Transferred from from PyTorch -> Tensorflow
Browse files- Dockerfile +1 -1
- backend.py +45 -72
- model.py +36 -52
- requirements.txt +7 -8
Dockerfile
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
# Get the image of python
|
| 2 |
-
FROM python:3.9
|
| 3 |
|
| 4 |
# Copy all the files from local-dir to machine dir
|
| 5 |
COPY . .
|
|
|
|
| 1 |
# Get the image of python
|
| 2 |
+
FROM python:3.7.9
|
| 3 |
|
| 4 |
# Copy all the files from local-dir to machine dir
|
| 5 |
COPY . .
|
backend.py
CHANGED
|
@@ -1,90 +1,63 @@
|
|
|
|
|
|
|
|
| 1 |
|
| 2 |
-
from model import get_model
|
| 3 |
-
|
| 4 |
-
import torch as T
|
| 5 |
-
import torch.nn.functional as F
|
| 6 |
-
from torchvision.transforms import v2
|
| 7 |
from fastapi import FastAPI, UploadFile, File
|
| 8 |
-
|
| 9 |
-
|
| 10 |
import json
|
| 11 |
-
import numpy as np
|
| 12 |
from PIL import Image
|
| 13 |
from io import BytesIO
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
######### Utilities #########
|
| 24 |
def load_image(image_data):
|
| 25 |
-
|
| 26 |
-
|
| 27 |
|
| 28 |
def preprocess(image):
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
pred_probs = pred_probs.detach().numpy()[0]
|
| 45 |
-
label = np.argmax(pred_probs, axis=-1)
|
| 46 |
-
|
| 47 |
-
return {
|
| 48 |
-
'pred_probs': pred_probs.tolist(),
|
| 49 |
-
'label': int(label)
|
| 50 |
-
}
|
| 51 |
-
|
| 52 |
-
####################################
|
| 53 |
-
|
| 54 |
-
############## Backend #############
|
| 55 |
-
app = FastAPI()
|
| 56 |
-
model = T.jit.load('model_script.pt')
|
| 57 |
|
| 58 |
@app.get("/")
|
| 59 |
def foo():
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
|
| 64 |
-
@app.post("/")
|
| 65 |
-
def bar():
|
| 66 |
-
return {
|
| 67 |
-
"status": "Response"
|
| 68 |
-
}
|
| 69 |
|
| 70 |
@app.post("/get_prediction")
|
| 71 |
-
async def predict(
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
'result': json.dumps(result)
|
| 81 |
-
}
|
| 82 |
-
|
| 83 |
-
@app.post("/test")
|
| 84 |
-
def test():
|
| 85 |
-
return {
|
| 86 |
-
'result': {
|
| 87 |
-
'pred_probs': [0.5, 0.2, 0.1],
|
| 88 |
-
'label': 0
|
| 89 |
-
}
|
| 90 |
-
}
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
| 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
from fastapi import FastAPI, UploadFile, File
|
|
|
|
|
|
|
| 5 |
import json
|
|
|
|
| 6 |
from PIL import Image
|
| 7 |
from io import BytesIO
|
| 8 |
|
| 9 |
+
from model import get_model
|
| 10 |
+
|
| 11 |
+
app = FastAPI()
|
| 12 |
+
|
| 13 |
+
IMAGE_WIDTH = 224
|
| 14 |
+
IMAGE_HEIGHT = 224
|
| 15 |
|
| 16 |
+
MODEL_WEIGHT_PATH = 'vgg_face_weights2.h5'
|
| 17 |
+
model = get_model(
|
| 18 |
+
image_shape = (IMAGE_WIDTH, IMAGE_HEIGHT, 3),
|
| 19 |
+
num_classes = 6,
|
| 20 |
+
model_weights = MODEL_WEIGHT_PATH
|
| 21 |
+
)
|
| 22 |
+
print(model.summary())
|
| 23 |
+
print("Model Loaded Successfully")
|
| 24 |
|
| 25 |
######### Utilities #########
|
| 26 |
def load_image(image_data):
|
| 27 |
+
image = Image.open(BytesIO(image_data))
|
| 28 |
+
return image
|
| 29 |
|
| 30 |
def preprocess(image):
|
| 31 |
+
image = image.resize((IMAGE_WIDTH, IMAGE_HEIGHT))
|
| 32 |
+
|
| 33 |
+
image = np.array(image)
|
| 34 |
+
image = np.expand_dims(image, axis=0)
|
| 35 |
+
|
| 36 |
+
return image
|
| 37 |
+
|
| 38 |
+
def get_prediction(image):
|
| 39 |
+
probs = model.predict(image)[0]
|
| 40 |
+
label = np.argmax(probs)
|
| 41 |
+
|
| 42 |
+
return {
|
| 43 |
+
'pred_probs': pred_probs.tolist(),
|
| 44 |
+
'label': int(label)
|
| 45 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
@app.get("/")
|
| 48 |
def foo():
|
| 49 |
+
return {
|
| 50 |
+
"status": "Face Expression Classifier"
|
| 51 |
+
}
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
@app.post("/get_prediction")
|
| 55 |
+
async def predict(face_image: UploadFile = File(...)):
|
| 56 |
+
image = load_image(await face_image.read())
|
| 57 |
+
|
| 58 |
+
image = preprocess(image)
|
| 59 |
+
result = get_prediction(image)
|
| 60 |
+
|
| 61 |
+
return {
|
| 62 |
+
"result": json.dumps(result)
|
| 63 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model.py
CHANGED
|
@@ -1,55 +1,39 @@
|
|
| 1 |
-
import
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
import
|
| 5 |
-
|
| 6 |
-
from
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
if not isinstance(child, nn.BatchNorm2d) and \
|
| 29 |
-
not isinstance(child, nn.Sequential) and \
|
| 30 |
-
not hasattr(child, 'block'):
|
| 31 |
-
|
| 32 |
-
for param in child.parameters():
|
| 33 |
-
|
| 34 |
-
param.requires_grad = True
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
if drop_rate is not None:
|
| 39 |
-
|
| 40 |
-
model.classifier[0] = nn.Dropout(drop_rate)
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
# Chagne the classifier head as per our need
|
| 45 |
-
|
| 46 |
-
model.classifier[1] = nn.Linear(2560, num_classes)
|
| 47 |
-
|
| 48 |
return model
|
| 49 |
|
|
|
|
| 50 |
if __name__ == "__main__":
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
| 3 |
+
|
| 4 |
+
import keras
|
| 5 |
+
from keras.layers import Input, Dropout, Dense
|
| 6 |
+
from keras.models import Model
|
| 7 |
+
from keras_vggface.vggface import VGGFace
|
| 8 |
+
|
| 9 |
+
def get_model(image_shape, num_classes, model_weights, unfreeze_layers=-3, drop_rate=0.5):
|
| 10 |
+
|
| 11 |
+
input_layer = Input(shape=image_shape)
|
| 12 |
+
vgg_base_model = VGGFace(include_top = False, input_shape = image_shape, pooling='avg')
|
| 13 |
+
|
| 14 |
+
# Freeze all the layers till unfreeze layers
|
| 15 |
+
for layer in vgg_base_model.layers[:unfreeze_layers]:
|
| 16 |
+
layer.trainable = False
|
| 17 |
+
|
| 18 |
+
for layer in vgg_base_model.layers[unfreeze_layers:]:
|
| 19 |
+
layer.trainable = True
|
| 20 |
+
|
| 21 |
+
x = vgg_base_model(input_layer)
|
| 22 |
+
|
| 23 |
+
x = Dropout(drop_rate)(x)
|
| 24 |
+
output = Dense(num_classes, activation='softmax')(x)
|
| 25 |
+
|
| 26 |
+
model = Model(inputs=[input_layer], outputs=[output], name="Expression_Classifier")
|
| 27 |
+
model.load_weights(model_weights)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
return model
|
| 29 |
|
| 30 |
+
|
| 31 |
if __name__ == "__main__":
|
| 32 |
+
model_path = "vgg_face_weights2.h5"
|
| 33 |
+
model = get_model(
|
| 34 |
+
image_shape = (224, 224, 3),
|
| 35 |
+
num_classes = 6,
|
| 36 |
+
model_weights = model_path
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
print(model.summary())
|
requirements.txt
CHANGED
|
@@ -1,8 +1,7 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
numpy
|
|
|
|
| 1 |
+
keras==2.2.4
|
| 2 |
+
keras_vggface==0.6
|
| 3 |
+
tensorflow==1.14.0
|
| 4 |
+
protobuf==3.20.1
|
| 5 |
+
h5py==2.10.0
|
| 6 |
+
fastapi==0.103.2
|
| 7 |
+
uvicorn[standard]
|
|
|