|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import collections.abc |
|
from itertools import repeat |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
def _ntuple(n): |
|
def parse(x): |
|
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str): |
|
return x |
|
return tuple(repeat(x, n)) |
|
|
|
return parse |
|
|
|
|
|
to_2tuple = _ntuple(2) |
|
|
|
|
|
def drop_path( |
|
x, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True |
|
): |
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" |
|
if drop_prob == 0.0 or not training: |
|
return x |
|
keep_prob = 1 - drop_prob |
|
shape = (x.shape[0],) + (1,) * ( |
|
x.ndim - 1 |
|
) |
|
random_tensor = x.new_empty(shape).bernoulli_(keep_prob) |
|
if keep_prob > 0.0 and scale_by_keep: |
|
random_tensor.div_(keep_prob) |
|
return x * random_tensor |
|
|
|
|
|
class DropPath(nn.Module): |
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" |
|
|
|
def __init__(self, drop_prob: float = 0.0, scale_by_keep: bool = True): |
|
super(DropPath, self).__init__() |
|
self.drop_prob = drop_prob |
|
self.scale_by_keep = scale_by_keep |
|
|
|
def forward(self, x): |
|
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep) |
|
|
|
def extra_repr(self): |
|
return f"drop_prob={round(self.drop_prob,3):0.3f}" |
|
|
|
|
|
class Mlp(nn.Module): |
|
"""MLP as used in Vision Transformer, MLP-Mixer and related networks""" |
|
|
|
def __init__( |
|
self, |
|
in_features, |
|
hidden_features=None, |
|
out_features=None, |
|
act_layer=nn.GELU, |
|
bias=True, |
|
drop=0.0, |
|
): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
bias = to_2tuple(bias) |
|
drop_probs = to_2tuple(drop) |
|
|
|
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias[0]) |
|
self.act = act_layer() |
|
self.drop1 = nn.Dropout(drop_probs[0]) |
|
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1]) |
|
self.drop2 = nn.Dropout(drop_probs[1]) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop1(x) |
|
x = self.fc2(x) |
|
x = self.drop2(x) |
|
return x |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__( |
|
self, dim, rope=None, num_heads=8, qkv_bias=False, attn_drop=0.0, proj_drop=0.0 |
|
): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = head_dim**-0.5 |
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
self.rope = rope |
|
|
|
def forward(self, x, xpos): |
|
B, N, C = x.shape |
|
|
|
qkv = ( |
|
self.qkv(x) |
|
.reshape(B, N, 3, self.num_heads, C // self.num_heads) |
|
.transpose(1, 3) |
|
) |
|
q, k, v = [qkv[:, :, i] for i in range(3)] |
|
|
|
|
|
if self.rope is not None: |
|
q = self.rope(q, xpos) |
|
k = self.rope(k, xpos) |
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class Block(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
num_heads, |
|
mlp_ratio=4.0, |
|
qkv_bias=False, |
|
drop=0.0, |
|
attn_drop=0.0, |
|
drop_path=0.0, |
|
act_layer=nn.GELU, |
|
norm_layer=nn.LayerNorm, |
|
rope=None, |
|
): |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
self.attn = Attention( |
|
dim, |
|
rope=rope, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
attn_drop=attn_drop, |
|
proj_drop=drop, |
|
) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp( |
|
in_features=dim, |
|
hidden_features=mlp_hidden_dim, |
|
act_layer=act_layer, |
|
drop=drop, |
|
) |
|
|
|
def forward(self, x, xpos): |
|
x = x + self.drop_path(self.attn(self.norm1(x), xpos)) |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
return x |
|
|
|
|
|
class CrossAttention(nn.Module): |
|
def __init__( |
|
self, dim, rope=None, num_heads=8, qkv_bias=False, attn_drop=0.0, proj_drop=0.0 |
|
): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = head_dim**-0.5 |
|
|
|
self.projq = nn.Linear(dim, dim, bias=qkv_bias) |
|
self.projk = nn.Linear(dim, dim, bias=qkv_bias) |
|
self.projv = nn.Linear(dim, dim, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
self.rope = rope |
|
|
|
def forward(self, query, key, value, qpos, kpos): |
|
B, Nq, C = query.shape |
|
Nk = key.shape[1] |
|
Nv = value.shape[1] |
|
|
|
q = ( |
|
self.projq(query) |
|
.reshape(B, Nq, self.num_heads, C // self.num_heads) |
|
.permute(0, 2, 1, 3) |
|
) |
|
k = ( |
|
self.projk(key) |
|
.reshape(B, Nk, self.num_heads, C // self.num_heads) |
|
.permute(0, 2, 1, 3) |
|
) |
|
v = ( |
|
self.projv(value) |
|
.reshape(B, Nv, self.num_heads, C // self.num_heads) |
|
.permute(0, 2, 1, 3) |
|
) |
|
|
|
if self.rope is not None: |
|
q = self.rope(q, qpos) |
|
k = self.rope(k, kpos) |
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, Nq, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class DecoderBlock(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
num_heads, |
|
mlp_ratio=4.0, |
|
qkv_bias=False, |
|
drop=0.0, |
|
attn_drop=0.0, |
|
drop_path=0.0, |
|
act_layer=nn.GELU, |
|
norm_layer=nn.LayerNorm, |
|
norm_mem=True, |
|
rope=None, |
|
): |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
self.attn = Attention( |
|
dim, |
|
rope=rope, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
attn_drop=attn_drop, |
|
proj_drop=drop, |
|
) |
|
self.cross_attn = CrossAttention( |
|
dim, |
|
rope=rope, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
attn_drop=attn_drop, |
|
proj_drop=drop, |
|
) |
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
self.norm3 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp( |
|
in_features=dim, |
|
hidden_features=mlp_hidden_dim, |
|
act_layer=act_layer, |
|
drop=drop, |
|
) |
|
self.norm_y = norm_layer(dim) if norm_mem else nn.Identity() |
|
|
|
def forward(self, x, y, xpos, ypos): |
|
x = x + self.drop_path(self.attn(self.norm1(x), xpos)) |
|
y_ = self.norm_y(y) |
|
x = x + self.drop_path(self.cross_attn(self.norm2(x), y_, y_, xpos, ypos)) |
|
x = x + self.drop_path(self.mlp(self.norm3(x))) |
|
return x, y |
|
|
|
|
|
|
|
class PositionGetter(object): |
|
"""return positions of patches""" |
|
|
|
def __init__(self): |
|
self.cache_positions = {} |
|
|
|
def __call__(self, b, h, w, device): |
|
if not (h, w) in self.cache_positions: |
|
x = torch.arange(w, device=device) |
|
y = torch.arange(h, device=device) |
|
self.cache_positions[h, w] = torch.cartesian_prod(y, x) |
|
pos = self.cache_positions[h, w].view(1, h * w, 2).expand(b, -1, 2).clone() |
|
return pos |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
"""just adding _init_weights + position getter compared to timm.models.layers.patch_embed.PatchEmbed""" |
|
|
|
def __init__( |
|
self, |
|
img_size=224, |
|
patch_size=16, |
|
in_chans=3, |
|
embed_dim=768, |
|
norm_layer=None, |
|
flatten=True, |
|
): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) |
|
self.num_patches = self.grid_size[0] * self.grid_size[1] |
|
self.flatten = flatten |
|
|
|
self.proj = nn.Conv2d( |
|
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size |
|
) |
|
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() |
|
|
|
self.position_getter = PositionGetter() |
|
|
|
def forward(self, x): |
|
B, C, H, W = x.shape |
|
torch._assert( |
|
H == self.img_size[0], |
|
f"Input image height ({H}) doesn't match model ({self.img_size[0]}).", |
|
) |
|
torch._assert( |
|
W == self.img_size[1], |
|
f"Input image width ({W}) doesn't match model ({self.img_size[1]}).", |
|
) |
|
x = self.proj(x) |
|
pos = self.position_getter(B, x.size(2), x.size(3), x.device) |
|
if self.flatten: |
|
x = x.flatten(2).transpose(1, 2) |
|
x = self.norm(x) |
|
return x, pos |
|
|
|
def _init_weights(self): |
|
w = self.proj.weight.data |
|
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1])) |
|
|