feat: add different resnet models
Browse files- detector/model.py +55 -2
detector/model.py
CHANGED
|
@@ -11,7 +11,7 @@ import pytorch_lightning as ptl
|
|
| 11 |
|
| 12 |
|
| 13 |
class ResNet18Regressor(nn.Module):
|
| 14 |
-
def __init__(self, regression_use_tanh: bool=False):
|
| 15 |
super().__init__()
|
| 16 |
self.model = torchvision.models.resnet18(weights=False)
|
| 17 |
self.model.fc = nn.Linear(512, config.FONT_COUNT + 12)
|
|
@@ -27,6 +27,57 @@ class ResNet18Regressor(nn.Module):
|
|
| 27 |
return X
|
| 28 |
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
class FontDetectorLoss(nn.Module):
|
| 31 |
def __init__(self, lambda_font, lambda_direction, lambda_regression):
|
| 32 |
super().__init__()
|
|
@@ -134,7 +185,9 @@ class FontDetector(ptl.LightningModule):
|
|
| 134 |
def on_train_epoch_end(self) -> None:
|
| 135 |
self.log("train_font_accur", self.font_accur_train.compute(), sync_dist=True)
|
| 136 |
self.log(
|
| 137 |
-
"train_direction_accur",
|
|
|
|
|
|
|
| 138 |
)
|
| 139 |
self.font_accur_train.reset()
|
| 140 |
self.direction_accur_train.reset()
|
|
|
|
| 11 |
|
| 12 |
|
| 13 |
class ResNet18Regressor(nn.Module):
|
| 14 |
+
def __init__(self, regression_use_tanh: bool = False):
|
| 15 |
super().__init__()
|
| 16 |
self.model = torchvision.models.resnet18(weights=False)
|
| 17 |
self.model.fc = nn.Linear(512, config.FONT_COUNT + 12)
|
|
|
|
| 27 |
return X
|
| 28 |
|
| 29 |
|
| 30 |
+
class ResNet34Regressor(nn.Module):
|
| 31 |
+
def __init__(self, regression_use_tanh: bool = False):
|
| 32 |
+
super().__init__()
|
| 33 |
+
self.model = torchvision.models.resnet34(weights=False)
|
| 34 |
+
self.model.fc = nn.Linear(512, config.FONT_COUNT + 12)
|
| 35 |
+
self.regression_use_tanh = regression_use_tanh
|
| 36 |
+
|
| 37 |
+
def forward(self, X):
|
| 38 |
+
X = self.model(X)
|
| 39 |
+
# [0, 1]
|
| 40 |
+
if not self.regression_use_tanh:
|
| 41 |
+
X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].sigmoid()
|
| 42 |
+
else:
|
| 43 |
+
X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].tanh()
|
| 44 |
+
return X
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class ResNet50Regressor(nn.Module):
|
| 48 |
+
def __init__(self, regression_use_tanh: bool = False):
|
| 49 |
+
super().__init__()
|
| 50 |
+
self.model = torchvision.models.resnet50(weights=False)
|
| 51 |
+
self.model.fc = nn.Linear(2048, config.FONT_COUNT + 12)
|
| 52 |
+
self.regression_use_tanh = regression_use_tanh
|
| 53 |
+
|
| 54 |
+
def forward(self, X):
|
| 55 |
+
X = self.model(X)
|
| 56 |
+
# [0, 1]
|
| 57 |
+
if not self.regression_use_tanh:
|
| 58 |
+
X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].sigmoid()
|
| 59 |
+
else:
|
| 60 |
+
X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].tanh()
|
| 61 |
+
return X
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class ResNet101Regressor(nn.Module):
|
| 65 |
+
def __init__(self, regression_use_tanh: bool = False):
|
| 66 |
+
super().__init__()
|
| 67 |
+
self.model = torchvision.models.resnet101(weights=False)
|
| 68 |
+
self.model.fc = nn.Linear(2048, config.FONT_COUNT + 12)
|
| 69 |
+
self.regression_use_tanh = regression_use_tanh
|
| 70 |
+
|
| 71 |
+
def forward(self, X):
|
| 72 |
+
X = self.model(X)
|
| 73 |
+
# [0, 1]
|
| 74 |
+
if not self.regression_use_tanh:
|
| 75 |
+
X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].sigmoid()
|
| 76 |
+
else:
|
| 77 |
+
X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].tanh()
|
| 78 |
+
return X
|
| 79 |
+
|
| 80 |
+
|
| 81 |
class FontDetectorLoss(nn.Module):
|
| 82 |
def __init__(self, lambda_font, lambda_direction, lambda_regression):
|
| 83 |
super().__init__()
|
|
|
|
| 185 |
def on_train_epoch_end(self) -> None:
|
| 186 |
self.log("train_font_accur", self.font_accur_train.compute(), sync_dist=True)
|
| 187 |
self.log(
|
| 188 |
+
"train_direction_accur",
|
| 189 |
+
self.direction_accur_train.compute(),
|
| 190 |
+
sync_dist=True,
|
| 191 |
)
|
| 192 |
self.font_accur_train.reset()
|
| 193 |
self.direction_accur_train.reset()
|