from langchain_core.tools import tool from huggingface_hub import InferenceClient # --- Basic operations --- # @tool def multiply(a: float, b: float) -> float: """Multiplies two numbers. Args: a (float): the first number b (float): the second number """ return a * b @tool def add(a: float, b: float) -> float: """Adds two numbers. Args: a (float): the first number b (float): the second number """ return a + b @tool def subtract(a: float, b: float) -> int: """Subtracts two numbers. Args: a (float): the first number b (float): the second number """ return a - b @tool def divide(a: float, b: float) -> float: """Divides two numbers. Args: a (float): the first float number b (float): the second float number """ if b == 0: raise ValueError("Cannot divided by zero.") return a / b @tool def modulus(a: int, b: int) -> int: """Get the modulus of two numbers. Args: a (int): the first number b (int): the second number """ return a % b @tool def power(a: float, b: float) -> float: """Get the power of two numbers. Args: a (float): the first number b (float): the second number """ return a**b # --- Functions --- # @tool def query_image(query: str, image_url: str) -> str: """Ask anything about an image using a Vision Language Model Args: query (str): the query about the image, e.g. how many persons are on the image? image_url (str): the URL to the image """ client = InferenceClient(provider="nebius") try: completion = client.chat.completions.create( # model="google/gemma-3-27b-it", model="Qwen/Qwen2.5-VL-72B-Instruct", messages=[ { "role": "user", "content": [ { "type": "text", "text": query }, { "type": "image_url", "image_url": { "url": image_url } } ] } ], max_tokens=512, ) return completion.choices[0].message except Exception as e: return f"query_image failed: {e}" @tool def automatic_speech_recognition(file_url: str) -> str: """Transcribe an audio file to text Args: file_url (str): the URL to the audio file """ client = InferenceClient(provider="fal-ai") try: return client.automatic_speech_recognition(file_url, model="openai/whisper-large-v3") except Exception as e: return f"automatic_speech_recognition failed: {e}"