gupta1912 commited on
Commit
625fdbe
·
1 Parent(s): 309fa89

added files

Browse files
Files changed (2) hide show
  1. app.py +35 -0
  2. requirements.txt +5 -0
app.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
3
+
4
+ model_path = "gupta1912/phi-2-custom-oasst1"
5
+
6
+ model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
7
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
8
+
9
+ def generate_text(prompt, response_length):
10
+
11
+ prompt = str(prompt)
12
+ max_len = int(response_length)
13
+
14
+ gen = pipeline('text-generation', model=model, tokenizer=tokenizer, max_length=max_len)
15
+ result = gen(f"<s>[INST] {prompt} [/INST]")
16
+ output_msg = result[0]['generated_text'].split("[/INST] ")[1]
17
+ return output_msg
18
+
19
+ def gradio_fn(prompt, response_length):
20
+ output_txt_msg = generate_text(prompt, response_length)
21
+ return output_txt_msg
22
+
23
+ markdown_description = """
24
+ - This is a Gradio app that answers the query you ask it
25
+ - Uses **microsoft/phi-2** model finetuned on **OpenAssistant/oasst1** dataset
26
+ """
27
+ demo = gr.Interface(fn=gradio_fn,
28
+ inputs=[gr.Textbox(info="How may I help you ? please enter your prompt here..."),
29
+ gr.Slider(value=50, minimum=50, maximum=300, \
30
+ info="Choose a response length min chars=50, max=300")],
31
+ outputs=gr.Textbox(),
32
+ title="custom trained phi2 - Dialog Partner",
33
+ description=markdown_description)
34
+
35
+ demo.queue().launch(share=True, debug=True)
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ gradio==3.50.2
2
+ torch>=2.1.0
3
+ transformers
4
+ tokenizers
5
+ einops