from typing import Optional, Tuple import torch @torch.jit.script def select_knn(x: torch.Tensor, k: int, batch_x: Optional[torch.Tensor] = None, inmask: Optional[torch.Tensor] = None, max_radius: float = 1e9, mask_mode: int = 1) -> Tuple[torch.Tensor, torch.Tensor]: r"""Finds for each element in :obj:`x` the :obj:`k` nearest points in :obj:`x`. Args: x (Tensor): Node feature matrix :math:`\mathbf{X} \in \mathbb{R}^{N \times F}`. k (int): The number of neighbors. batch_x (LongTensor, optional): Batch vector :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each node to a specific example. :obj:`batch_x` needs to be sorted. (default: :obj:`None`) max_radius (float): Maximum distance to nearest neighbours. (default: :obj:`1e9`) mask_mode (int): ??? (default: :obj:`1`) :rtype: :class:`Tuple`[`LongTensor`,`FloatTensor`] .. code-block:: python import torch from torch_cmspepr import select_knn x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]]) batch_x = torch.tensor([0, 0, 0, 0]) assign_index = select_knn(x, 2, batch_x) """ x = x.view(-1, 1) if x.dim() == 1 else x x = x.contiguous() mask: torch.Tensor = torch.ones(x.shape[0], dtype=torch.int32, device=x.device) if inmask is not None: mask = inmask row_splits: torch.Tensor = torch.tensor([0, x.shape[0]], dtype=torch.int32, device=x.device) if batch_x is not None: assert x.size(0) == batch_x.numel() batch_size = int(batch_x.max()) + 1 deg = x.new_zeros(batch_size, dtype=torch.long) deg.scatter_add_(0, batch_x, torch.ones_like(batch_x)) ptr_x = deg.new_zeros(batch_size + 1) torch.cumsum(deg, 0, out=ptr_x[1:]) return torch.ops.torch_cmspepr.select_knn( x, row_splits, mask, k, max_radius, mask_mode, ) @torch.jit.script def knn_graph(x: torch.Tensor, k: int, batch: Optional[torch.Tensor] = None, loop: bool = False, flow: str = 'source_to_target', cosine: bool = False, num_workers: int = 1) -> torch.Tensor: r"""Computes graph edges to the nearest :obj:`k` points. Args: x (Tensor): Node feature matrix :math:`\mathbf{X} \in \mathbb{R}^{N \times F}`. k (int): The number of neighbors. batch (LongTensor, optional): Batch vector :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each node to a specific example. :obj:`batch` needs to be sorted. (default: :obj:`None`) loop (bool, optional): If :obj:`True`, the graph will contain self-loops. (default: :obj:`False`) flow (string, optional): The flow direction when used in combination with message passing (:obj:`"source_to_target"` or :obj:`"target_to_source"`). (default: :obj:`"source_to_target"`) cosine (boolean, optional): If :obj:`True`, will use the Cosine distance instead of Euclidean distance to find nearest neighbors. (default: :obj:`False`) num_workers (int): Number of workers to use for computation. Has no effect in case :obj:`batch` is not :obj:`None`, or the input lies on the GPU. (default: :obj:`1`) :rtype: :class:`LongTensor` .. code-block:: python import torch from torch_cluster import knn_graph x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]]) batch = torch.tensor([0, 0, 0, 0]) edge_index = knn_graph(x, k=2, batch=batch, loop=False) """ assert flow in ['source_to_target', 'target_to_source'] K = k if loop else k + 1 start = 0 if loop else 1 index_dists = select_knn(x, K, batch) # select_knn is always in "loop" mode neighbours, edge_dists = index_dists[0], index_dists[1] sources = torch.arange(neighbours.shape[0], device=neighbours.device)[:, None].expand(-1, k).contiguous().view(-1) targets = neighbours[:,start:].contiguous().view(-1) edge_index = torch.cat([sources[None, :], targets[None, :]], dim = 0) if flow == 'source_to_target': row, col = edge_index[1], edge_index[0] else: row, col = edge_index[0], edge_index[1] if not loop: mask = row != col row, col = row[mask], col[mask] return torch.stack([row, col], dim=0) class SelectKnn(torch.autograd.Function): @staticmethod def forward(ctx, ): pass