Spaces:
Running
Running
| import os | |
| import ast | |
| import time | |
| from enums import PromptType # also supports imports from this file from other files | |
| non_hf_types = ['gpt4all_llama', 'llama', 'gptj'] | |
| prompt_type_to_model_name = { | |
| 'plain': [ | |
| 'EleutherAI/gpt-j-6B', | |
| 'EleutherAI/pythia-6.9b', | |
| 'EleutherAI/pythia-12b', | |
| 'EleutherAI/pythia-12b-deduped', | |
| 'EleutherAI/gpt-neox-20b', | |
| 'openlm-research/open_llama_7b_700bt_preview', | |
| 'decapoda-research/llama-7b-hf', | |
| 'decapoda-research/llama-13b-hf', | |
| 'decapoda-research/llama-30b-hf', | |
| 'decapoda-research/llama-65b-hf', | |
| 'facebook/mbart-large-50-many-to-many-mmt', | |
| 'philschmid/bart-large-cnn-samsum', | |
| 'philschmid/flan-t5-base-samsum', | |
| 'gpt2', | |
| 'distilgpt2', | |
| 'mosaicml/mpt-7b-storywriter', | |
| 'mosaicml/mpt-7b-instruct', # internal code handles instruct | |
| 'mosaicml/mpt-7b-chat', # NC, internal code handles instruct | |
| 'mosaicml/mpt-30b-instruct', # internal code handles instruct | |
| ], | |
| 'gptj': ['gptj', 'gpt4all_llama'], | |
| 'prompt_answer': [ | |
| 'h2oai/h2ogpt-gm-oasst1-en-1024-20b', | |
| 'h2oai/h2ogpt-gm-oasst1-en-1024-12b', | |
| 'h2oai/h2ogpt-gm-oasst1-multilang-1024-20b', | |
| 'h2oai/h2ogpt-gm-oasst1-multilang-2048-falcon-7b', | |
| 'h2oai/h2ogpt-gm-oasst1-multilang-2048-falcon-7b-v2', | |
| 'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v3', | |
| 'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b', | |
| 'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v2', | |
| 'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-40b-v1', | |
| 'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-40b-v2', | |
| 'h2oai/h2ogpt-gm-oasst1-en-xgen-7b-8k', | |
| 'h2oai/h2ogpt-gm-oasst1-multilang-xgen-7b-8k', | |
| ], | |
| 'prompt_answer_openllama': [ | |
| 'h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt', | |
| 'h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt-v2', | |
| 'h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-700bt', | |
| 'h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b', | |
| 'h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-13b', | |
| ], | |
| 'instruct': [], | |
| 'instruct_with_end': ['databricks/dolly-v2-12b'], | |
| 'quality': [], | |
| 'human_bot': [ | |
| 'h2oai/h2ogpt-oasst1-512-12b', | |
| 'h2oai/h2ogpt-oasst1-512-20b', | |
| 'h2oai/h2ogpt-oig-oasst1-256-6_9b', | |
| 'h2oai/h2ogpt-oig-oasst1-512-6_9b', | |
| 'h2oai/h2ogpt-oig-oasst1-256-6.9b', # legacy | |
| 'h2oai/h2ogpt-oig-oasst1-512-6.9b', # legacy | |
| 'h2oai/h2ogpt-research-oasst1-512-30b', | |
| 'h2oai/h2ogpt-research-oasst1-llama-65b', | |
| 'h2oai/h2ogpt-oasst1-falcon-40b', | |
| 'h2oai/h2ogpt-oig-oasst1-falcon-40b', | |
| ], | |
| 'dai_faq': [], | |
| 'summarize': [], | |
| 'simple_instruct': ['t5-small', 't5-large', 'google/flan-t5', 'google/flan-t5-xxl', 'google/flan-ul2'], | |
| 'instruct_vicuna': ['AlekseyKorshuk/vicuna-7b', 'TheBloke/stable-vicuna-13B-HF', 'junelee/wizard-vicuna-13b'], | |
| 'human_bot_orig': ['togethercomputer/GPT-NeoXT-Chat-Base-20B'], | |
| "open_assistant": ['OpenAssistant/oasst-sft-7-llama-30b-xor', 'oasst-sft-7-llama-30b'], | |
| "wizard_lm": ['ehartford/WizardLM-7B-Uncensored', 'ehartford/WizardLM-13B-Uncensored'], | |
| "wizard_mega": ['openaccess-ai-collective/wizard-mega-13b'], | |
| "instruct_simple": ['JosephusCheung/Guanaco'], | |
| "wizard_vicuna": ['ehartford/Wizard-Vicuna-13B-Uncensored'], | |
| "wizard2": ['llama', 'mosaicml/mpt-30b-instruct'], | |
| "vicuna11": ['lmsys/vicuna-33b-v1.3'], | |
| # could be plain, but default is correct prompt_type for default TheBloke model ggml-wizardLM-7B.q4_2.bin | |
| } | |
| if os.getenv('OPENAI_API_KEY'): | |
| prompt_type_to_model_name.update({ | |
| "openai": ["text-davinci-003", "text-curie-001", "text-babbage-001", "text-ada-001"], | |
| "openai_chat": ["gpt-3.5-turbo", "gpt-3.5-turbo-16k"], | |
| }) | |
| inv_prompt_type_to_model_name = {v.strip(): k for k, l in prompt_type_to_model_name.items() for v in l} | |
| inv_prompt_type_to_model_lower = {v.strip().lower(): k for k, l in prompt_type_to_model_name.items() for v in l} | |
| prompt_types_strings = [] | |
| for p in PromptType: | |
| prompt_types_strings.extend([p.name]) | |
| prompt_types = [] | |
| for p in PromptType: | |
| prompt_types.extend([p.name, p.value, str(p.value)]) | |
| def get_prompt(prompt_type, prompt_dict, chat, context, reduced, making_context, return_dict=False): | |
| prompt_dict_error = '' | |
| generates_leading_space = False | |
| if prompt_type == PromptType.custom.name and not isinstance(prompt_dict, dict): | |
| try: | |
| prompt_dict = ast.literal_eval(prompt_dict) | |
| except BaseException as e: | |
| prompt_dict_error = str(e) | |
| if prompt_dict_error: | |
| promptA = None | |
| promptB = None | |
| PreInstruct = None | |
| PreInput = '' | |
| PreResponse = '' | |
| terminate_response = None | |
| chat_sep = '' | |
| chat_turn_sep = '' | |
| humanstr = '' | |
| botstr = '' | |
| generates_leading_space = False | |
| elif prompt_type in [PromptType.custom.value, str(PromptType.custom.value), | |
| PromptType.custom.name]: | |
| promptA = prompt_dict.get('promptA', '') | |
| promptB = prompt_dict.get('promptB', '') | |
| PreInstruct = prompt_dict.get('PreInstruct', '') | |
| PreInput = prompt_dict.get('PreInput', '') | |
| PreResponse = prompt_dict.get('PreResponse', '') | |
| terminate_response = prompt_dict.get('terminate_response', None) | |
| chat_sep = prompt_dict.get('chat_sep', '\n') | |
| chat_turn_sep = prompt_dict.get('chat_turn_sep', '\n') | |
| humanstr = prompt_dict.get('humanstr', '') | |
| botstr = prompt_dict.get('botstr', '') | |
| elif prompt_type in [PromptType.plain.value, str(PromptType.plain.value), | |
| PromptType.plain.name]: | |
| promptA = promptB = PreInstruct = PreInput = PreResponse = None | |
| terminate_response = [] | |
| chat_turn_sep = chat_sep = '' | |
| # plain should have None for human/bot, so nothing truncated out, not '' that would truncate after first token | |
| humanstr = None | |
| botstr = None | |
| elif prompt_type == 'simple_instruct': | |
| promptA = promptB = PreInstruct = PreInput = PreResponse = None | |
| terminate_response = [] | |
| chat_turn_sep = chat_sep = '\n' | |
| humanstr = None | |
| botstr = None | |
| elif prompt_type in [PromptType.instruct.value, str(PromptType.instruct.value), | |
| PromptType.instruct.name] + [PromptType.instruct_with_end.value, | |
| str(PromptType.instruct_with_end.value), | |
| PromptType.instruct_with_end.name]: | |
| promptA = 'Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n' if not ( | |
| chat and reduced) else '' | |
| promptB = 'Below is an instruction that describes a task. Write a response that appropriately completes the request.\n' if not ( | |
| chat and reduced) else '' | |
| PreInstruct = """ | |
| ### Instruction: | |
| """ | |
| PreInput = """ | |
| ### Input: | |
| """ | |
| PreResponse = """ | |
| ### Response: | |
| """ | |
| if prompt_type in [PromptType.instruct_with_end.value, str(PromptType.instruct_with_end.value), | |
| PromptType.instruct_with_end.name]: | |
| terminate_response = ['### End'] | |
| else: | |
| terminate_response = None | |
| chat_turn_sep = chat_sep = '\n' | |
| humanstr = PreInstruct | |
| botstr = PreResponse | |
| elif prompt_type in [PromptType.quality.value, str(PromptType.quality.value), | |
| PromptType.quality.name]: | |
| promptA = 'Write a detailed high-quality, accurate, fair, Response with about 100 words by following the Instruction as applied on the Input.\n' if not ( | |
| chat and reduced) else '' | |
| promptB = 'Write a detailed high-quality, accurate, fair, Response with about 100 words by following the Instruction.\n' if not ( | |
| chat and reduced) else '' | |
| PreInstruct = """ | |
| ### Instruction: | |
| """ | |
| PreInput = """ | |
| ### Input: | |
| """ | |
| PreResponse = """ | |
| ### Response: | |
| """ | |
| terminate_response = None | |
| chat_turn_sep = chat_sep = '\n' | |
| humanstr = PreInstruct # first thing human says | |
| botstr = PreResponse # first thing bot says | |
| elif prompt_type in [PromptType.human_bot.value, str(PromptType.human_bot.value), | |
| PromptType.human_bot.name] + [PromptType.human_bot_orig.value, | |
| str(PromptType.human_bot_orig.value), | |
| PromptType.human_bot_orig.name]: | |
| human = '<human>:' | |
| bot = "<bot>:" | |
| if reduced or context or prompt_type in [PromptType.human_bot.value, str(PromptType.human_bot.value), | |
| PromptType.human_bot.name]: | |
| preprompt = '' | |
| else: | |
| cur_date = time.strftime('%Y-%m-%d') | |
| cur_time = time.strftime('%H:%M:%S %p %Z') | |
| PRE_PROMPT = """\ | |
| Current Date: {} | |
| Current Time: {} | |
| """ | |
| preprompt = PRE_PROMPT.format(cur_date, cur_time) | |
| start = '' | |
| promptB = promptA = '%s%s' % (preprompt, start) | |
| PreInstruct = human + ' ' | |
| PreInput = None | |
| if making_context: | |
| # when making context, want it to appear as-if LLM generated, which starts with space after : | |
| PreResponse = bot + ' ' | |
| else: | |
| # normally LLM adds space after this, because was how trained. | |
| # if add space here, non-unique tokenization will often make LLM produce wrong output | |
| PreResponse = bot | |
| terminate_response = ['\n' + human, '\n' + bot, human, bot, PreResponse] | |
| chat_turn_sep = chat_sep = '\n' | |
| humanstr = human # tag before human talks | |
| botstr = bot # tag before bot talks | |
| generates_leading_space = True | |
| elif prompt_type in [PromptType.dai_faq.value, str(PromptType.dai_faq.value), | |
| PromptType.dai_faq.name]: | |
| promptA = '' | |
| promptB = 'Answer the following Driverless AI question.\n' | |
| PreInstruct = """ | |
| ### Driverless AI frequently asked question: | |
| """ | |
| PreInput = None | |
| PreResponse = """ | |
| ### Driverless AI documentation answer: | |
| """ | |
| terminate_response = ['\n\n'] | |
| chat_turn_sep = chat_sep = terminate_response | |
| humanstr = PreInstruct | |
| botstr = PreResponse | |
| elif prompt_type in [PromptType.summarize.value, str(PromptType.summarize.value), | |
| PromptType.summarize.name]: | |
| promptA = promptB = PreInput = '' | |
| PreInstruct = '## Main Text\n\n' | |
| PreResponse = '\n\n## Summary\n\n' | |
| terminate_response = None | |
| chat_turn_sep = chat_sep = '\n' | |
| humanstr = PreInstruct | |
| botstr = PreResponse | |
| elif prompt_type in [PromptType.instruct_vicuna.value, str(PromptType.instruct_vicuna.value), | |
| PromptType.instruct_vicuna.name]: | |
| promptA = promptB = "A chat between a curious human and an artificial intelligence assistant. " \ | |
| "The assistant gives helpful, detailed, and polite answers to the human's questions." if not ( | |
| chat and reduced) else '' | |
| PreInstruct = """ | |
| ### Human: | |
| """ | |
| PreInput = None | |
| PreResponse = """ | |
| ### Assistant: | |
| """ | |
| terminate_response = [ | |
| '### Human:'] # but only allow terminate after prompt is found correctly, else can't terminate | |
| chat_turn_sep = chat_sep = '\n' | |
| humanstr = PreInstruct | |
| botstr = PreResponse | |
| elif prompt_type in [PromptType.prompt_answer.value, str(PromptType.prompt_answer.value), | |
| PromptType.prompt_answer.name]: | |
| preprompt = '' | |
| prompt_tokens = "<|prompt|>" | |
| answer_tokens = "<|answer|>" | |
| start = '' | |
| promptB = promptA = '%s%s' % (preprompt, start) | |
| PreInstruct = prompt_tokens | |
| PreInput = None | |
| PreResponse = answer_tokens | |
| eos = '<|endoftext|>' # neox eos | |
| humanstr = prompt_tokens | |
| botstr = answer_tokens | |
| terminate_response = [humanstr, PreResponse, eos] | |
| chat_sep = '' | |
| chat_turn_sep = eos | |
| elif prompt_type in [PromptType.prompt_answer_openllama.value, str(PromptType.prompt_answer_openllama.value), | |
| PromptType.prompt_answer_openllama.name]: | |
| preprompt = '' | |
| prompt_tokens = "<|prompt|>" | |
| answer_tokens = "<|answer|>" | |
| start = '' | |
| promptB = promptA = '%s%s' % (preprompt, start) | |
| PreInstruct = prompt_tokens | |
| PreInput = None | |
| PreResponse = answer_tokens | |
| eos = '</s>' # llama eos | |
| humanstr = prompt_tokens | |
| botstr = answer_tokens | |
| terminate_response = [humanstr, PreResponse, eos] | |
| chat_sep = '' | |
| chat_turn_sep = eos | |
| elif prompt_type in [PromptType.open_assistant.value, str(PromptType.open_assistant.value), | |
| PromptType.open_assistant.name]: | |
| # From added_tokens.json | |
| preprompt = '' | |
| prompt_tokens = "<|prompter|>" | |
| answer_tokens = "<|assistant|>" | |
| start = '' | |
| promptB = promptA = '%s%s' % (preprompt, start) | |
| PreInstruct = prompt_tokens | |
| PreInput = None | |
| PreResponse = answer_tokens | |
| pend = "<|prefix_end|>" | |
| eos = "</s>" | |
| humanstr = prompt_tokens | |
| botstr = answer_tokens | |
| terminate_response = [humanstr, PreResponse, pend, eos] | |
| chat_turn_sep = chat_sep = eos | |
| elif prompt_type in [PromptType.wizard_lm.value, str(PromptType.wizard_lm.value), | |
| PromptType.wizard_lm.name]: | |
| # https://github.com/ehartford/WizardLM/blob/main/src/train_freeform.py | |
| preprompt = '' | |
| start = '' | |
| promptB = promptA = '%s%s' % (preprompt, start) | |
| PreInstruct = "" | |
| PreInput = None | |
| PreResponse = "\n\n### Response\n" | |
| eos = "</s>" | |
| terminate_response = [PreResponse, eos] | |
| chat_turn_sep = chat_sep = eos | |
| humanstr = promptA | |
| botstr = PreResponse | |
| elif prompt_type in [PromptType.wizard_mega.value, str(PromptType.wizard_mega.value), | |
| PromptType.wizard_mega.name]: | |
| preprompt = '' | |
| start = '' | |
| promptB = promptA = '%s%s' % (preprompt, start) | |
| PreInstruct = """ | |
| ### Instruction: | |
| """ | |
| PreInput = None | |
| PreResponse = """ | |
| ### Assistant: | |
| """ | |
| terminate_response = [PreResponse] | |
| chat_turn_sep = chat_sep = '\n' | |
| humanstr = PreInstruct | |
| botstr = PreResponse | |
| elif prompt_type in [PromptType.instruct_vicuna2.value, str(PromptType.instruct_vicuna2.value), | |
| PromptType.instruct_vicuna2.name]: | |
| promptA = promptB = "" if not (chat and reduced) else '' | |
| PreInstruct = """ | |
| HUMAN: | |
| """ | |
| PreInput = None | |
| PreResponse = """ | |
| ASSISTANT: | |
| """ | |
| terminate_response = [ | |
| 'HUMAN:'] # but only allow terminate after prompt is found correctly, else can't terminate | |
| chat_turn_sep = chat_sep = '\n' | |
| humanstr = PreInstruct | |
| botstr = PreResponse | |
| elif prompt_type in [PromptType.instruct_vicuna3.value, str(PromptType.instruct_vicuna3.value), | |
| PromptType.instruct_vicuna3.name]: | |
| promptA = promptB = "" if not (chat and reduced) else '' | |
| PreInstruct = """ | |
| ### User: | |
| """ | |
| PreInput = None | |
| PreResponse = """ | |
| ### Assistant: | |
| """ | |
| terminate_response = [ | |
| '### User:'] # but only allow terminate after prompt is found correctly, else can't terminate | |
| chat_turn_sep = chat_sep = '\n' | |
| humanstr = PreInstruct | |
| botstr = PreResponse | |
| elif prompt_type in [PromptType.wizard2.value, str(PromptType.wizard2.value), | |
| PromptType.wizard2.name]: | |
| # https://huggingface.co/TheBloke/WizardLM-7B-uncensored-GGML | |
| preprompt = """Below is an instruction that describes a task. Write a response that appropriately completes the request.""" if not ( | |
| chat and reduced) else '' | |
| start = '' | |
| promptB = promptA = '%s%s' % (preprompt, start) | |
| PreInstruct = """ | |
| ### Instruction: | |
| """ | |
| PreInput = None | |
| PreResponse = """ | |
| ### Response: | |
| """ | |
| terminate_response = [PreResponse] | |
| chat_turn_sep = chat_sep = '\n' | |
| humanstr = PreInstruct | |
| botstr = PreResponse | |
| elif prompt_type in [PromptType.wizard3.value, str(PromptType.wizard3.value), | |
| PromptType.wizard3.name]: | |
| # https://huggingface.co/TheBloke/wizardLM-13B-1.0-GGML | |
| preprompt = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.""" if not ( | |
| chat and reduced) else '' | |
| start = '' | |
| promptB = promptA = '%s%s' % (preprompt, start) | |
| PreInstruct = """USER: """ | |
| PreInput = None | |
| PreResponse = """ASSISTANT: """ | |
| terminate_response = [PreResponse] | |
| chat_turn_sep = chat_sep = '\n' | |
| humanstr = PreInstruct | |
| botstr = PreResponse | |
| elif prompt_type in [PromptType.wizard_vicuna.value, str(PromptType.wizard_vicuna.value), | |
| PromptType.wizard_vicuna.name]: | |
| preprompt = '' | |
| start = '' | |
| promptB = promptA = '%s%s' % (preprompt, start) | |
| PreInstruct = """USER: """ | |
| PreInput = None | |
| PreResponse = """ASSISTANT: """ | |
| terminate_response = [PreResponse] | |
| chat_turn_sep = chat_sep = '\n' | |
| humanstr = PreInstruct | |
| botstr = PreResponse | |
| elif prompt_type in [PromptType.instruct_simple.value, str(PromptType.instruct_simple.value), | |
| PromptType.instruct_simple.name]: | |
| promptB = promptA = '' if not (chat and reduced) else '' | |
| PreInstruct = """ | |
| ### Instruction: | |
| """ | |
| PreInput = """ | |
| ### Input: | |
| """ | |
| PreResponse = """ | |
| ### Response: | |
| """ | |
| terminate_response = None | |
| chat_turn_sep = chat_sep = '\n' | |
| humanstr = PreInstruct | |
| botstr = PreResponse | |
| elif prompt_type in [PromptType.openai.value, str(PromptType.openai.value), | |
| PromptType.openai.name]: | |
| preprompt = """The following is a conversation with an AI assistant. The assistant is helpful, creative, clever, and very friendly.""" if not ( | |
| chat and reduced) else '' | |
| start = '' | |
| promptB = promptA = '%s%s' % (preprompt, start) | |
| PreInstruct = "\nHuman: " | |
| PreInput = None | |
| PreResponse = "\nAI:" | |
| terminate_response = [PreResponse] + [" Human:", " AI:"] | |
| chat_turn_sep = chat_sep = '\n' | |
| humanstr = PreInstruct | |
| botstr = PreResponse | |
| elif prompt_type in [PromptType.gptj.value, str(PromptType.gptj.value), | |
| PromptType.gptj.name]: | |
| preprompt = "### Instruction:\n The prompt below is a question to answer, a task to complete, or a conversation to respond to; decide which and write an appropriate response." if not ( | |
| chat and reduced) else '' | |
| start = '' | |
| promptB = promptA = '%s%s' % (preprompt, start) | |
| PreInstruct = "\n### Prompt: " | |
| PreInput = None | |
| PreResponse = "\n### Response: " | |
| terminate_response = [PreResponse] + ["Prompt:", "Response:"] | |
| chat_turn_sep = chat_sep = '\n' | |
| humanstr = PreInstruct | |
| botstr = PreResponse | |
| elif prompt_type in [PromptType.openai_chat.value, str(PromptType.openai_chat.value), | |
| PromptType.openai_chat.name]: | |
| # prompting and termination all handled by endpoint | |
| preprompt = """""" | |
| start = '' | |
| promptB = promptA = '%s%s' % (preprompt, start) | |
| PreInstruct = "" | |
| PreInput = None | |
| PreResponse = "" | |
| terminate_response = [] | |
| chat_turn_sep = chat_sep = '\n' | |
| humanstr = None | |
| botstr = None | |
| elif prompt_type in [PromptType.vicuna11.value, str(PromptType.vicuna11.value), | |
| PromptType.vicuna11.name]: | |
| preprompt = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. """ if not ( | |
| chat and reduced) else '' | |
| start = '' | |
| promptB = promptA = '%s%s' % (preprompt, start) | |
| eos = '</s>' | |
| PreInstruct = """USER: """ | |
| PreInput = None | |
| PreResponse = """ASSISTANT:""" | |
| terminate_response = [PreResponse] | |
| chat_sep = ' ' | |
| chat_turn_sep = eos | |
| humanstr = PreInstruct | |
| botstr = PreResponse | |
| if making_context: | |
| # when making context, want it to appear as-if LLM generated, which starts with space after : | |
| PreResponse = PreResponse + ' ' | |
| else: | |
| # normally LLM adds space after this, because was how trained. | |
| # if add space here, non-unique tokenization will often make LLM produce wrong output | |
| PreResponse = PreResponse | |
| else: | |
| raise RuntimeError("No such prompt_type=%s" % prompt_type) | |
| if isinstance(terminate_response, (tuple, list)): | |
| assert '' not in terminate_response, "Bad terminate_response" | |
| ret_dict = dict(promptA=promptA, promptB=promptB, PreInstruct=PreInstruct, PreInput=PreInput, | |
| PreResponse=PreResponse, terminate_response=terminate_response, chat_sep=chat_sep, | |
| chat_turn_sep=chat_turn_sep, | |
| humanstr=humanstr, botstr=botstr, | |
| generates_leading_space=generates_leading_space) | |
| if return_dict: | |
| return ret_dict, prompt_dict_error | |
| else: | |
| return tuple(list(ret_dict.values())) | |
| def generate_prompt(data_point, prompt_type, prompt_dict, chat, reduced, making_context): | |
| context = data_point.get('context') | |
| if context is None: | |
| context = '' | |
| instruction = data_point.get('instruction') | |
| input = data_point.get('input') | |
| output = data_point.get('output') | |
| prompt_type = data_point.get('prompt_type', prompt_type) | |
| prompt_dict = data_point.get('prompt_dict', prompt_dict) | |
| assert prompt_type in prompt_types, "Bad prompt type: %s" % prompt_type | |
| promptA, promptB, PreInstruct, PreInput, PreResponse, \ | |
| terminate_response, chat_sep, chat_turn_sep, humanstr, botstr, \ | |
| generates_leading_space = get_prompt(prompt_type, prompt_dict, chat, | |
| context, reduced, making_context) | |
| # could avoid if reduce=True, but too complex for parent functions to handle | |
| prompt = context | |
| if input and promptA: | |
| prompt += f"""{promptA}""" | |
| elif promptB: | |
| prompt += f"""{promptB}""" | |
| if instruction and PreInstruct is not None and input and PreInput is not None: | |
| prompt += f"""{PreInstruct}{instruction}{PreInput}{input}""" | |
| prompt = inject_chatsep(prompt_type, prompt, chat_sep=chat_sep) | |
| elif instruction and input and PreInstruct is None and PreInput is not None: | |
| prompt += f"""{PreInput}{instruction} | |
| {input}""" | |
| prompt = inject_chatsep(prompt_type, prompt, chat_sep=chat_sep) | |
| elif input and instruction and PreInput is None and PreInstruct is not None: | |
| prompt += f"""{PreInstruct}{instruction} | |
| {input}""" | |
| prompt = inject_chatsep(prompt_type, prompt, chat_sep=chat_sep) | |
| elif instruction and PreInstruct is not None: | |
| prompt += f"""{PreInstruct}{instruction}""" | |
| prompt = inject_chatsep(prompt_type, prompt, chat_sep=chat_sep) | |
| elif input and PreInput is not None: | |
| prompt += f"""{PreInput}{input}""" | |
| prompt = inject_chatsep(prompt_type, prompt, chat_sep=chat_sep) | |
| elif input and instruction and PreInput is not None: | |
| prompt += f"""{PreInput}{instruction}{input}""" | |
| prompt = inject_chatsep(prompt_type, prompt, chat_sep=chat_sep) | |
| elif input and instruction and PreInstruct is not None: | |
| prompt += f"""{PreInstruct}{instruction}{input}""" | |
| prompt = inject_chatsep(prompt_type, prompt, chat_sep=chat_sep) | |
| elif input and instruction: | |
| # i.e. for simple_instruct | |
| prompt += f"""{instruction}: {input}""" | |
| prompt = inject_chatsep(prompt_type, prompt, chat_sep=chat_sep) | |
| elif input: | |
| prompt += f"""{input}""" | |
| prompt = inject_chatsep(prompt_type, prompt, chat_sep=chat_sep) | |
| elif instruction: | |
| prompt += f"""{instruction}""" | |
| prompt = inject_chatsep(prompt_type, prompt, chat_sep=chat_sep) | |
| if PreResponse is not None: | |
| prompt += f"""{PreResponse}""" | |
| pre_response = PreResponse # Don't use strip | |
| else: | |
| pre_response = '' | |
| if output: | |
| prompt += f"""{output}""" | |
| return prompt, pre_response, terminate_response, chat_sep, chat_turn_sep | |
| def inject_chatsep(prompt_type, prompt, chat_sep=None): | |
| if chat_sep: | |
| # only add new line if structured prompt, while 'plain' is just generation of next tokens from input | |
| prompt += chat_sep | |
| return prompt | |
| class Prompter(object): | |
| def __init__(self, prompt_type, prompt_dict, debug=False, chat=False, stream_output=False, repeat_penalty=True, | |
| allowed_repeat_line_length=10): | |
| self.prompt_type = prompt_type | |
| self.prompt_dict = prompt_dict | |
| self.debug = debug | |
| self.chat = chat | |
| self.stream_output = stream_output | |
| self.repeat_penalty = repeat_penalty | |
| self.allowed_repeat_line_length = allowed_repeat_line_length | |
| self.prompt = None | |
| context = "" # not for chat context | |
| reduced = False # not for chat context | |
| making_context = False # not for chat context | |
| self.promptA, self.promptB, self.PreInstruct, self.PreInput, self.PreResponse, \ | |
| self.terminate_response, self.chat_sep, self.chat_turn_sep, self.humanstr, self.botstr, \ | |
| self.generates_leading_space = \ | |
| get_prompt(self.prompt_type, self.prompt_dict, chat, context, reduced, making_context) | |
| self.pre_response = self.PreResponse | |
| def generate_prompt(self, data_point, reduced=None): | |
| """ | |
| data_point['context'] is assumed to be like a system prompt or pre-conversation, not inserted after user prompt | |
| :param data_point: | |
| :param reduced: | |
| :return: | |
| """ | |
| reduced = data_point.get('context') not in ['', None] if reduced is None else reduced | |
| making_context = False # whether really making final prompt or just generating context | |
| prompt, _, _, _, _ = generate_prompt(data_point, self.prompt_type, self.prompt_dict, self.chat, reduced, | |
| making_context) | |
| if self.debug: | |
| print("prompt: %s" % prompt, flush=True) | |
| # if have context, should have always reduced and only preappend promptA/B here | |
| if data_point.get('context'): | |
| if data_point.get('input') and self.promptA: | |
| prompt = self.promptA + prompt | |
| elif self.promptB: | |
| prompt = self.promptB + prompt | |
| self.prompt = prompt | |
| return prompt | |
| def get_response(self, outputs, prompt=None, sanitize_bot_response=False): | |
| if isinstance(outputs, str): | |
| outputs = [outputs] | |
| if self.debug: | |
| print("output:\n%s" % '\n\n'.join(outputs), flush=True) | |
| if prompt is not None: | |
| self.prompt = prompt | |
| def clean_response(response): | |
| meaningless_words = ['<pad>', '</s>', '<|endoftext|>'] | |
| for word in meaningless_words: | |
| response = response.replace(word, "") | |
| if sanitize_bot_response: | |
| from better_profanity import profanity | |
| response = profanity.censor(response) | |
| if self.generates_leading_space and isinstance(response, str) and len(response) > 0 and response[0] == ' ': | |
| response = response[1:] | |
| return response | |
| def clean_repeats(response): | |
| lines = response.split('\n') | |
| new_lines = [] | |
| [new_lines.append(line) for line in lines if | |
| line not in new_lines or len(line) < self.allowed_repeat_line_length] | |
| if self.debug and len(lines) != len(new_lines): | |
| print("cleaned repeats: %s %s" % (len(lines), len(new_lines)), flush=True) | |
| response = '\n'.join(new_lines) | |
| return response | |
| multi_output = len(outputs) > 1 | |
| for oi, output in enumerate(outputs): | |
| if self.prompt_type in [PromptType.plain.value, str(PromptType.plain.value), PromptType.plain.name]: | |
| output = clean_response(output) | |
| elif prompt is None: | |
| # then use most basic parsing like pipeline | |
| if not self.botstr: | |
| pass | |
| elif self.botstr in output: | |
| if self.humanstr: | |
| output = clean_response(output.split(self.botstr)[1].split(self.humanstr)[0]) | |
| else: | |
| # i.e. use after bot but only up to next bot | |
| output = clean_response(output.split(self.botstr)[1].split(self.botstr)[0]) | |
| else: | |
| # output = clean_response(output) | |
| # assume just not printed yet | |
| output = "" | |
| else: | |
| # find first instance of prereponse | |
| # prompt sometimes has odd characters, that mutate length, | |
| # so can't go by length alone | |
| if self.pre_response: | |
| outputi = output.find(prompt) | |
| if outputi >= 0: | |
| output = output[outputi + len(prompt):] | |
| allow_terminate = True | |
| else: | |
| # subtraction is risky due to space offsets sometimes, so only do if necessary | |
| output = output[len(prompt) - len(self.pre_response):] | |
| # [1] to avoid repeated pre_response, just take first (after prompt - pre_response for chat) | |
| if self.pre_response in output: | |
| output = output.split(self.pre_response)[1] | |
| allow_terminate = True | |
| else: | |
| if output: | |
| print("Failure of parsing or not enough output yet: %s" % output, flush=True) | |
| allow_terminate = False | |
| else: | |
| allow_terminate = True | |
| output = output[len(prompt):] | |
| # clean after subtract prompt out, so correct removal of pre_response | |
| output = clean_response(output) | |
| if self.repeat_penalty: | |
| output = clean_repeats(output) | |
| if self.terminate_response and allow_terminate: | |
| finds = [] | |
| for term in self.terminate_response: | |
| finds.append(output.find(term)) | |
| finds = [x for x in finds if x >= 0] | |
| if len(finds) > 0: | |
| termi = finds[0] | |
| output = output[:termi] | |
| else: | |
| output = output | |
| if multi_output: | |
| # prefix with output counter | |
| output = "\n=========== Output %d\n\n" % (1 + oi) + output | |
| if oi > 0: | |
| # post fix outputs with seperator | |
| output += '\n' | |
| outputs[oi] = output | |
| # join all outputs, only one extra new line between outputs | |
| output = '\n'.join(outputs) | |
| if self.debug: | |
| print("outputclean:\n%s" % '\n\n'.join(outputs), flush=True) | |
| return output | |