Spaces:
Running
Running
| def get_loaders(model_name, reward_type, llama_type=None): | |
| # NOTE: Some models need specific new prompt_type | |
| # E.g. t5_xxl_true_nli_mixture has input format: "premise: PREMISE_TEXT hypothesis: HYPOTHESIS_TEXT".) | |
| if llama_type is None: | |
| llama_type = "llama" in model_name.lower() | |
| if llama_type: | |
| from transformers import LlamaForCausalLM, LlamaTokenizer | |
| model_loader = LlamaForCausalLM | |
| tokenizer_loader = LlamaTokenizer | |
| elif 'distilgpt2' in model_name.lower(): | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| return AutoModelForCausalLM, AutoTokenizer | |
| elif 'gpt2' in model_name.lower(): | |
| from transformers import GPT2LMHeadModel, GPT2Tokenizer | |
| return GPT2LMHeadModel, GPT2Tokenizer | |
| elif 'mbart-' in model_name.lower(): | |
| from transformers import MBartForConditionalGeneration, MBart50TokenizerFast | |
| return MBartForConditionalGeneration, MBart50TokenizerFast | |
| elif 't5' == model_name.lower() or \ | |
| 't5-' in model_name.lower() or \ | |
| 'flan-' in model_name.lower(): | |
| from transformers import AutoTokenizer, T5ForConditionalGeneration | |
| return T5ForConditionalGeneration, AutoTokenizer | |
| elif 'bigbird' in model_name: | |
| from transformers import BigBirdPegasusForConditionalGeneration, AutoTokenizer | |
| return BigBirdPegasusForConditionalGeneration, AutoTokenizer | |
| elif 'bart-large-cnn-samsum' in model_name or 'flan-t5-base-samsum' in model_name: | |
| from transformers import pipeline | |
| return pipeline, "summarization" | |
| elif reward_type or 'OpenAssistant/reward-model'.lower() in model_name.lower(): | |
| from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
| return AutoModelForSequenceClassification, AutoTokenizer | |
| else: | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| model_loader = AutoModelForCausalLM | |
| tokenizer_loader = AutoTokenizer | |
| return model_loader, tokenizer_loader | |
| def get_tokenizer(tokenizer_loader, tokenizer_base_model, local_files_only, resume_download, use_auth_token): | |
| tokenizer = tokenizer_loader.from_pretrained(tokenizer_base_model, | |
| local_files_only=local_files_only, | |
| resume_download=resume_download, | |
| use_auth_token=use_auth_token, | |
| padding_side='left') | |
| tokenizer.pad_token_id = 0 # different from the eos token | |
| # when generating, we will use the logits of right-most token to predict the next token | |
| # so the padding should be on the left, | |
| # e.g. see: https://huggingface.co/transformers/v4.11.3/model_doc/t5.html#inference | |
| tokenizer.padding_side = "left" # Allow batched inference | |
| return tokenizer | |