Commit
Β·
809f87e
1
Parent(s):
cb5664b
langgraph with openai + seperate llamaindex with subfolder
Browse files- app.py +14 -86
- langgraph_dir/agent.py +129 -0
- langgraph_dir/config.py +1 -0
- langgraph_dir/custom_tools.py +33 -0
- langgraph_dir/prompt.py +9 -0
- llamaindex_dir/agent.py +74 -0
- config.py β llamaindex_dir/config.py +1 -1
- custom_tools.py β llamaindex_dir/custom_tools.py +0 -2
- prompt.py β llamaindex_dir/prompt.py +0 -0
- requirements.txt +4 -1
app.py
CHANGED
@@ -3,96 +3,16 @@ import gradio as gr
|
|
3 |
import requests
|
4 |
import pandas as pd
|
5 |
|
6 |
-
from llama_index.core import PromptTemplate
|
7 |
-
from llama_index.core.workflow import Context
|
8 |
-
from llama_index.core.agent.workflow import ReActAgent, AgentStream, ToolCallResult
|
9 |
-
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI # customized to support different provider
|
10 |
-
from llama_index.tools.wikipedia import WikipediaToolSpec
|
11 |
-
from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec
|
12 |
-
from llama_index.tools.code_interpreter import CodeInterpreterToolSpec
|
13 |
-
|
14 |
-
from config import HF_MODEL_NAME, HF_PROVIDER
|
15 |
-
from prompt import custom_react_system_header_str
|
16 |
-
from custom_tools import query_image_tool, automatic_speech_recognition_tool
|
17 |
|
18 |
# (Keep Constants as is)
|
19 |
# --- Constants ---
|
20 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
21 |
|
22 |
-
# --- Basic Agent Definition ---
|
23 |
-
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
24 |
-
class BasicAgent:
|
25 |
-
def __init__(self):
|
26 |
-
print("BasicAgent initialized.")
|
27 |
-
def __call__(self, question: str) -> str:
|
28 |
-
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
29 |
-
fixed_answer = "This is a default answer."
|
30 |
-
print(f"Agent returning fixed answer: {fixed_answer}")
|
31 |
-
return fixed_answer
|
32 |
-
|
33 |
-
class LLamaIndexAgent:
|
34 |
-
def __init__(self,
|
35 |
-
model_name="Qwen/Qwen2.5-Coder-32B-Instruct",
|
36 |
-
provider="hf-inference",
|
37 |
-
show_tools_desc=True,
|
38 |
-
show_prompt=True):
|
39 |
-
|
40 |
-
# LLM definition
|
41 |
-
llm = HuggingFaceInferenceAPI(model_name=model_name,
|
42 |
-
provider=provider)
|
43 |
-
print(f"LLamaIndexAgent initialized with model \"{model_name}\"")
|
44 |
-
|
45 |
-
# tools definition
|
46 |
-
tool_spec_list = []
|
47 |
-
tool_spec_list += WikipediaToolSpec().to_tool_list()
|
48 |
-
tool_spec_list += DuckDuckGoSearchToolSpec().to_tool_list()
|
49 |
-
tool_spec_list += CodeInterpreterToolSpec().to_tool_list()
|
50 |
-
tool_spec_list += [query_image_tool, automatic_speech_recognition_tool]
|
51 |
-
|
52 |
-
# agent definition
|
53 |
-
self.agent = ReActAgent(llm=llm, tools=tool_spec_list)
|
54 |
-
|
55 |
-
# update default prompt with a custom one
|
56 |
-
custom_react_system_header = PromptTemplate(custom_react_system_header_str)
|
57 |
-
self.agent.update_prompts({"react_header": custom_react_system_header})
|
58 |
|
59 |
-
|
60 |
-
|
|
|
61 |
|
62 |
-
if show_tools_desc:
|
63 |
-
for i, tool in enumerate(tool_spec_list):
|
64 |
-
print("\n" + "="*30 + f" Tool {i+1} " + "="*30)
|
65 |
-
print(tool.metadata.description)
|
66 |
-
|
67 |
-
if show_prompt:
|
68 |
-
prompt_dict = self.agent.get_prompts()
|
69 |
-
for k, v in prompt_dict.items():
|
70 |
-
print("\n" + "="*30 + f" Prompt: {k} " + "="*30)
|
71 |
-
print(v.template)
|
72 |
-
|
73 |
-
async def __call__(self, question: str) -> str:
|
74 |
-
print("\n\n"+"*"*50)
|
75 |
-
print(f"Agent received question: {question}")
|
76 |
-
print("*"*50)
|
77 |
-
|
78 |
-
handler = self.agent.run(question, ctx=self.ctx)
|
79 |
-
async for ev in handler.stream_events():
|
80 |
-
# if isinstance(ev, ToolCallResult):
|
81 |
-
# print(f"\nCall {ev.tool_name} with {ev.tool_kwargs}\nReturned: {ev.tool_output}")
|
82 |
-
if isinstance(ev, AgentStream):
|
83 |
-
print(f"{ev.delta}", end="", flush=True)
|
84 |
-
|
85 |
-
response = await handler
|
86 |
-
|
87 |
-
# post-process the response (cast AgentOutput to str and keep only what's after "FINAL ANSWER:" for the exact match)
|
88 |
-
response = str(response)
|
89 |
-
try:
|
90 |
-
response = response.split("FINAL ANSWER:")[-1].strip()
|
91 |
-
except:
|
92 |
-
print('Could not split response on "FINAL ANSWER:"')
|
93 |
-
print("\n\n"+"-"*50)
|
94 |
-
print(f"Agent returning with answer: {response}")
|
95 |
-
return response
|
96 |
|
97 |
async def run_and_submit_all(profile: gr.OAuthProfile | None):
|
98 |
"""
|
@@ -115,9 +35,17 @@ async def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
115 |
|
116 |
# 1. Instantiate Agent (modify this part to create your agent)
|
117 |
try:
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
except Exception as e:
|
122 |
print(f"Error instantiating agent: {e}")
|
123 |
return f"Error initializing agent: {e}", None
|
|
|
3 |
import requests
|
4 |
import pandas as pd
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# (Keep Constants as is)
|
8 |
# --- Constants ---
|
9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# --- Choice of framework (either "langgraph" or "llamaindex") ---
|
13 |
+
# FRAMEWORK = 'langgraph'
|
14 |
+
FRAMEWORK = 'llamaindex'
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
async def run_and_submit_all(profile: gr.OAuthProfile | None):
|
18 |
"""
|
|
|
35 |
|
36 |
# 1. Instantiate Agent (modify this part to create your agent)
|
37 |
try:
|
38 |
+
if FRAMEWORK == 'langgraph':
|
39 |
+
from langgraph_dir.config import OPENAI_MODEL_NAME
|
40 |
+
from langgraph_dir.agent import LangGraphAgent
|
41 |
+
agent = LangGraphAgent(model_name=OPENAI_MODEL_NAME)
|
42 |
+
elif FRAMEWORK == 'llamaindex':
|
43 |
+
from llamaindex_dir.config import HF_MODEL_NAME, HF_PROVIDER
|
44 |
+
from llamaindex_dir.agent import LLamaIndexAgent
|
45 |
+
agent = LLamaIndexAgent(model_name=HF_MODEL_NAME, provider=HF_PROVIDER)
|
46 |
+
else:
|
47 |
+
raise AttributeError(
|
48 |
+
f"FRAMEWORK can either be 'langgraph' or 'llamaindex', received: '{FRAMEWORK}'")
|
49 |
except Exception as e:
|
50 |
print(f"Error instantiating agent: {e}")
|
51 |
return f"Error initializing agent: {e}", None
|
langgraph_dir/agent.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Literal
|
2 |
+
|
3 |
+
from langchain_openai import ChatOpenAI
|
4 |
+
from langgraph.graph import MessagesState
|
5 |
+
from langchain_core.messages import SystemMessage, HumanMessage, ToolMessage
|
6 |
+
from langgraph.graph import StateGraph, START, END
|
7 |
+
|
8 |
+
from .prompt import system_prompt
|
9 |
+
from .custom_tools import multiply, add, divide
|
10 |
+
|
11 |
+
|
12 |
+
class LangGraphAgent:
|
13 |
+
def __init__(self,
|
14 |
+
model_name="gpt-4.1-nano",
|
15 |
+
show_tools_desc=True,
|
16 |
+
show_prompt=True):
|
17 |
+
|
18 |
+
# =========== LLM definition ===========
|
19 |
+
llm = ChatOpenAI(model=model_name, temperature=0)
|
20 |
+
print(f"LangGraphAgent initialized with model \"{model_name}\"")
|
21 |
+
|
22 |
+
# =========== Augment the LLM with tools ===========
|
23 |
+
tools = [add, multiply, divide]
|
24 |
+
tools_by_name = {tool.name: tool for tool in tools}
|
25 |
+
llm_with_tools = llm.bind_tools(tools)
|
26 |
+
|
27 |
+
# tool_spec_list += WikipediaToolSpec().to_tool_list()
|
28 |
+
# tool_spec_list += DuckDuckGoSearchToolSpec().to_tool_list()
|
29 |
+
# tool_spec_list += CodeInterpreterToolSpec().to_tool_list()
|
30 |
+
# tool_spec_list += [query_image_tool, automatic_speech_recognition_tool]
|
31 |
+
|
32 |
+
|
33 |
+
# =========== Agent definition ===========
|
34 |
+
|
35 |
+
# Nodes
|
36 |
+
def llm_call(state: MessagesState):
|
37 |
+
"""LLM decides whether to call a tool or not"""
|
38 |
+
|
39 |
+
return {
|
40 |
+
"messages": [
|
41 |
+
llm_with_tools.invoke(
|
42 |
+
[
|
43 |
+
SystemMessage(
|
44 |
+
content=system_prompt
|
45 |
+
)
|
46 |
+
]
|
47 |
+
+ state["messages"]
|
48 |
+
)
|
49 |
+
]
|
50 |
+
}
|
51 |
+
|
52 |
+
def tool_node(state: dict):
|
53 |
+
"""Performs the tool call"""
|
54 |
+
|
55 |
+
result = []
|
56 |
+
for tool_call in state["messages"][-1].tool_calls:
|
57 |
+
tool = tools_by_name[tool_call["name"]]
|
58 |
+
observation = tool.invoke(tool_call["args"])
|
59 |
+
result.append(ToolMessage(content=observation, tool_call_id=tool_call["id"]))
|
60 |
+
return {"messages": result}
|
61 |
+
|
62 |
+
|
63 |
+
# Conditional edge function to route to the tool node or end based upon whether the LLM made a tool call
|
64 |
+
def should_continue(state: MessagesState) -> Literal["environment", END]:
|
65 |
+
"""Decide if we should continue the loop or stop based upon whether the LLM made a tool call"""
|
66 |
+
|
67 |
+
messages = state["messages"]
|
68 |
+
last_message = messages[-1]
|
69 |
+
# If the LLM makes a tool call, then perform an action
|
70 |
+
if last_message.tool_calls:
|
71 |
+
return "Action"
|
72 |
+
# Otherwise, we stop (reply to the user)
|
73 |
+
return END
|
74 |
+
|
75 |
+
# Build workflow
|
76 |
+
agent_builder = StateGraph(MessagesState)
|
77 |
+
|
78 |
+
# Add nodes
|
79 |
+
agent_builder.add_node("llm_call", llm_call)
|
80 |
+
agent_builder.add_node("environment", tool_node)
|
81 |
+
|
82 |
+
# Add edges to connect nodes
|
83 |
+
agent_builder.add_edge(START, "llm_call")
|
84 |
+
agent_builder.add_conditional_edges(
|
85 |
+
"llm_call",
|
86 |
+
should_continue,
|
87 |
+
{
|
88 |
+
# Name returned by should_continue : Name of next node to visit
|
89 |
+
"Action": "environment",
|
90 |
+
END: END,
|
91 |
+
},
|
92 |
+
)
|
93 |
+
agent_builder.add_edge("environment", "llm_call")
|
94 |
+
|
95 |
+
# Compile the agent
|
96 |
+
self.agent = agent_builder.compile()
|
97 |
+
|
98 |
+
|
99 |
+
# if show_tools_desc:
|
100 |
+
# for i, tool in enumerate(tool_spec_list):
|
101 |
+
# print("\n" + "="*30 + f" Tool {i+1} " + "="*30)
|
102 |
+
# print(tool.metadata.description)
|
103 |
+
|
104 |
+
# if show_prompt:
|
105 |
+
# prompt_dict = self.agent.get_prompts()
|
106 |
+
# for k, v in prompt_dict.items():
|
107 |
+
# print("\n" + "="*30 + f" Prompt: {k} " + "="*30)
|
108 |
+
# print(v.template)
|
109 |
+
|
110 |
+
def __call__(self, question: str) -> str:
|
111 |
+
print("\n\n"+"*"*50)
|
112 |
+
print(f"Agent received question: {question}")
|
113 |
+
print("*"*50)
|
114 |
+
|
115 |
+
# Invoke
|
116 |
+
messages = [HumanMessage(content=question)]
|
117 |
+
messages = self.agent.invoke({"messages": messages})
|
118 |
+
for m in messages["messages"]:
|
119 |
+
m.pretty_print()
|
120 |
+
|
121 |
+
# post-process the response (keep only what's after "FINAL ANSWER:" for the exact match)
|
122 |
+
response = str(messages["messages"][-1].content)
|
123 |
+
try:
|
124 |
+
response = response.split("FINAL ANSWER:")[-1].strip()
|
125 |
+
except:
|
126 |
+
print('Could not split response on "FINAL ANSWER:"')
|
127 |
+
print("\n\n"+"-"*50)
|
128 |
+
print(f"Agent returning with answer: {response}")
|
129 |
+
return response
|
langgraph_dir/config.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
OPENAI_MODEL_NAME = "gpt-4.1-nano"
|
langgraph_dir/custom_tools.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_core.tools import tool
|
2 |
+
|
3 |
+
@tool
|
4 |
+
def multiply(a: int, b: int) -> int:
|
5 |
+
"""Multiply a and b.
|
6 |
+
|
7 |
+
Args:
|
8 |
+
a: first int
|
9 |
+
b: second int
|
10 |
+
"""
|
11 |
+
return a * b
|
12 |
+
|
13 |
+
|
14 |
+
@tool
|
15 |
+
def add(a: int, b: int) -> int:
|
16 |
+
"""Adds a and b.
|
17 |
+
|
18 |
+
Args:
|
19 |
+
a: first int
|
20 |
+
b: second int
|
21 |
+
"""
|
22 |
+
return a + b
|
23 |
+
|
24 |
+
|
25 |
+
@tool
|
26 |
+
def divide(a: int, b: int) -> float:
|
27 |
+
"""Divide a and b.
|
28 |
+
|
29 |
+
Args:
|
30 |
+
a: first int
|
31 |
+
b: second int
|
32 |
+
"""
|
33 |
+
return a / b
|
langgraph_dir/prompt.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# customized GAIA system prompt
|
2 |
+
system_prompt = """\
|
3 |
+
You are a general AI assistant with tools.
|
4 |
+
I will ask you a question. Use your tools, and answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. \
|
5 |
+
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.
|
6 |
+
If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise.
|
7 |
+
If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise.
|
8 |
+
If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
9 |
+
"""
|
llamaindex_dir/agent.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from llama_index.core import PromptTemplate
|
2 |
+
from llama_index.core.workflow import Context
|
3 |
+
from llama_index.core.agent.workflow import ReActAgent, AgentStream, ToolCallResult
|
4 |
+
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI # customized to support different provider
|
5 |
+
from llama_index.tools.wikipedia import WikipediaToolSpec
|
6 |
+
from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec
|
7 |
+
from llama_index.tools.code_interpreter import CodeInterpreterToolSpec
|
8 |
+
|
9 |
+
from .prompt import custom_react_system_header_str
|
10 |
+
from .custom_tools import query_image_tool, automatic_speech_recognition_tool
|
11 |
+
|
12 |
+
class LLamaIndexAgent:
|
13 |
+
def __init__(self,
|
14 |
+
model_name="Qwen/Qwen2.5-Coder-32B-Instruct",
|
15 |
+
provider="hf-inference",
|
16 |
+
show_tools_desc=True,
|
17 |
+
show_prompt=True):
|
18 |
+
|
19 |
+
# LLM definition
|
20 |
+
llm = HuggingFaceInferenceAPI(model_name=model_name,
|
21 |
+
provider=provider)
|
22 |
+
print(f"LLamaIndexAgent initialized with model \"{model_name}\"")
|
23 |
+
|
24 |
+
# tools definition
|
25 |
+
tool_spec_list = []
|
26 |
+
tool_spec_list += WikipediaToolSpec().to_tool_list()
|
27 |
+
tool_spec_list += DuckDuckGoSearchToolSpec().to_tool_list()
|
28 |
+
tool_spec_list += CodeInterpreterToolSpec().to_tool_list()
|
29 |
+
tool_spec_list += [query_image_tool, automatic_speech_recognition_tool]
|
30 |
+
|
31 |
+
# agent definition
|
32 |
+
self.agent = ReActAgent(llm=llm, tools=tool_spec_list)
|
33 |
+
|
34 |
+
# update default prompt with a custom one
|
35 |
+
custom_react_system_header = PromptTemplate(custom_react_system_header_str)
|
36 |
+
self.agent.update_prompts({"react_header": custom_react_system_header})
|
37 |
+
|
38 |
+
# context definition
|
39 |
+
self.ctx = Context(self.agent)
|
40 |
+
|
41 |
+
if show_tools_desc:
|
42 |
+
for i, tool in enumerate(tool_spec_list):
|
43 |
+
print("\n" + "="*30 + f" Tool {i+1} " + "="*30)
|
44 |
+
print(tool.metadata.description)
|
45 |
+
|
46 |
+
if show_prompt:
|
47 |
+
prompt_dict = self.agent.get_prompts()
|
48 |
+
for k, v in prompt_dict.items():
|
49 |
+
print("\n" + "="*30 + f" Prompt: {k} " + "="*30)
|
50 |
+
print(v.template)
|
51 |
+
|
52 |
+
async def __call__(self, question: str) -> str:
|
53 |
+
print("\n\n"+"*"*50)
|
54 |
+
print(f"Agent received question: {question}")
|
55 |
+
print("*"*50)
|
56 |
+
|
57 |
+
handler = self.agent.run(question, ctx=self.ctx)
|
58 |
+
async for ev in handler.stream_events():
|
59 |
+
# if isinstance(ev, ToolCallResult):
|
60 |
+
# print(f"\nCall {ev.tool_name} with {ev.tool_kwargs}\nReturned: {ev.tool_output}")
|
61 |
+
if isinstance(ev, AgentStream):
|
62 |
+
print(f"{ev.delta}", end="", flush=True)
|
63 |
+
|
64 |
+
response = await handler
|
65 |
+
|
66 |
+
# post-process the response (cast AgentOutput to str and keep only what's after "FINAL ANSWER:" for the exact match)
|
67 |
+
response = str(response)
|
68 |
+
try:
|
69 |
+
response = response.split("FINAL ANSWER:")[-1].strip()
|
70 |
+
except:
|
71 |
+
print('Could not split response on "FINAL ANSWER:"')
|
72 |
+
print("\n\n"+"-"*50)
|
73 |
+
print(f"Agent returning with answer: {response}")
|
74 |
+
return response
|
config.py β llamaindex_dir/config.py
RENAMED
@@ -5,4 +5,4 @@ HF_PROVIDER = "nebius"
|
|
5 |
# HF_PROVIDER = "hf-inference"
|
6 |
|
7 |
# HF_MODEL_NAME = "Qwen/Qwen3-32B"
|
8 |
-
# HF_PROVIDER = "hf-inference"
|
|
|
5 |
# HF_PROVIDER = "hf-inference"
|
6 |
|
7 |
# HF_MODEL_NAME = "Qwen/Qwen3-32B"
|
8 |
+
# HF_PROVIDER = "hf-inference"
|
custom_tools.py β llamaindex_dir/custom_tools.py
RENAMED
@@ -1,5 +1,3 @@
|
|
1 |
-
# custom tools
|
2 |
-
|
3 |
from huggingface_hub import InferenceClient
|
4 |
from llama_index.core.tools import FunctionTool
|
5 |
|
|
|
|
|
|
|
1 |
from huggingface_hub import InferenceClient
|
2 |
from llama_index.core.tools import FunctionTool
|
3 |
|
prompt.py β llamaindex_dir/prompt.py
RENAMED
File without changes
|
requirements.txt
CHANGED
@@ -4,4 +4,7 @@ llama-index
|
|
4 |
llama-index-llms-huggingface-api @ git+https://github.com/guillaumefrd/llama_index.git@add-provider-HF-API#subdirectory=llama-index-integrations/llms/llama-index-llms-huggingface-api
|
5 |
llama_index.tools.wikipedia
|
6 |
llama_index.tools.duckduckgo
|
7 |
-
llama_index.tools.code_interpreter
|
|
|
|
|
|
|
|
4 |
llama-index-llms-huggingface-api @ git+https://github.com/guillaumefrd/llama_index.git@add-provider-HF-API#subdirectory=llama-index-integrations/llms/llama-index-llms-huggingface-api
|
5 |
llama_index.tools.wikipedia
|
6 |
llama_index.tools.duckduckgo
|
7 |
+
llama_index.tools.code_interpreter
|
8 |
+
langchain
|
9 |
+
langgraph
|
10 |
+
langchain-openai
|