Guillaume Fradet
commited on
Commit
·
b59053d
1
Parent(s):
81917a3
add llama-index agent (without tools for now)
Browse files- app.py +38 -10
- requirements.txt +3 -1
app.py
CHANGED
@@ -1,9 +1,13 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
-
import inspect
|
5 |
import pandas as pd
|
6 |
|
|
|
|
|
|
|
|
|
|
|
7 |
# (Keep Constants as is)
|
8 |
# --- Constants ---
|
9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
@@ -19,7 +23,29 @@ class BasicAgent:
|
|
19 |
print(f"Agent returning fixed answer: {fixed_answer}")
|
20 |
return fixed_answer
|
21 |
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
"""
|
24 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
25 |
and displays the results.
|
@@ -38,13 +64,14 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
38 |
questions_url = f"{api_url}/questions"
|
39 |
submit_url = f"{api_url}/submit"
|
40 |
|
41 |
-
# 1. Instantiate Agent (
|
42 |
try:
|
43 |
-
agent = BasicAgent()
|
|
|
44 |
except Exception as e:
|
45 |
print(f"Error instantiating agent: {e}")
|
46 |
return f"Error initializing agent: {e}", None
|
47 |
-
# In the case of an app running as a hugging Face space, this link points toward your codebase (
|
48 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
49 |
print(agent_code)
|
50 |
|
@@ -62,9 +89,9 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
62 |
print(f"Error fetching questions: {e}")
|
63 |
return f"Error fetching questions: {e}", None
|
64 |
except requests.exceptions.JSONDecodeError as e:
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
except Exception as e:
|
69 |
print(f"An unexpected error occurred fetching questions: {e}")
|
70 |
return f"An unexpected error occurred fetching questions: {e}", None
|
@@ -80,7 +107,8 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
80 |
print(f"Skipping item with missing task_id or question: {item}")
|
81 |
continue
|
82 |
try:
|
83 |
-
submitted_answer = agent(question_text)
|
|
|
84 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
85 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
86 |
except Exception as e:
|
@@ -91,7 +119,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
91 |
print("Agent did not produce any answers to submit.")
|
92 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
93 |
|
94 |
-
# 4. Prepare Submission
|
95 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
96 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
97 |
print(status_update)
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
|
|
4 |
import pandas as pd
|
5 |
|
6 |
+
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
|
7 |
+
from llama_index.core.agent.workflow import ReActAgent
|
8 |
+
from llama_index.core.workflow import Context
|
9 |
+
from llama_index.core.agent.workflow import AgentStream, ToolCallResult
|
10 |
+
|
11 |
# (Keep Constants as is)
|
12 |
# --- Constants ---
|
13 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
23 |
print(f"Agent returning fixed answer: {fixed_answer}")
|
24 |
return fixed_answer
|
25 |
|
26 |
+
class LLamaIndexAgent:
|
27 |
+
def __init__(self, model_name="Qwen/Qwen2.5-Coder-32B-Instruct"):
|
28 |
+
llm = HuggingFaceInferenceAPI(model_name=model_name)
|
29 |
+
self.agent = ReActAgent(tools=[], llm=llm)
|
30 |
+
self.ctx = Context(self.agent)
|
31 |
+
print(f"BasicAgent initialized with model \"{model_name}\"")
|
32 |
+
|
33 |
+
async def __call__(self, question: str) -> str:
|
34 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
35 |
+
|
36 |
+
handler = self.agent.run(question, ctx=self.ctx)
|
37 |
+
async for ev in handler.stream_events():
|
38 |
+
if isinstance(ev, ToolCallResult):
|
39 |
+
print(f"\nCall {ev.tool_name} with {ev.tool_kwargs}\nReturned: {ev.tool_output}")
|
40 |
+
if isinstance(ev, AgentStream):
|
41 |
+
print(f"{ev.delta}", end="", flush=True)
|
42 |
+
|
43 |
+
response = await handler
|
44 |
+
print("\n\n"+"-"*50)
|
45 |
+
print(f"Agent returning with answer: {response}")
|
46 |
+
return response
|
47 |
+
|
48 |
+
async def run_and_submit_all(profile: gr.OAuthProfile | None):
|
49 |
"""
|
50 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
51 |
and displays the results.
|
|
|
64 |
questions_url = f"{api_url}/questions"
|
65 |
submit_url = f"{api_url}/submit"
|
66 |
|
67 |
+
# 1. Instantiate Agent (modify this part to create your agent)
|
68 |
try:
|
69 |
+
# agent = BasicAgent()
|
70 |
+
agent = LLamaIndexAgent()
|
71 |
except Exception as e:
|
72 |
print(f"Error instantiating agent: {e}")
|
73 |
return f"Error initializing agent: {e}", None
|
74 |
+
# In the case of an app running as a hugging Face space, this link points toward your codebase (useful for others so please keep it public)
|
75 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
76 |
print(agent_code)
|
77 |
|
|
|
89 |
print(f"Error fetching questions: {e}")
|
90 |
return f"Error fetching questions: {e}", None
|
91 |
except requests.exceptions.JSONDecodeError as e:
|
92 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
93 |
+
print(f"Response text: {response.text[:500]}")
|
94 |
+
return f"Error decoding server response for questions: {e}", None
|
95 |
except Exception as e:
|
96 |
print(f"An unexpected error occurred fetching questions: {e}")
|
97 |
return f"An unexpected error occurred fetching questions: {e}", None
|
|
|
107 |
print(f"Skipping item with missing task_id or question: {item}")
|
108 |
continue
|
109 |
try:
|
110 |
+
# submitted_answer = agent(question_text)
|
111 |
+
submitted_answer = await agent(question_text)
|
112 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
113 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
114 |
except Exception as e:
|
|
|
119 |
print("Agent did not produce any answers to submit.")
|
120 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
121 |
|
122 |
+
# 4. Prepare Submission
|
123 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
124 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
125 |
print(status_update)
|
requirements.txt
CHANGED
@@ -1,2 +1,4 @@
|
|
1 |
gradio
|
2 |
-
requests
|
|
|
|
|
|
1 |
gradio
|
2 |
+
requests
|
3 |
+
llama-index
|
4 |
+
llama-index-llms-huggingface-api
|