feat: add gradio demo
Browse files
demo.py
ADDED
|
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import os
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from torchvision import transforms
|
| 6 |
+
from detector.model import *
|
| 7 |
+
from detector import config
|
| 8 |
+
from font_dataset.font import load_fonts, load_font_with_exclusion
|
| 9 |
+
|
| 10 |
+
parser = argparse.ArgumentParser()
|
| 11 |
+
parser.add_argument(
|
| 12 |
+
"-d",
|
| 13 |
+
"--device",
|
| 14 |
+
type=int,
|
| 15 |
+
default=0,
|
| 16 |
+
help="GPU devices to use (default: 0), -1 for CPU",
|
| 17 |
+
)
|
| 18 |
+
parser.add_argument(
|
| 19 |
+
"-c",
|
| 20 |
+
"--checkpoint",
|
| 21 |
+
type=str,
|
| 22 |
+
default=None,
|
| 23 |
+
help="Trainer checkpoint path (default: None)",
|
| 24 |
+
)
|
| 25 |
+
parser.add_argument(
|
| 26 |
+
"-m",
|
| 27 |
+
"--model",
|
| 28 |
+
type=str,
|
| 29 |
+
default="resnet18",
|
| 30 |
+
choices=["resnet18", "resnet34", "resnet50", "resnet101", "deepfont"],
|
| 31 |
+
help="Model to use (default: resnet18)",
|
| 32 |
+
)
|
| 33 |
+
parser.add_argument(
|
| 34 |
+
"-f",
|
| 35 |
+
"--font-classification-only",
|
| 36 |
+
action="store_true",
|
| 37 |
+
help="Font classification only (default: False)",
|
| 38 |
+
)
|
| 39 |
+
parser.add_argument(
|
| 40 |
+
"-z",
|
| 41 |
+
"--size",
|
| 42 |
+
type=int,
|
| 43 |
+
default=512,
|
| 44 |
+
help="Model feature image input size (default: 512)",
|
| 45 |
+
)
|
| 46 |
+
parser.add_argument(
|
| 47 |
+
"-s",
|
| 48 |
+
"--share",
|
| 49 |
+
action="store_true",
|
| 50 |
+
help="Get public link via Gradio (default: False)",
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
args = parser.parse_args()
|
| 54 |
+
|
| 55 |
+
config.INPUT_SIZE = args.size
|
| 56 |
+
device = torch.device("cpu") if args.device == -1 else torch.device("cuda", args.device)
|
| 57 |
+
|
| 58 |
+
regression_use_tanh = False
|
| 59 |
+
|
| 60 |
+
if args.model == "resnet18":
|
| 61 |
+
model = ResNet18Regressor(regression_use_tanh=regression_use_tanh)
|
| 62 |
+
elif args.model == "resnet34":
|
| 63 |
+
model = ResNet34Regressor(regression_use_tanh=regression_use_tanh)
|
| 64 |
+
elif args.model == "resnet50":
|
| 65 |
+
model = ResNet50Regressor(regression_use_tanh=regression_use_tanh)
|
| 66 |
+
elif args.model == "resnet101":
|
| 67 |
+
model = ResNet101Regressor(regression_use_tanh=regression_use_tanh)
|
| 68 |
+
elif args.model == "deepfont":
|
| 69 |
+
assert args.pretrained is False
|
| 70 |
+
assert args.size == 105
|
| 71 |
+
assert args.font_classification_only is True
|
| 72 |
+
model = DeepFontBaseline()
|
| 73 |
+
else:
|
| 74 |
+
raise NotImplementedError()
|
| 75 |
+
|
| 76 |
+
if torch.__version__ >= "2.0" and os.name == "posix":
|
| 77 |
+
model = torch.compile(model)
|
| 78 |
+
|
| 79 |
+
detector = FontDetector(
|
| 80 |
+
model=model,
|
| 81 |
+
lambda_font=1,
|
| 82 |
+
lambda_direction=1,
|
| 83 |
+
lambda_regression=1,
|
| 84 |
+
font_classification_only=args.font_classification_only,
|
| 85 |
+
lr=1,
|
| 86 |
+
betas=(1, 1),
|
| 87 |
+
num_warmup_iters=1,
|
| 88 |
+
num_iters=1e9,
|
| 89 |
+
num_epochs=1e9,
|
| 90 |
+
)
|
| 91 |
+
detector.load_from_checkpoint(
|
| 92 |
+
args.checkpoint,
|
| 93 |
+
map_location=device,
|
| 94 |
+
model=model,
|
| 95 |
+
lambda_font=1,
|
| 96 |
+
lambda_direction=1,
|
| 97 |
+
lambda_regression=1,
|
| 98 |
+
font_classification_only=args.font_classification_only,
|
| 99 |
+
lr=1,
|
| 100 |
+
betas=(1, 1),
|
| 101 |
+
num_warmup_iters=1,
|
| 102 |
+
num_iters=1e9,
|
| 103 |
+
num_epochs=1e9,
|
| 104 |
+
)
|
| 105 |
+
detector = detector.to(device)
|
| 106 |
+
detector.eval()
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
transform = transforms.Compose(
|
| 110 |
+
[
|
| 111 |
+
transforms.Resize((512, 512)),
|
| 112 |
+
transforms.ToTensor(),
|
| 113 |
+
]
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
print("Preparing fonts ...")
|
| 117 |
+
font_list, exclusion_rule = load_fonts()
|
| 118 |
+
|
| 119 |
+
font_list = list(filter(lambda x: not exclusion_rule(x), font_list))
|
| 120 |
+
font_list.sort(key=lambda x: x.path)
|
| 121 |
+
|
| 122 |
+
for i in range(len(font_list)):
|
| 123 |
+
font_list[i].path = font_list[i].path[18:] # remove ./dataset/fonts/./ prefix
|
| 124 |
+
|
| 125 |
+
font_demo_images = []
|
| 126 |
+
|
| 127 |
+
for i in range(len(font_list)):
|
| 128 |
+
font_demo_images.append(Image.open(f"demo_fonts/{i}.jpg").convert("RGB"))
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def recognize_font(image):
|
| 132 |
+
transformed_image = transform(image)
|
| 133 |
+
with torch.no_grad():
|
| 134 |
+
transformed_image = transformed_image.to(device)
|
| 135 |
+
output = detector(transformed_image.unsqueeze(0))
|
| 136 |
+
prob = output[0][: config.FONT_COUNT].softmax(dim=0)
|
| 137 |
+
|
| 138 |
+
indicies = torch.topk(prob, 9)[1]
|
| 139 |
+
|
| 140 |
+
return [
|
| 141 |
+
{font_list[i].path: float(prob[i]) for i in range(config.FONT_COUNT)},
|
| 142 |
+
*[gr.Image.update(value=font_demo_images[indicies[i]]) for i in range(9)],
|
| 143 |
+
*[
|
| 144 |
+
gr.Markdown.update(
|
| 145 |
+
value=f"**Font Name**: {font_list[indicies[i]].path}"
|
| 146 |
+
)
|
| 147 |
+
for i in range(9)
|
| 148 |
+
],
|
| 149 |
+
]
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
def generate_grid(num_columns, num_rows):
|
| 153 |
+
ret_images, ret_labels = [], []
|
| 154 |
+
with gr.Column():
|
| 155 |
+
for _ in range(num_rows):
|
| 156 |
+
with gr.Row():
|
| 157 |
+
for _ in range(num_columns):
|
| 158 |
+
with gr.Column():
|
| 159 |
+
ret_labels.append(gr.Markdown("**Font Name**"))
|
| 160 |
+
ret_images.append(gr.Image())
|
| 161 |
+
return ret_images, ret_labels
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
with gr.Blocks() as demo:
|
| 165 |
+
with gr.Column():
|
| 166 |
+
with gr.Row():
|
| 167 |
+
inp = gr.Image(type="pil", label="Input Image")
|
| 168 |
+
out = gr.Label(num_top_classes=9, label="Output Font")
|
| 169 |
+
font_demo_images_blocks, font_demo_labels_blocks = generate_grid(3, 3)
|
| 170 |
+
|
| 171 |
+
submit_button = gr.Button(label="Submit")
|
| 172 |
+
submit_button.click(
|
| 173 |
+
fn=recognize_font,
|
| 174 |
+
inputs=inp,
|
| 175 |
+
outputs=[out, *font_demo_images_blocks, *font_demo_labels_blocks],
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
demo.launch(share=args.share)
|