM0jpvUn+Mm9Tc7iugEunaNR9O0+tcpTYOoKCfh4Xa/Xve8a6Zy8u/GUlJUSZdu8Tj8fD3RduH2zrOycCgK2Cye2NhYysrKDvuY6667jieeeOKI5+pIs3iEEO2rsrKWm+a8xLatBQDYbBbuf+Acxo7rZXIyIURQzuJ58cUXcbsbj5KeOXMmo0aN4o477qB3796BiiOE6KAiIx08+d/fs+SXLVRXuxkyNJ20tDizYwkhWihgBcppp512yK+lpqZyzjnnBCqKEKKDCwuzMfno4LilWOFaR17VB4AiJWI60WFDzY4kREiQkUGiwysrr+G5138iZ3cJGd0SuHTWRKIiZfCi8L+S2qWszPs9+9YxzS5/gWHJT5MQfrSpuYQIBaYXKCYsZCsCRCmFoRQW3by9P2pq3Vx75yvk7C7FMBS/rtrB8t928r9/XSgziUSbFFYuILfsYXyqghjHFDLiH8CqN7ynvrXkIRQG+/fD0dhc8m8pUIRoBnmFFm3iUwbzN33HRzmrsGkWzu8xnrPSR/GfBT/yxsIV+HwGx4zqw92Xn0C4I/CzGhYv38bO3JL6Y8NQbNlewPLVOxk/quNsKSACq7TmG7YV799HrLj6Y3xGOX2Tn2/wOLevCBrsCqPwGEUByShEqJMCRbTJfzd8w/82fVd//JffPuTXRbl888XW+rZvlm3CZtW5/6rpAc9XW+tput3VdLsw3/KfN7Po63XYwqycfNZouvdMMjtSI8VVHwIWYN82Dj7Kar/FZ1Rh0fevnhznGE9NZTb7ixQLsWFjAxu2nRjKS5l7J7pmJdqWbupGiM1V7qlkffkmrLqVQdH9CLPI1O9QIgWKaJO3dvzaqO3nldsbHBuG4rvlWwKUqKERg9MJs1txe3woVbdKr8NhY8iArqbkEYe38IMVPHjPu1gsdbcFP35rKQ+9cCW9+3c5wjMDS9Oa3kdMo2F77/g/UOPNpqR2EQAxYcPpl3Cfv+O1u2pvIZ/l3EypexsAqc4RHN/1H9j0Qy8nb7btVdncv/ZhqrzVAHRxJDN38G3E2GRpilBh3uAA0WFpVo2DP1w57ObUwqnJMfzr7rNJjK/7VJucFMWD955zxL2AqqpcfPLBCt56bTGbD1g2XfjXs498AYDPZ+DzGXg9Pl6b/625oZqQGHkudQNf9/1D10gIPxtdbzj42qpHMjzlOSZ2+46J3b5lZOor2CwxgY7bZj/k/Y0y98764/yaVSwteMrEREf2n80vUOOtrT/Ory3k1R3vmRdItJj0oIg2Oav7SJ7d/EODtlOPG8hbL/+GpsG+MdCXnGJet/aIId1559lr8PoMrJYj1+RlpdXccOVz7N5Viq5rKOCOe05n6vEdawuCYFRZXtPg2DAUZSXVJqU5tKiwUfRNfpHdZY/jNcqJdR5LWsxNTT5W0zQc1tTABmxne2rXoNi/K7nCYE/NahMTHdmumnyMA8b/GBhkV+eamEi0lBQook2u738cVt3CxzmrsGg6F/QYz6zMsUzp0o+3v16Jx2tw3Ji+TJ84wOyozSpOAN54eRH5+XWrHhtGXYX18D8+5pjjBqHrwX/fPZQNGZXJql+3Y+zdeE/TYNiY4NxlNsYxiRjHJLNjBITTEo/HqGbfdGkNHac1wdxQR5DiSCS3Jg+1N7OOTpoztAvFzkYKFNEmFk3nun5Tua7f1AbtYwZ2Z8zA7ialaps9+eX7Xofr1dZ4qK5yESmbv/nVbQ+czb1zXmbzut0AHHPyUM67YorJqcS45Dl8mXvH3iOFRbMzOvEqUzMdydW9LuaBtY9Qa7gAiLfHcn73M8wNJVokYHvxtCfZi0f406sv/Mjz87+rX6NH1zXi4iN47b0bQ2LmwoHKXBvYUvocbqOMROc4esVcfMgBnsFCKUVxQQU2u5Xo2OAdhNnZFNZuYEfl9+iahV5RJxBt72Z2pCMqdpXwW/kGrJqFEbGDCbc6zY7U6QXlXjxChIpzzhtP1upsli6um3kUHhHGvX+bGXLFSYV7Mz/uugBDeQGDgppFVHtyGJp0t9nRDkvTNBKS5YNHsEl09CPR0c/sGC0SHxbHlKTxZscQrSQFihAHsdutPPCvc9m8MY/qKhe9+qQQFR16n7y2l7+FUj4OXChsR8VbDEy4BesBa3UIIUQwkgJFiCboukbfIFt7o6UMVdtku0+5sCIFihAiuEmBIkQHlRJ+DDsr3q0/1rAQbe+PXY9r0XmUUuyoeIeCml+w6VH0irmQKHtwzqwRQnQcslCbEB1UasSxDE74E1YtEtCJd4xgbOpjLR5Ls7b4UVYV/oVdVQvZWfEe3+WeT4V7u18yCyHEPtKDIkQH1iPmXDKjZwFGq2bv+IxaNpe9sPdIofBhKDfbyl9naOIdh32uEEK0hRQoQuyllGJ71TJK3btICOtO94jhZkdqF3U9Jq2bWuxTtTRaFAbwGlVtCyWEEEcgBYrolGpq3bz09i9s2b6H1OQYLpk5niU1T5NV9kX9Y0bFncmxqVebmNJ8Nj2GaHtfKtxb6pc6V/hIDp9gcjIhREcnBYrodHw+g9vuX0DW+lwMQ2HRNX5Yuo4x136F7YCFYpeVvIvDEsX4xPODfg2UrNXZ7MotoVt6AgMHt99OzZqmMS71UZbk3UKZex0aVvrFXUXXiJPb7RpCCNEUKVBEh+Hy1WBg4LTsn0KrlGJN+bfsrFqN0xLFqPjT2LHFxeq1OfWP8RmKgoJadmUlkzF6d4Nz/lT4IgrFxKQLA/Z9tNR/H1vIO28uqT8+96KJXH7Vse12/nBrF47p9hpeoxpds6Nr8rIhhPA/eaURIc/tc/HqzkdYW/4rAKmO7szocjF9o4byfcGLLCp8Ax0LCsWq0i8YXnlno3NoGvjcTf86/Fz4CmMTfodVt/v1+2iNrFXZDYoTgNdfWsSkKf3o1z+tXa9l1WXZeSFE4EiBIkJaqbuARzf+gSpfBVB3GyavdifPbnuAEbGT2Vb5OZoGxt7xE7W+SqrifyUq0kFVtQvDUGga6LrOcaMnsI3sRtdQGLiNmlYVKD6fwbPPfc+XX2ZhtVo488xRnHP2mHa7ZZSTU9xke252SbsXKEIIEUiyDooIaa/tfJQqXyX7ipMDrSj9AY9q+E9cQ0N3VPHgveeQkli330tUpIO//vF0zh52OUclXnzQ43Xi7d1xWlq3N8z8Z77ljTcWU1hYSV5eGf/979d8+NHKVp2rKd3S41vULoQQoUJ6UETIUkqRXb2R/dNgGxYpOhZsejQaZai9+9EY+Ii1pzIgrQtv/m82LrcXu81S36MxPvF8PKqWJUVvAYpYexonJfyZef/4kEU/b8bpsHPhhRM5/dSRzcr42We/cfB+4Z99tprTTh3Rhu98v8FD05l53njeem1xfdsFv58U8sv0CyGEFCgiZGmahtMSRaW3bG+JojiwSDHwMSnxXLJK36fMm1/f/u2eFwi3xDAs7kTC7NZG5zw6+fK6QsWoIdwSy71z32PRz5swDEV1tZtHH/uCmGgnx0wZcMSMut64Z8eit2/H5ezrjmPyMf3JzSkmPSNBbu0IIToEucUjQtqpab9H08CCzsE9KAOiRzMp6VTGJ55z0LMUn+1+ghpfxSHPa9edRFjj8fkUPy3aiGHs7wbRNPjm23XNynfaaY17Sk49dXizntsSAwZ1ZdqJQ6Q4EUJ0GNKDIkLa8LjJRNsSWF/+K1bdRpqjJ5W+cmJs8fSLGoGu6ZR68tCx1A+UhbrelXLPHpyWqMOeX9M0dF3H5zMatFmtzVuZ9eKLJhFmt/Hll1lYrBbOOnMUJ5wwpHXfrBBCdCJSoIiQ1zNyID0jBx7y6wn2bg2KEwCLZiXGlnLEc1ssOqedMoJ3318G1PWeKKU49ZThzcqm6xrnnTee884b36zHCyGEqCMFiujwhsROY1PFEjZV/gzUzcyZkXYzDktks55/7TXHERcXwU8/byI83M55s8YzfFiGPyMLIUSnpyl18ByD4FdeXk5MTAxlZWVER7du+qfoXJQyyK5eQ5W3hBRnb+LtMlZDCCECrSXv39KDIjoFTdPpHiFjP4QQIlTILB4hhBBCBB0pUIQQQggRdKRAEUIIIUTQkQJFCCGEEEFHChQhhBBCBB0pUIQQQggRdKRAEUIIIUTQkQJFCCGEEEFHChQhhBBCBB0pUIQQQggRdKRAEUIIIUTQCcm9ePbtb1heXm5yEiGEEEI017737ebsUxySBUpFRQUA6enpJicRQgghREtVVFQQExNz2MdoqjllTJAxDINdu3YRFRWFpmktfn55eTnp6elkZ2cfcbtn0TT5GbaN/PzaRn5+bSc/w7aRn1/rKKWoqKggLS0NXT/8KJOQ7EHRdZ1u3bq1+TzR0dHyD6uN5GfYNvLzaxv5+bWd/AzbRn5+LXeknpN9ZJCsEEIIIYKOFChCCCGECDqdskAJCwvj3nvvJSwszOwoIUt+hm0jP7+2kZ9f28nPsG3k5+d/ITlIVgghhBAdW6fsQRFCCCFEcJMCRQghhBBBRwoUIYQQQgQdKVCEEEIIEXSkQAH27NnDpZdeytChQ4mPj8fhcNC7d28uv/xyNm/ebHa8oJebm8u8efOYMmUKXbp0ISIigkGDBnH77bdTVFRkdryQ8fTTT3PBBRfQv39/LBZLq1ZJ7ugMw+Dhhx+mf//+OBwO0tPTufXWW6mqqjI7WkiYN28eM2fOpGfPnmiaRmZmptmRQsbGjRu55557GD9+PElJSURFRTF8+HD++te/yr8/P5FZPMCGDRu47LLLmDBhAhkZGTidTjZt2sRzzz2Hy+Vi8eLFDBw40OyYQeupp57ixhtvZMaMGUyaNImoqCiWLFnC888/T2pqKkuXLiU1NdXsmEEvMzOToqIiRowYwbZt28jJyWnWhlqdyY033shjjz3GmWeeycknn8y6det4/PHHmTx5Ml9++eURl87u7DRNIz4+npEjR7Js2TKio6PZvn272bFCwh133MGTTz7Jaaedxvjx47HZbHzzzTe8+eabDB06lMWLF+N0Os2O2bEocUhLlixRgLrmmmvMjhLUsrKy1O7duxu1z58/XwHq1ltvNSFV6Nm2bZvy+XxKKaVmzJih5NezoaysLKVpmjrrrLMatD/22GMKUK+88opJyULHli1b6v970KBBKiMjw7wwIWbp0qWqtLS0Ufuf//xnBajHH3/chFQdm3zcOIyMjAwASkpKTE4S3AYNGtRkD8msWbMAyMrKCnSkkJSZmSk9AIfx2muvoZTipptuatB+5ZVXEh4ezssvv2xOsBDSs2dPsyOErNGjRze5h4y8zvlPSG4W6C8ej4eysjI8Hg+bN2/mvvvuA2D69OnmBgtROTk5AKSkpJicRHQES5cuRdd1xo4d26Dd4XAwfPhwli5dalIy0ZnJ65z/SIFygM8//5xTTz21/jglJYUHH3yQiy66yMRUoevee+8F4JJLLjE5iegIdu3aRWJiYpNLi3ft2pVFixbhdrux2+0mpBOdkc/n4y9/+QtWq5Xzzz/f7DgdTocqUEpLS3nkkUea/fg5c+YQHx9ffzx+/HgWLlxITU0Na9eu5fXXX6ekpASv14vV2qF+VE1q68/vQA8++CBvvfUWs2fPZurUqe2UMPi1589QNFRdXX3IfU8cDkf9Y6RAEYFy00038fPPP/O3v/2Nfv36mR2n4zF7EEx72rZtmwKa/WfTpk2HPV9ubq5KSEhQs2fPDtB3YK72+vnNnz9faZqmZsyYodxud4C/C3O1189QBsk2NnjwYJWcnNzk12bOnKkA5XK5ApwqdMkg2ba56667FNBp3h/M0KFG5GVmZqKUavaf3r17H/Z8aWlpTJs2jWeffRaXyxWg78I87fHze+6555g9ezYnnHACCxYswGazmfCdmKe9/w2K/dLS0igsLGzydzE3N5fExETpPREBcd999/HAAw9w6aWX8tRTT5kdp8PqUAWKP9TU1ODz+SgvLzc7StB77rnnuOKKK5g2bRrvvfeebEMu2tWYMWMwDIMlS5Y0aK+trWXlypWMHj3apGSiM7nvvvuYO3cul1xyCc8884wsqOhHUqAA+fn5TbavXbuWr776il69epGUlBTgVKHl+eef58orr2Tq1Km8//779WMChGgvs2bNQtO0RmN85s+fT3V1NRdccIE5wUSncf/99zN37lwuuuginnvuOVkWwM86/sjPZpg3bx4LFy5kxowZ9V30WVlZvPTSS3g8Hp588kmzIwa1Dz74gMsvv5zo6GhmzZrFggULGnw9MjKSM844w5xwIeTDDz9k1apVAPVbLDzwwAMAxMbGcv3115uWLRgMGTKE6667jieeeIKzzjqL6dOns27dOh577DGmTJkisyia4aWXXmLHjh0AFBQU4Ha76/+NZWRkyIzFw3jyySe599576d69O9OmTePVV19t8PWUlBSOP/54k9J1UP4e5BIKFi5cqM4++2yVkZGhnE6nstvtqkePHur3v/+9ysrKMjte0Lv33nsPOxBUBuI1zyWXXCI/wyPwer3q3//+t+rbt6+y2+0qLS1N3XzzzaqiosLsaCFhypQph/w3NmXKFLPjBbXD/X7Kz88/ZC8eIYQQQgQduYEmhBBCiKAjBYoQQgghgo4UKEIIIYQIOlKgCCGEECLoSIEihBBCiKAjBYoQQgghgo4UKEIIIYQIOlKgCCGEECLoSIEihBBCiKAjBYoQQgghgo4UKEIIIYQIOlKgCCGEECLoSIEihBBCiKDz//EeEmLWWxd7AAAAAElFTkSuQmCC" }, "metadata": {}, "output_type": "display_data" } ], "execution_count": 12 }, { "metadata": {}, "cell_type": "code", "outputs": [], "execution_count": null, "source": "", "id": "43aba95d09ade39c" } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 5 }