import requests from langchain_core.tools import tool from huggingface_hub import InferenceClient from openai import OpenAI # --- Basic operations --- # @tool def multiply(a: float, b: float) -> float: """Multiplies two numbers. Args: a (float): the first number b (float): the second number """ return a * b @tool def add(a: float, b: float) -> float: """Adds two numbers. Args: a (float): the first number b (float): the second number """ return a + b @tool def subtract(a: float, b: float) -> int: """Subtracts two numbers. Args: a (float): the first number b (float): the second number """ return a - b @tool def divide(a: float, b: float) -> float: """Divides two numbers. Args: a (float): the first float number b (float): the second float number """ if b == 0: raise ValueError("Cannot divided by zero.") return a / b @tool def modulus(a: int, b: int) -> int: """Get the modulus of two numbers. Args: a (int): the first number b (int): the second number """ return a % b @tool def power(a: float, b: float) -> float: """Get the power of two numbers. Args: a (float): the first number b (float): the second number """ return a**b # --- Functions --- # @tool def query_image(query: str, image_url: str) -> str: """Ask anything about an image using a Vision Language Model Args: query (str): the query about the image, e.g. how many persons are on the image? image_url (str): the URL to the image """ # PROVIDER = 'huggingface' PROVIDER = 'openai' try: if PROVIDER == 'huggingface': client = InferenceClient(provider="nebius") completion = client.chat.completions.create( # model="google/gemma-3-27b-it", model="Qwen/Qwen2.5-VL-72B-Instruct", messages=[ { "role": "user", "content": [ { "type": "text", "text": query }, { "type": "image_url", "image_url": { "url": image_url } } ] } ], max_tokens=512, ) return completion.choices[0].message elif PROVIDER == 'openai': client = OpenAI() response = client.responses.create( model="gpt-4.1-mini", input=[{ "role": "user", "content": [ {"type": "input_text", "text": query}, { "type": "input_image", "image_url": image_url, }, ], }], ) return response.output_text else: raise AttributeError(f'PROVIDER must be "openai" or "huggingface", received "{PROVIDER}"') except Exception as e: return f"query_image failed: {e}" @tool def automatic_speech_recognition(file_url: str, file_extension: str) -> str: """Transcribe an audio file to text Args: file_url (str): the URL to the audio file file_extension (str): the file extension, e.g. mp3 """ # PROVIDER = 'huggingface' PROVIDER = 'openai' try: if PROVIDER == 'huggingface': client = InferenceClient(provider="fal-ai") return client.automatic_speech_recognition(file_url, model="openai/whisper-large-v3") elif PROVIDER == 'openai': # download the audio file response = requests.get(file_url) response.raise_for_status() # write to disk file_extension = file_extension.replace('.','') with open(f'tmp.{file_extension}', 'wb') as file: file.write(response.content) audio_file = open(f'tmp.{file_extension}', "rb") client = OpenAI() transcription = client.audio.transcriptions.create( model="whisper-1", file=audio_file ) return transcription.text else: raise AttributeError(f'PROVIDER must be "openai" or "huggingface", received "{PROVIDER}"') except Exception as e: return f"automatic_speech_recognition failed: {e}"