Spaces:
Sleeping
Sleeping
import gradio as gr | |
from ultralytics import YOLO | |
import cv2 | |
import numpy as np | |
# charger le modèle | |
model = YOLO("yolov8n-seg.pt") | |
# Fonction pour la détection sur image | |
def detect_objects_image(img): | |
results = model(img) # Détection | |
annotated_frame = results[0].plot() # Annoter les résultats | |
return annotated_frame | |
import tempfile | |
# Fonction pour la détection sur vidéo | |
def detect_objects_video(video): | |
# Si l'entrée est une chaîne, utiliser telle quelle. Sinon, utiliser .name (cas Gradio) | |
video_path = video.name if hasattr(video, 'name') else video | |
temp_output = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) | |
cap = cv2.VideoCapture(video_path) | |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
fps = cap.get(cv2.CAP_PROP_FPS) | |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
out = cv2.VideoWriter(temp_output.name, fourcc, fps, (width, height)) | |
while True: | |
ret, frame = cap.read() | |
if not ret: | |
break | |
results = model(frame) | |
annotated_frame = results[0].plot() | |
out.write(annotated_frame) | |
cap.release() | |
out.release() | |
return temp_output.name | |
demo = gr.Blocks(theme='NoCrypt/miku') | |
#Interface Gradio | |
image_input = gr.Image(type='numpy',label="Image à analyser") | |
image_output = gr.Image(type = 'numpy', label="Image annotée") | |
video_input = gr.Video(label="Video à analyser") | |
video_output = gr.Video(label="Video annotée") | |
interface1 = gr.Interface(fn=detect_objects_image, inputs=image_input, outputs=image_output, title="Détection sur Image") | |
interface2 = gr.Interface(fn=detect_objects_video, inputs=video_input, outputs=video_output, title="Détection sur Video") | |
with demo: | |
gr.TabbedInterface([interface1, interface2], ['image detection', 'video detection']) | |
demo.launch() |