|
import os |
|
import spaces |
|
import gradio as gr |
|
from huggingface_hub import login as hf_login |
|
from pydantic import BaseModel |
|
from vllm import LLM |
|
|
|
hf_login(token=os.getenv("HF_TOKEN")) |
|
|
|
class PatientRecord(BaseModel): |
|
life_style: str |
|
family_history: str |
|
social_history: str |
|
medical_surgical_history: str |
|
signs_symptoms: str |
|
comorbidities: str |
|
diagnostic_techniques_procedures: str |
|
diagnosis: str |
|
laboratory_values: str |
|
pathology: str |
|
pharmacological_therapy: str |
|
interventional_therapy: str |
|
patient_outcome_assessment: str |
|
age: str |
|
gender: str |
|
|
|
model_name = "meta-llama/Llama-3.2-1B-Instruct" |
|
|
|
model = LLM( |
|
model=model_name, |
|
dtype=torch.bfloat16, |
|
trust_remote_code=True, |
|
enforce_eager=True, |
|
) |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# π Paper Analysis Tool") |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |