from typing import Optional, Union from torch_geometric.typing import OptTensor, PairTensor, PairOptTensor import torch from torch import Tensor from torch.nn import Linear from torch_scatter import scatter from torch_geometric.nn.conv import MessagePassing import torch.nn as nn import dgl import dgl.function as fn import numpy as np from dgl.nn import EdgeWeightNorm import torch import torch.nn as nn import torch.nn.functional as F import torch_cmspepr from src.layers.GravNetConv3 import knn_per_graph def src_dot_dst(src_field, dst_field, out_field): def func(edges): return { out_field: (edges.src[src_field] * edges.dst[dst_field]).sum( -1, keepdim=True ) } return func def src_dot_distance(src_field, dst_field, out_field): def func(edges): dij = (edges.src[src_field] - edges.dst[dst_field]).pow(2).sum(-1, keepdim=True) edge_weight = torch.sqrt(dij + 1e-6) edge_weight = torch.exp(-torch.square(dij)) return {out_field: edge_weight} return func def scaled_exp(field, scale_constant): def func(edges): # clamp for softmax numerical stability return {field: torch.exp((edges.data[field] / scale_constant).clamp(-5, 5))} return func def score_dij(field): def func(edges): # clamp for softmax numerical stability return {field: edges.data["score"].view(-1) * edges.data["dij"].view(-1)} return func class MultiHeadAttentionLayer(nn.Module): def __init__(self, in_dim, out_dim, num_heads, use_bias): super().__init__() self.out_dim = out_dim self.num_heads = num_heads if use_bias: self.Q = nn.Linear(in_dim, out_dim * num_heads, bias=True) self.K = nn.Linear(in_dim, out_dim * num_heads, bias=True) self.V = nn.Linear(in_dim, out_dim * num_heads, bias=True) else: self.Q = nn.Linear(in_dim, out_dim * num_heads, bias=False) self.K = nn.Linear(in_dim, out_dim * num_heads, bias=False) self.V = nn.Linear(in_dim, out_dim * num_heads, bias=False) def propagate_attention(self, g): # Compute attention score g.apply_edges(src_dot_dst("K_h", "Q_h", "score")) # , edges) g.apply_edges(scaled_exp("score", np.sqrt(self.out_dim))) g.apply_edges(src_dot_distance("s_l", "s_l", "dij")) g.apply_edges(score_dij("news")) # Send weighted values to target nodes eids = g.edges() g.send_and_recv(eids, fn.u_mul_e("V_h", "news", "V_h"), fn.sum("V_h", "wV")) g.send_and_recv(eids, fn.copy_e("score", "score"), fn.sum("score", "z")) def forward(self, g, h): Q_h = self.Q(h) K_h = self.K(h) V_h = self.V(h) # Reshaping into [num_nodes, num_heads, feat_dim] to # get projections for multi-head attention g.ndata["Q_h"] = Q_h.view(-1, self.num_heads, self.out_dim) g.ndata["K_h"] = K_h.view(-1, self.num_heads, self.out_dim) g.ndata["V_h"] = V_h.view(-1, self.num_heads, self.out_dim) self.propagate_attention(g) g.ndata["z"] = g.ndata["z"].tile((1, 1, self.out_dim)) mask_empty = g.ndata["z"] > 0 head_out = g.ndata["wV"] head_out[mask_empty] = head_out[mask_empty] / (g.ndata["z"][mask_empty]) g.ndata["z"] = g.ndata["z"][:, :, 0].view( g.ndata["wV"].shape[0], self.num_heads, 1 ) return head_out class GraphTransformerLayer(nn.Module): """ Param: """ def __init__( self, in_dim, out_dim, num_heads, k, dropout=0.0, layer_norm=False, batch_norm=True, residual=False, use_bias=False, ): super().__init__() self.in_channels = in_dim self.out_channels = out_dim self.num_heads = num_heads self.dropout = dropout self.residual = residual self.layer_norm = layer_norm self.batch_norm = batch_norm self.k = k space_dimensions = 3 self.lin_s = Linear(self.in_channels, space_dimensions, bias=False) self.lin_h = Linear(self.in_channels, self.out_channels) self.lin = Linear(self.in_channels + self.out_channels, self.out_channels) self.attention = MultiHeadAttentionLayer( in_dim, out_dim // num_heads, num_heads, use_bias ) self.O = nn.Linear(out_dim, out_dim) if self.layer_norm: self.layer_norm1 = nn.LayerNorm(out_dim) if self.batch_norm: self.batch_norm1 = nn.BatchNorm1d(out_dim) # FFN self.FFN_layer1 = nn.Linear(out_dim, out_dim * 2) self.FFN_layer2 = nn.Linear(out_dim * 2, out_dim) if self.layer_norm: self.layer_norm2 = nn.LayerNorm(out_dim) if self.batch_norm: self.batch_norm2 = nn.BatchNorm1d(out_dim) def forward(self, g, h): h_l = self.lin_h(h) s_l = self.lin_s(h) graph = knn_per_graph(g, s_l, self.k) graph.ndata["s_l"] = s_l h_in1 = h_l # for first residual connection # multi-head attention out attn_out = self.attention(graph, h) h = attn_out.view(-1, self.out_channels) h = F.dropout(h, self.dropout, training=self.training) h = self.O(h) h = self.lin(torch.cat((h_l, h), dim=1)) if self.residual: h = h_in1 + h # residual connection if self.layer_norm: h = self.layer_norm1(h) if self.batch_norm: h = self.batch_norm1(h) h_in2 = h # for second residual connection # FFN h = self.FFN_layer1(h) h = F.relu(h) h = F.dropout(h, self.dropout, training=self.training) h = self.FFN_layer2(h) if self.residual: h = h_in2 + h # residual connection if self.layer_norm: h = self.layer_norm2(h) if self.batch_norm: h = self.batch_norm2(h) return h, s_l